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1. Introduction

Two major distributional changes have characterized many developed economies since
around 1980: declining middle-class incomes and rising top incomes (Hoffman et al. (2020);
Blanchet et al. (2022); and Guvenen et al., (2022)). Structural factors behind these changes
have been extensively reviewed in, for example, Acemoglu et al., (2016); Autor, Dorn and
Hanson (2013); Beach (2016); Goos, Manning and Salomons (2014);, Saez and Veall (2007);
and Veall (2012). It would clearly be useful to be able to capture both of these sets of
changes efficiently in a simple empirical framework that allows for a conventional statistical
inference methodology, in order that one can test for the statistical significance of such
changes over time.

The distributional measures that are typically used to examine these patterns of distribu-
tional change are the income shares of middle- and upper-income groups, the relative sizes
of these groups, and the relative incomes of these groups. Beach (2016) demonstrated the
usefulness, in examining these changes, of characterizing the income groups in terms of
their relationship to the median income level. So, for example, the middle-income group
(M) could be defined as including those with incomes between, say, fifty percent and two
hundred percent of the median, the upper group (H) as those with incomes above twice
the median, and the lower group (L) as those with incomes below half the median. This
allows one to get separate estimates for group income shares (ISi, i = L,M,H ) and for
the proportion of recipients within the group (or population share) PSi, as well as for the
group mean incomes (µi). This distributional framework allows a more insightful inter-
pretation of distributional change, since one can then analyze both the size (PSi) and the
relative prosperity (µi/µ) of the income group separately. (Percentile- or quantile-based
measures, by construction, assign the size of the income groups as a prespecified percent-
age such as the top decile or 10% of all income recipients.) Characterizing group size and
prosperity allows one to capture the quantity dimension of a change in the group’s total
income separately from the income per recipient. This in turn can be used to help iden-
tify the relative strength of demand-side or supply-side driving factors behind observed
distributional change (Katz and Murphy (1992)). Such insights, though, have heretofore
been based on the relative magnitude of these effects, not on their statistical significance.
This framework also allows for a richer and more extensive set of measures of income po-
larization, in terms of both quantity and relative income dimensions at the tails of the
distribution.

Davidson (2018) proposes a stochastic quantile function approach to derive asymptotic
covariances and variances – and hence standard errors – for sample estimates of ISM and
PSM for middle-group income recipients within the median-based empirical framework,
thus providing for formal statistical inference on these measures. The present paper extends
Davidson’s statistical analysis to apply to lower- and upper-income groups as well (all
defined in terms of the median), so that one can examine a full set of population subsets
covering an income distribution (i.e., for L, M , and H subsets) jointly. The analysis shows
how this approach leads to explicit formulas for asymptotic variances and standard errors,
which can be easily programmed, for ÎSi and P̂Si, for all of i = L,M,H income groups.
And the paper extends the set of distributional measures to a relative mean income statistic
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µ̂i/µ̂, where µi is the mean of group i incomes and µ is the overall population mean, and
also to µ̂i itself, so that one can test for the statistical significance of growing income gaps
among income groups.

The paper thus proposes a general framework for median-based income inequality analy-
sis, based on asymptotic statistical inference. The present study serves as a complement
to a separate piece by the authors (Beach and Davidson (2024)) that develops a com-
parable framework for inequality measures, based on quantile income shares as typically
published by government statistical agencies. Together, the two papers provide the basis
for a black-box set of calculations that can be readily implemented to allow standard sta-
tistical inference for frequently used statistics of disaggregated income inequality change.
The paper is written in the spirit of Cowell (2011), Lambert (2001), and Jenkins (1999),
of expanding the broad set of statistical tools available to general empirical practitioners
in the income distribution field.

The paper is organized as follows. The next section outlines the stochastic quantile func-
tion approach to statistical inference. It then extends Davidson’s (2018) middle-class
group results for estimated income shares and population shares to corresponding lower-
and upper-income groups as well and expresses the asymptotic variance results in terms of
simple explicit formulas that can be estimated from available microdata. The extension of
these results to group mean income measures is also presented. In Section 3 the results in
Section 2 are used to obtain results for relative group mean incomes, measures of polariza-
tion, and mean-decile distribution functions. Section 4 provides an empirical application
of the Section 2 theoretical results to Canadian Census earnings data. The final section
summarizes the main results of the paper and notes some implications.

2. Basic Asymptotic Analysis

Let F be the population distribution of income recipients, and let Y denote a random
variable of which the cumulative distribution function (CDF) is F . We make the following
somewhat restrictive assumption:

Assumption

The CDF F is differentiable and strictly increasing on its compact support.

The assumption is made for convenience and in order to simplify the asymptotic analysis.
If it is not satisfied, various asymptotically negligible terms appear in the estimators of
group population and income shares, which complicate the analysis.

2.1 Population Shares

Let m denote the median of the distribution F . Then the population share of those
recipients with income no greater than bm for some b > 0 is F (bm). If we have a random
sample from the population of size N , we can estimate the distribution by the empirical
distribution function (EDF) F̂ , defined as follows:

F̂ (y) =
1

N

N∑
i=1

I(yi ≤ y),
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where the yi, i = 1, . . . , n, are the observed incomes in the sample, and I is the indicator
function, with value 1 if its argument is true, 0 if it is false. The sample median m̂ is
defined as usual:

m̂ =

{
y(n+1) if N = 2n+ 1 (N odd)
(y(n) + y(n+1))/2 if N = 2n (N even).

The natural estimate of the population share is F̂ (bm̂). We have

F̂ (bm̂)− F (bm) =

∫ bm̂

0

dF̂ (y)−
∫ bm

0

dF (y)

=

∫ bm

0

d(F̂ − F )(y) +

∫ bm̂

bm

dF (y) +

∫ bm̂

bm

d(F̂ − F )(y). (1)

Under our Assumption, and also under less restrictive but still conventional regularity
conditions, the first two terms above are of order N−1/2, while the last, being of order N−1,
can be ignored for asymptotic analysis. Then, to leading order, we see that

N1/2
(
F̂ (bm̂)− F (bm)

)
= N−1/2

N∑
i=1

(
I(yi ≤ bm)− F (bm)

)
+ bf(bm)(m̂−m),

where f(y) = F ′(y) is the population density function. According to the Bahadur (1966)
representation of quantiles,

m̂−m = − 1

Nf(m)

N∑
i=1

[
I(yi ≤ m)− 1−

2

]
+O(N−3/4(logN)3/4), (2)

and so

N1/2
(
F̂ (bm̂)− F (bm)

)
=

N−1/2
N∑
i=1

[
I(yi ≤ bm)− F (bm)− bf(bm)

f(m)

[
I(yi ≤ m)− 1−

2

]]
+ op(1). (3)

Let B be equal to bf(bm)/f(m) and consider the random variable U(b) defined as follows:

U(b) ≡ I(Y ≤ bm)−B I(Y ≤ m), (4)

where Y is a variable that has the distribution F . Then clearly

E
(
U(b)

)
= F (bm)−B/2. (5)

The terms in the sum in (3) can be seen to be IID realizations of the random variable
U(b) − E

(
U(b)

)
, and so it follows that N1/2

(
F̂ (bm̂) − F (bm)

)
is asymptotically equal
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in distribution to U(b) − E
(
U(b)

)
. Asymptotic normality follows from the central-limit

theorem. The variance of the limiting distribution, which, following standard terminology,
we refer to as the asymptotic variance of F̂ (bm̂), is then just Var

(
U(b)

)
. In order to

estimate this variance, let

ûi(b) = I(yi ≤ bm̂)− B̂ I(yi ≤ m̂), i = 1, . . . , N, (6)

with B̂ = bf̂(bm̂)/f̂(m̂), using appropriate estimates f̂ of the density. Then, to leading
order,

N1/2
(
F̂ (bm̂)− F (bm)

)
= N−1/2

N∑
i=1

[
ûi(b)− Ê

(
U(b)

)]
,

with, from (5),

Ê
(
U(b)

)
= F̂ (bm̂)− B̂/2,

Then Var
(
U(b)

)
can be estimated by the sample variance of the ûi(b).

A possibly better approach is simply to compute Var
(
U(b)

)
directly, and then estimate

the result. It is easy to see from (4) that

U2(b) = I(Y ≤ bm) +B2I(Y ≤ m)− 2B I
(
Y ≤ min(m, bm)

)
,

whence
E
(
U2(b)

)
= F (bm) + 1−

2
B2 − 2B min

(
F (bm), 1−

2

)
. (7)

Next, Var
(
U(b)

)
= E

(
U2(b)

)
−
(
E(U)

)2
, and so from (5), for b < 1, we have

Var
(
U(b)

)
= F (bm)

(
1− F (bm)

)
+ 1−

4
B2 −BF (bm). (8)

We see that Var
(
U(b)

)
can be estimated in a distribution-free manner by

V̂ar
(
U(b)

)
= F̂ (bm̂)

(
1− F̂ (bm̂)

)
+ 1−

4
B̂2 − B̂F̂ (bm̂).

Let a > b, and make the definitions

U(a) = I(Y ≤ am)−A I(Y ≤ m); A = af(am)/f(m), (9)

and, for a > 1

Var
(
U(a)

)
= F (am)

(
1− F (am)

)
+ 1−

4
A2 −A

(
1− F (am)

)
. (10)

Then N1/2
(
F̂ (am̂)− F (am)

)
is asymptotically equal in distribution to U(a)− E

(
U(a)

)
.

Some comments are in order concerning the “appropriate” estimates f̂(bm̂) amd f̂(m̂). In
Appendix 2 we sketch an alternative to conventional kernel density estimation that works
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much better with distributions that have support only on the positive real line or a subset
of it. Here we follow the work of Comte and Genon-Catalot (2012).

The analysis so far developed is sufficient for estimating and providing standard errors for
the population share with income less than bm or greater than bm. But in order to estimate
the population share of recipients with income in some interval bm < y ≤ am, a, b > 0,
b < a, as was done in Davidson (2018), one needs not only the variances of F̂ (am̂) and
F̂ (bm̂), but also their covariance. The asymptotic covariance of N1/2

(
F̂ (am̂) − F (am)

)
and N1/2

(
F̂ (bm̂)− F (bm)

)
is the covariance of U(a) and U(b).

Make the definitions ma = min(am,m) and mb = min(bm,m). Then

U(a)U(b) =
(
I(Y ≤ am)−A I(Y ≤ m)

)(
I(Y ≤ bm)−B I(Y ≤ m)

)
= I(Y ≤ bm)−A I(Y ≤ mb)−B I(Y ≤ ma) +AB (Y ≤ m),

whence
E
(
U(a)U(b)

)
= F (bm)−AF (mb)−BF (ma) +

1−
2
AB, (11)

whereas

E
(
U(a)

)
E
(
U(b)

)
=
(
F (am)− 1−

2
A
)(
F (bm)− 1−

2
B
)

= F (bm)F (am)− 1−
2

(
BF (am) +AF (bm)

)
+ 1−

4
AB.

From this, we see immediately that

cov
(
U(a), U(b)

)
= E

(
U(a)U(b)

)
− E

(
U(a)

)
E
(
U(b)

)
= F (bm)

(
1− F (am)

)
−A

(
F (mb)− 1−

2
F (bm)

)
−B

(
F (ma)− 1−

2
F (am)

)
+ 1−

4
AB,

(12)

and this can be estimated in a distribution-free manner.

Although the results of this section so far are quite general, for most of the rest of the
paper, interest will be focused on the case with b < 1 < a. The share of the population with
income not exceeding bm, that is, F (bm), will be denoted by PSL, where ‘L’ stands for
the group of lower-income recipients. The population share of the middle-income group is
F (am)−F (bm); it is denoted by PSM . The share of the higher-income group, 1−F (am),
is denoted by PSH .

It is clear from (8) that

Asy var(P̂SL) = Var
(
U(b)

)
= PSL(1− PSL) +B2/4−B PSL, (13)

and from (10) that

Asy var(P̂SH) = Var
(
U(a)

)
= PSH(1− PSH) +A2/4−APSH . (14)

Note that the terms on the right-hand sides of these equations have simple intuitive in-
terpretations. The first (product) term corresponds to the variance of random recipients
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lying within the respective population share, the second (squares) term corresponds to the
variance of the estimated median-based cut-off points, and the last term corresponds to
the covariance or interaction between the first two components.

The population share of recipients of incomes between bm and am is PSM = F (am) −
F (bm), and the limiting variance of N1/2(P̂SM − PSM ) is equal to Var

(
U(a) − U(b)

)
=

Var
(
U(a)

)
+Var

(
U(b)

)
− 2 cov

(
U(a), U(b)

)
. The covariance (12) can now be rewritten as

cov
(
U(a), U(b)

)
= PSLPSH −APSL/2−B PSH/2 +AB/4, (15)

and so the asymptotic variance of P̂SM , after a little algebra based on (13), (14), and (15),
can be seen to be

PSM (1− PSM ) + 1−
4
(A−B)2 − (A−B)(PSH − PSL). (16)

The same expression results from calculating E
(
(U(a) − U(b))2

)
−
(
E(U(a) − U(b))

)2
directly. Let C = A−B. Then (16) can also be written as

Asy var(P̂SM ) = PSM (1− PSM ) + C2/4− C(PSH − PSL). (17)

2.2 Income Shares

We begin by considering the income share of recipients of incomes no greater than bm,
with b < 1. The average income earned by these recipients is n(bm), defined as follows:

n(bm) =

∫ bm

0

y dF (y), estimated by n̂(bm̂) =

∫ bm̂

0

y dF̂ (y), (18)

and the income share is n(bm)/µ, where µ ≡
∫∞
0

y dF (y) is the mean income of the

population, estimated by
∫∞
0

y dF̂ (y). Note that µ = n(∞) and µ̂ = n̂(∞). With b < 1,
we denote n(bm) and n̂(bm̂) by nL and n̂L respectively, and we denote the income share
of the lower-income group by ISL. Clearly ISL = nL/µ.

For incomes greater than am, with a > 1, the average income is µ−nH with nH = n(am)
defined just as in (18), replacing b by a. The income share is ISH = (µ − nH)/µ =
1−nH/µ. For the middle-income group, average income is nH −nL, and the income share
is ISM = (nH − nL)/µ = 1− ISH − ISL,

By analogy with (1) for population shares, we have

n̂L − nL =

∫ bm̂

0

y dF̂ (y)−
∫ bm

0

y dF (y)

=

∫ bm

0

y d(F̂ − F )(y) +

∫ bm̂

bm

y dF (y) +

∫ bm̂

bm

y d(F̂ − F )(y),
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where the third term can be ignored asymptotically. With a random sample of size N , as
in the preceding subsection, the first term is exactly equal to

N−1
N∑
i=1

[
yiI(yi ≤ bm)− n(bm)

]
,

and the second term can be approximated to leading order by b(m̂ − m)bmf(bm), and,
by (2), that approximation is to leading order equal to

−N−1
N∑
i=1

b2mf(bm)

f(m)

(
I(yi ≤ m)− 1−

2

)
.

This leads to

N1/2(n̂L−nL) = N−1/2
N∑
i=1

[
yiI(yi ≤ bm)−bmB I(yi ≤ m)−n(bm)+ 1−

2
bmB

]
+op(1). (19)

Next, we define the random variable U1(b) as

U1(b) = Y I(Y ≤ bm)− bmB I(Y ≤ m), (20)

noting that E
(
U1(b)

)
= nL− bmB/2. It follows now that N1/2(n̂L−nL) is asymptotically

equal in distribution to U1(b)− E
(
U1(b)

)
.

Similarly, for a > 1, we can define

U1(a) = Y I(Y ≤ am)− amA I(Y ≤ m),

where E
(
U1(a)

)
= n(am)− amA/2 = nH − amA/2, and N1/2(n̂H −nH) is asymptotically

equal in distribution to U1(a)− E
(
U1(a)

)
.

For the variance of U1(b), we compute as follows:

U2
1 (b) = Y 2 I(Y ≤ bm) + (bmB)2 I(Y ≤ m)− 2bmB Y I

(
Y ≤ bm)

)
, (21)

so that
E
(
U2
1 (b)

)
= n2,L + 1−

2
(bmB)2 − 2bmB nL, (22)

where we define n2,L =
∫ bm

0
y2 dF (y). It follows that

Var
(
U1(b)

)
= E

(
U2
1 (b)

)
−
(
E
(
U1(b)

))2
= n2,L − n2

L + 1−
4
(bmB)2 − bmB nL.

In the same way, we find that

Var
(
U1(a)

)
= E

(
U2
1 (a)

)
−
(
E
(
U1(a)

))2
= n2,H − n2

H + 1−
4
(amA)2 + amA(nH − 2nmed),
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where n2,H =
∫ am

0
y2 dF (y) and nmed = n(m) =

∫m

0
y dF (y). Everything here can be

straightforwardly estimated in a distribution-free manner.

Alternatively, by setting

û1i(b) = yi I(yi ≤ bm̂)−bm̂B̂ I(yi ≤ m̂), and û1i(a) = yi I(yi ≤ am̂)−am̂Â I(yi ≤ m) (23)

for i = 1, . . . , N , the variance of U1(b) and that of U1(a) can be estimated by the sample
variances of the û1i(b) and the û1i(a) respectively.

The income share of the low-income group is ISL = nL/µ, and this income share can be

estimated by ÎSL = n̂L/µ̂. We have

N1/2(ÎSL − ISL) = N1/2
[ n̂L

µ̂
− nL

µ

]
= N1/2 (µn̂L − µ̂nL)

µµ̂

=
1

µµ̂

[
µN1/2(n̂L − nL)− nLN

1/2(µ̂− µ)
]
.

(24)

Now since µ̂ = µ+Op(n
−1/2), for the purposes of our asymptotic analysis we can replace

the denominator µµ̂ by µ2. Given (19) and the definition (20) of the random variable U1(b),

and the fact that N1/2(µ̂ − µ) = N−1/2
∑N

i=1(yi − µ), we are led to define the random
variable W (b) = U1(b)/µ − nLY/µ

2 and to conclude that (24) is asymptotically equal in
distribution to W (b)− E

(
W (b)

)
. First, note that

E
(
W (b)

)
= nL/µ− 1−

2
bmB/µ− nL/µ = − 1−

2
bmB/µ. (25)

For the variance, we have

W 2(b) = U2
1 (b)/µ

2 + n2
LY

2/µ4 − 2nLU1(b)Y/µ
3.

Now
U1(b)Y = Y 2 I(Y ≤ bm)− bmB Y I(Y ≤ m) so that

E
(
U1(b)Y

)
= n2,L − bmB nmed. (26)

Then, from (22) and (26), we see that the asymptotic variance of ÎSL is

Var
(
W (b)

)
= E

(
W 2(b)

)
−
(
E(W (b))

)2
=

1

µ2

[
n2,L + 1−

4
(bmB)2 − 2bmBnL

]
+

1

µ4
n2
Lµ2 −

2nL

µ3

[
n2,L − bmB nmed

]
,

(27)

where µ2 =
∫∞
0

y2 dF (y). Note that the term involving B2 corresponds to the variability
of the estimated median-based cut-off point about its true population cut-off value. The
terms without any B in them correspond to the variability of random recipients lying
within the true median-based cut-off range. And terms involving only B then correspond
to the covariance or interaction between the first two components.
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Since the income share of the high-income group is ISH = 1− nH/µ, similarly to (24) we
see that

N1/2(ÎSH − ISH) = − 1

µ2

[
µN1/2(n̂H − nH)− nHN1/2(µ̂− µ)

]
+ op(1).

Make the definition W (a) = U1(a)/µ − nHY/µ2; the asymptotic variance of ÎSH is then
Var
(
W (a)

)
, and after some algebra we see that this is

Var
(
W (a)

)
=

1

µ2

[
n2,H + 1−

4
(amA)2 − 2amAnmed

]
+

1

µ4
n2
Hµ2 −

2nH

µ3

[
n2,H − amAnmed

]
.

(28)

For the middle-income group, we have ISM = (nH−nL)/µ, and so, again similarly to (24),
we find that

N1/2(ÎSM − ISM ) =
1

µ2

[
µN1/2(n̂H − n̂L − nH + nL)− (nH − nL)N

1/2(µ̂− µ)
]
+ op(1).

Define the random variable

W (a, b) = U1(a)− U1(b)− ISM Y.

It is easy to check that the asymptotic variance of ÎSM is Var
(
W (a, b)/µ

)
. First,

E
(
W (a, b)

)
= nH − nL −m(aA− bB)/2− ISM µ = −m(aA− bB)/2.

Then
W 2(a, b) =

(
U1(a)− U1(b)

)2
+ IS2

M Y 2 − 2ISM Y
(
U1(a)− U1(b)

)
. (29)

Since
U1(a)− U1(b) = Y I(bm < Y ≤ am)−m(aA− bB)I(Y ≤ m),

it follows that
E
(
U1(a)− U1(b)

)
= nH − nL −m(aA− bB)/2, (30)

and since (
U1(a)− U1(b)

)2
= Y 2 I(bm < Y ≤ am) +m2(aA− bB)2 I(Y ≤ m)

−2m(aA− bB)Y I(bm < y ≤ m),

it follows that

E
[(
U1(a)− U1(b)

)2]
= n2,H − n2,L +m2(aA− bB)2/2− 2m(aA− bB)(nmed − nL). (31)

From (29), (30), and (31) we conclude after a bit of algebra that

Var
(
W (a, b)/µ)

)
=
[
(n2,H − n2,L)(1− 2ISM ) +m2(aA− bB)2/4 + µ2IS

2
M

+2m(aA− bB)((ISM − 1)nmed + nL)
]
/µ2. (32)
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Another way to estimate Var
(
W (b)

)
and Var

(
W (a)

)
is to define

wi(b) = µ̂−1û1i(b)− µ̂−2yin̂L, and

wi(a) = µ̂−1û1i(a)− µ̂−2yin̂H

for i = 1, . . . , N , and use the sample variances of the wi(b) and wi(a) as V̂ar
(
W (b)

)
and

V̂ar
(
W (a)

)
respectively; recall the definitions (23). Further, if we define

wi(a, b) = µ̂−1
[
û1i(a)− û1i(b)− ÎSMyi

]
,

the sample variance of the ŵi(a, b) estimates Var
(
W (a, b)/µ

)
.

2.3 Income Group Means

The mean income of recipients with income no greater than bm is denoted µL and is equal
to

µL ≡ E
(
Y | Y ≤ bm) =

∫ bm

0

y dF (y)
/ ∫ bm

0

dF (y) = nL/PSL,

estimated by µ̂L ≡ n̂L/P̂SL. From this, we have to leading order,

N1/2(µ̂L − µL)) =
1

PSL

[
N1/2(n̂L − nL)− µLN

1/2(P̂SL − PSL)
]
.

This suggests the definition of a new random variable X(b), as follows:

X(b) =
1

PSL

(
U1(b)− µLU(b)

)
(33)

recall the definitions (4) and (20). Then N1/2(µ̂L − µL) is asymptotically equal in dis-
tribution to X(b)− E

(
X(b)

)
. Details of the calculation of the variance of X(b) are in

Appendix 1a, although it is also possible to make the definition for i = 1, . . . , N

x̂i(b) =
1

P̂SL

(
û1i(b)− µ̂Lûi(b)

)
, (34)

with ûi(b) and û1i(b) defined respectively by (6) and (23), and use the sample variance
of the x̂i(b) as an estimate of Var(X). The calculation in Appendix 1a leads to a rather
simple expression for Var

(
X(b)

)
, as follows:

Var
(
X(b)

)
=

1

PS2
L

[
n2,L − PSLµ

2
L + 1−

4
B2(bm− µL)

2
]
. (35)

Note that

Var(Y | Y ≤ bm) =

∫ bm

0
y2 dF (y)∫ bm

0
dF (y)

−

(∫ bm

0
y dF (y)∫ bm

0
dF (y)

)2
= n2,L/PSL − µ2

L,
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and so, writing σ2
L = Var(Y | Y ≤ bm), we can reformulate (35) as

Asy var(µ̂L) =
1

PS2
L

(µL − bm)2B2/4 +
1

PSL
σ2
L. (36)

Note once more that the second term in this expression corresponds to the variance of
µ̂L based on the true bm cut-off value, while the first term corresponds to the variability
associated with the randomness of the cut-off bm̂ about its population value bm.

The mean of incomes greater than am is

µH ≡ E(Y | Y > am) =

∫ ∞

am

y dF (y)
/ ∫ ∞

am

dF (y) =
µ− nH

PSH
, (37)

estimated by µ̂H = (µ̂ − n̂H)/P̂SH . Then N1/2(µ̂H − µH) is asymptotically equal in
distribution to the random variable

X(a) =
1

PSH

[
Y − U1(a)− µH

(
1− U(a)

)]
. (38)

minus its expectation. Note that

1− U(a) = I(Y > am) +A I(Y ≤ m), E
(
1− U(a)

)
= PSH +A/2;

Y − U1(a) = Y I(Y > am) + amA I(Y ≤ m), E
(
Y − U1(a)

)
= µ− nH + amA/2,

(39)

so that

E
(
X(a)

)
= − A

2PSH
(µH − am). (40)

The variance of X(a), derived in detail in Appendix 1b, is

Var
(
X(a)

)
=

1

PS2
H

[
µ2 − n2,H − PSHµ2

H + 1−
4
A2(µH − am)2

]
. (41)

Now, if we define the conditional variance

Var(Y | Y > am) = n2,H/PSH − µ2
H ≡ σ2

H ,

then (41) can also be expressed as

Asy var(µ̂H) =
1

PS2
H

(µH − am)2A2/4 +
1

PSH
σ2
H . (42)

Alternatively, for i = 1, . . . , N make the definition

x̂i(a) =

(
yi − û1i(a)

)
− µ̂H

(
1− ûi(a)

)
P̂SH

.
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The variance of the limiting distribution of N1/2(µ̂H −µH)) can then be estimated by the
sample variance of the x̂i(a). (Recall definitions (6) and (23) for ûi() and û1i().)

The mean of the incomes between bm and am is

µM ≡ E(Y | bm < Y ≤ am) =

∫ am

bm

y dF (y)
/ ∫ am

bm

dF (y) =
nH − nL

PSM
, (43)

estimated by µ̂M = (n̂H − n̂L)/P̂SM . Thus N1/2(µ̂M − µM ) is asymptotically equal in
distribution to the random variable

X(b, a) =
PSM

(
U1(a)− U1(b)

)
− (nH − nL)

(
U(a)− U(b)

)
PS2

M

=
1

PSM

[(
U1(a)− U1(b)

)
− µM

(
U(a)− U(b)

)]
, (44)

minus its expectation.

Note that µM is not a function of µH and µL alone. Estimating it poses no problem, but
a new calculation is needed to find an expression for its asymptotic variance. The variance
of X(b, a) is derived in Appendix 1c. It is

Var
(
X(b, a)

)
= E

[
W 2(b, a)

]
−
[
E
(
X(b, a)

)]2
=

1

PS2
M

[
n2,H − n2,L − µ2

MPSM +D2/4 +D
[
2(nmed − nL) + 2µMPSL − µM

]]
, (45)

where we have made the definition

D = µM (A−B)−m(aA− bB). (46)

Another conditional variance:

Var(Y | bm < Y ≤ am) = (n2,H − n2,L)/PSM − µ2
H ≡ σ2

M ,

so that (45) reformulated becomes

Asy var(µ̂M ) =
1

PS2
M

[
D2/4 +D

(
2(nmed − nL) + 2µMPSL − µM

)]
+

1

PSM
σ2
M . (47)

In order to estimate the variance of the limiting distribution of N1/2(µ̂M − µM ), another
way to proceed is to make the definition, for i = 1, . . . , N ,

x̂i(b, a) =
û1i(a)− û1i(b)− µ̂M

(
ûi(a)− ûi(b)

)
P̂SM

and use the sample variance of the x̂i(b, a) to estimate the desired variance.
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2.4 Summary of Main Results

a Population shares

From the results (8), (10), and (17), we obtain directly that

Asy var(P̂SL) = PSL(1− PSL) +B2/4− PSLB,

where B = bf(bm)/f(m);

Asy var(P̂SH) = PSH(1− PSH) +A2/4− PSHA,

where A = af(am)/f(m);

Asy var(P̂SM ) = PSM (1− PSM ) + C2/4− (PSH − PSL)C,

where C = A−B.

b Income shares

From the results (27), (28), and (32), we obtain

Asy var(ÎSL) =
1

µ2

[
n2,L + 1−

4
(bmB)2 − 2bmBnL

]
+

1

µ4
n2
Lµ2 −

2nL

µ3

[
n2,L − bmB nmed

]
;

Asy var(ÎSH) =
1

µ2

[
n2,H + 1−

4
(amA)2−2amAnmed

]
+

1

µ4
n2
Hµ2−

2nH

µ3

[
n2,H −amAnmed

]
;

Asy var(ÎSM ) =
1

µ2

[
(n2,H − n2,L)(1− 2ISM ) +m2(aA− bB)2/4 + µ2IS

2
M

+2m(aA− bB)((ISM − 1)nmed + nL)
]
.

c Income group means

From the results (35), (41), and (45), we obtain

Asy var(µ̂L) =
1

PS2
L

[
n2,L − PSLµ

2
L + 1−

4
B2(bm− µL)

2
]
;

Asy var(µ̂H) =
1

PS2
H

[
µ2 − n2,H − PSHµ2

H + 1−
4
A2(µH − am)2

]
;

Asy var(µ̂M ) =
1

PS2
M

[
n2,H − n2,L − µ2

MPSM +D2/4 +D
(
2(nmed − nL)

+ 2µMPSL − µM

)]
, where D = µM (A−B)−m(aA− bB).

Expressed somewhat differently, these results also follow from (36), (42), and (47):

Asy var(µ̂L) =
1

PS2
L

(µL − bm)2B2/4 +
1

PSL
σ2
L;

Asy var(µ̂H) =
1

PS2
H

(µH − am)2A2/4 +
1

PSH
σ2
H ;

Asy var(µ̂M ) =
1

PS2
M

[
D2/4 +D

(
2(nmed − nL) + 2µMPSL − µM

)]
+

1

PSM
σ2
M .
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Note that the general framework of this paper allows for more and for more refined income
groups than just the three employed here – so long as the cut-off points between income
groups are expressed in terms of multiples of the median.

3. Inference on Related Distributional Statistics

This section considers three sets of distributional statistics that involve applications of the
analytical results developed in the previous section. As there, we restrict attention to the
case in which b < 1 < a, thus defining three income groups: the lower group L, for incomes
less than or equal to bm; the middle group M , with incomes between bm and am; and the
higher group H, with incomes greater than am.

3.1 Relative Mean Income Ratios

The relative mean income for each income group is the ratio of the group’s mean income
to the overall mean income of the distribution:

RMIi = µi/µ for i = L,M,H. (48)

It shows the size of the discrepancy or distance of group mean incomes to the overall mean
in proportional terms. So, for example, in recent decades for many countries, the lower-
income ratio µ̂L/µ̂ has not changed much, while the upper-income ratio µ̂H/µ̂ has gone up
very substantially. It would be useful to know if the changes in both ratios are statistically
significant, or only the latter.

The relative mean income ratio can be estimated directly as

R̂MIi = µ̂i/µ̂.

But, from the definitions of µL, µH , and µM , we have µL/µ = nL/(µPSL) = ISL/PSL,
µH/µ = (µ−nH)/(µPSH) = ISH/PSH , and µM/µ = (nH −nL)/(µPSM ) = ISM/PSM ,
and so for i = L,M,H , RMIi = ISi/PSi. Thus to leading order

N1/2(R̂MIi − RMIi) =
1

PSi

[
N1/2(ÎSi − ISi)− RMIi N

1/2(P̂Si − PSi)
]
. (49)

Consider first R̂MIL. With i = L, (49) suggests the random variable

R(b) = W (b)− RMIL U(b) = 1/µU1(b)− nLY/µ
2 − RMIL U(b).

The asymptotic variance of R̂MIL is then Var
(
R(b)/PSL

)
. An easy calculation shows that

E
(
R(b)

)
= 1−

2
B(RMIL − bm/µ)− ISL. (50)

Then
R2(b) = W 2(b) + RMI2L U2(b)− 2RMIL U(b)W (b).
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The expectation of W 2(b) follows from (27) and that of U2(b) is given by (7). We have

U(b)W (b) =
1

µ
U(b)U1(b)−

nL

µ2
U(b)Y.

It is easy to show that

U(b)U1(b) = Y I(Y ≤ bm)(1−B)− bmB I(Y ≤ bm) + bmB2 I(Y ≤ m) and

U(b )Y = Y I(Y ≤ bm)−BY I(Y ≤ m),

so that

E
(
U(b)U1(b)

)
= nL(1−B)− bmB PSL + bmB2/2 and (51)

E
(
U(b)Y

)
= nL −B nmed. (52)

Thus we have

E
(
U(b)W (b)

)
=

1

µ

[
nL(1−B)− bmB PSL + bmB2/2

]
− 1

µ2
nL(nL −B nmed)

= PSL(1− PSL)−B ISL(1− nmed/µ)− bmB PSL + 1−
2
bmB2. (53)

Some algebra lets us calculate Var(RMIL) from (27), (7), (50), and (53). The result is

Asy var(R̂MIL) = Var
(
R(b)/PSL

)
=

1

PS2
L

[
(1− 2ISL)(n2,L/µ

2 − ISL RMIL) + IS2
Lµ2/µ

2 + 1−
4
B2(RMIL − bm/µ)2

− IS2
L − ISLB(RMIL − bm/µ)(2nmed/µ− 1)

]
, (54)

Similarly, for R̂MIH , we consider the random variable

R(a) = W (a)−RMIHU(a) = 1/µU1(a)− nHY/µ2 −RMIH U(a),

and
R2(a) = W 2(a) +RMI2H U2(a)− 2RMIHU(a)W (a). (55)

First,
E
(
R(a)

)
= 1−

2
A(RMIH − am/µ) + ISH −RMIH .

From (28), we can deduce that

E
(
W 2(a)

)
=

1

µ2

[
n2,H + 1−

2
(amA)2 − 2amAnmed)

]
+

n2
Hµ2

µ4
− 2nH

µ3

[
n2,H − amAnmed

]
=

1

µ2

[
n2,H(2ISH − 1) + 1−

2
(amA)2 − 2amAISH nmed

]
. (56)
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It is immediate from (9) that

E
(
U2(a)

)
= 1− PSH +A2/2−A. (57)

Analogously to (51) and (52), we find that

E
(
U(a)U1(a)

)
= nH −Anmed − amA/2 + amA2/2 and (58)

E
(
U(a)Y

)
= nH −Anmed. (59)

Now U(a)W (a) = U(a)U1(a)/µ− nHU(a)Y/µ2, and so, from (58) and (59), we see that

E
(
U(a)W (a)

)
=

1

µ
(nH −Anmed − 1−

2
amA+ 1−

2
amA2)− nH

µ2
(nH −Anmed)

= ISH(1− ISH)−AISH nmed/µ− amA(1−A)/(2µ). (60)

And so, from (55), (56), (57), and (60), we obtain the result

Asy var(R̂MIH) = Var
(
R(a)/PSH

)
=

1

PS2
H

[
(2ISH − 1)n2,H/µ2 + n2

Hµ2/µ
4 + 1−

4
A2(RMIH − am/µ)2

− IS2
H + IS2

H/PSH − 2 IS2
H/PS2

H + ISH A(RMIH − am/µ)(2nmed/µ− 1)
]
. (61)

Although we can derive the asymptotic variance of R̂MIM along similar lines as above for

R̂MIL and R̂MIH , this leads to expressions that are neither simple nor intuitive. A simpler

procedure is to note from (49) that the asymptotic variance of R̂MIM is equal to

1

PS2
M

[
Asy var(ÎSM ) + RMI2M Asy var(P̂SM )− 2RMIM Asy cov(ÎSM , P̂ SM )

]
.

The asymptotic variances of ÎSM and P̂SM are given by (32) and (17) respectively; see
also the summary of results.

The asymptotic covariance of P̂SM and ÎSM is the covariance of U(a) − U(b) and
W (a)−W (b). The details of the calculation of the covariance are relegated to Ap-
pendix 1d. The result is

Asy cov(P̂SM , ÎSM ) = ISM (1− ISM )− 1

2µ
m(aA− bB)(PSH − PSL)

+
C

µ

[
ISMnmed − nmed + nL + 1−

4
m(aA− bB)

]
, (62)

with C = A−B.
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3.2 Polarization Measures

The rise of upper incomes, resulting in a growing separation between high-income recipients
and middle-class workers, has led to concern about the degree of polarization in income
distributions. The intuitive concept of polarization can be viewed as having two quite
distinct dimensions or aspects. One is the size dimension, or the relative concentration of
income recipients at either or both ends of the distribution. This could be labelled tail-
frequency polarization. It could be captured, for example, by the proportion of recipients
in the lower or higher income groups (Wolfson (1994)) – what we are referring to here

as PSL and PSH . Such measures then are P̂SL, P̂SH , and P̂SL + P̂SH . Asymptotic
variances for the first two have already been obtained in Section 2 above. For P̂SL+ P̂SH ,
note that the sum of the three population shares is one, and so the asymptotic variance
of P̂SL + P̂SH is simply that of the middle group, P̂SM , which again we already have
in (17).

The other aspect of polarization is the distance dimension or the size of the income gap
separating lower or upper incomes and middle-class incomes. This could be referred to as
income-gap polarization, and could be captured by µ̂H − µ̂M , µ̂M − µ̂L, or µ̂H − µ̂L. Both
sets of measures provide useful insights, and both can be implemented in our analytical
framework. In the case of the income-gap polarization measures, again the asymptotic
variances of µ̂H , µ̂M , and µ̂L have been established in Section 2. For the differences in
income group means, recall that

Asy var(µ̂i − µ̂j) = Asy var(µ̂i) + Asy var(µ̂j)− 2Asy cov(µ̂i, µ̂j)

for i ̸= j. The three required covariances are provided in Appendix 1e. Thus, again,
standard errors of the income-gap polarization measures can be computed in the usual
fashion.

One could also posit a set of compound polarization measures which capture both of
these dimensions together: CPH ≡ PSH(µH − µM )), CPL ≡ PSL(µM − µL), and
CP ≡ (PSH + PSL)(µH − µL) = (1− PSM )(µH − µL).

Analogously, one could further identify a compound measure to capture the evident decline
in the economic situation of the Middle Class in many countries over recent decades as
PSM · µM . This would allow one, for example, to use logarithmic derivatives to estimate
the relative importance of changes in the relative size of the Middle Class (∆PSM ) versus
changes in their average real incomes (∆µM ) in this decline.

One can use the results of Section 2 to work out the asymptotic variances of these various
estimated compound measures; see Appendix 1f for details.

3.3 Mean-Decile Functions

In an environment where higher incomes have been rising dramatically relative to the
rest of the distribution, one measure of interest could be an indication of skewness of the
distribution, as measured by the difference between the overall mean and median of the
income distribution, µ̂−m̂ or m̂/µ̂. However, m̂ is simply the fifth decile of the distribution.
One could, more generally, define a mean-decile function.
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Choose some proportions pi, i = 1, . . . ,m with pi < pj for i < j. For deciles, we would
have pi = i/10, i = 1, 2, . . . , 9. Let ξi be the pi-quantile of the distribution: the proportion

of incomes less than ξi is pi, and let ξ̂i be the corresponding sample quantile. Possible
mean-decile functions could take on values ξ̂i − µ̂, or alternatively ξ̂i/µ̂, for the ith decile
of the distribution as a further way of capturing growing income differences over various
ranges of the distribution.

Here we can make use of the work of Lin, Wu, and Ahmad (1980) (LWA). LWA show

that, under general regularity conditions, the ξ̂i and µ̂ are asymptotically joint nor-
mally distributed. We denote the asymptotic variance-covariance matrix by Σ: it is an
(m+ 1)× (m+ 1) matrix, where the index i = 0 refers, not to a quantile, but to µ. Then,
for 0 < i ≤ j ≤ m, the elements of Σ are:

σij = pi(1− pj)/
[
f(ξi)f(ξj)

]
,

σ00 = σ2,

σ0i = pi(µ− µi)/f(ξi),

where f(ξi) is the density at ξi, µi = E(Y | Y ≤ ξi) = (1/pi)
∫ ξi
0

y dF (y), and σ2 = Var(Y ).

Thus, for the mean-decile distribution defined in levels as ξ̂i − µ̂, we have

Asy var(ξ̂i − µ̂) = Asy var(ξ̂i) + Asy var(µ̂)− 2Asy cov(ξ̂i, µ̂)

=
pi(1− pi)

f2(ξi)
+ σ2 − 2pi(µ− µi)

f(ξi)
.

In relative or proportional terms,

Asy var(ξ̂i/µ̂) = [ 1/µ −ξi/µ
2 ]Σ0i

[
1/µ

−ξi/µ
2

]
=

σ2

µ2
+

ξ2i pi(1− pi)

µ4f2(ξi)
− 2ξipi(µ− µi)

µ3f(ξi)
.

Note that the density appears as such in the denominator of the above expressions rather
than as a ratio f(am)/f(m) or f(bm)/f(m) as elsewhere in this paper. But f(ξi) can be
estimated in the same way as the other densities used; see Appendix 2. Standard errors
can be calculated accordingly.

3.4 Relation with the Bootstrap

Given the fact that the bootstrap has become an almost universal tool for reliable statistical
inference, it is incumbent on us to outline how the material in this paper can be used in
connection with bootstrap methods. It has been suggested that the asymptotic variances
and standard errors provided here are unnecessary, as they can be obtained in a finite-
sample context by use of the bootstrap. However, Horowitz (2001) points out that naive
bootstrap standard errors are unlikely to be any better than asymptotic ones and may
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well be worse. What he and numerous other authors recommend is using an asymptotic
standard error in order to construct an asymptotically pivotal quantity by studentising,
that is, dividing the quantity of interest, supposed to have expectation zero, by its standard
error. The studentised quantity can then be bootstrapped in order to obtain a bootstrap
P value for some null hypothesis, or to construct a bootstrap confidence interval for a
parameter of interest.

Our results can be applied readily to such a bootstrap exercise. For instance, a test of
a hypothesis that PSM is equal to some given value M can be based on bootstrapping
(P̂SM −M)/sePSM , where sePSM is the square root of the asymptotic variance of P̂SM

given by (17). Similarly a bootstrap confidence for PSM can be constructed by conven-
tional means.

Another reason to exercise care in applying the bootstrap to the data used in this paper is
set out in Davidson (2018). The incomes given for individuals in the census data are often,
indeed usually, rounded to multiples of $500 or $1000. This means that the empirical dis-
tribution of the sample of incomes is not smooth, and this is known to cause problems for
a conventional resampling bootstrap. We verified that this is the case with our samples.
Asymptotic variances as given by the formulas of this paper, and variances derived from
a conventional resampling bootstrap, were compared in the context of a simulation ex-
periment that used samples of 200000 observations realised from a lognormal distribution.
Results were comparable, as might be expected with such large samples. When the same
exercise was repeated with the sample of men’s incomes in 2000, the bootstrap variances
were very different from the asymptotic ones.

Another point of interest for practitioners is that all the asymptotic standard errors re-
ported in Table 3 were computed in a quarter of a second, whereas the corresponding
bootstrap standard errors, with 999 bootstrap repetitions, took 80 seconds.

If, as for instance with stratified sampling, observations are not equally weighted, our
analysis can then be applied if the number of actual observations N is replaced by the sum
of the weights over the sample.

4. Empirical Study

In this section, we present results obtained using data from the Canadian Census Public
Use Microdata Files (PUMF) for Individuals for 2000 and 2005, as recorded in the 2001
and 2006 censuses. Beach (2016) used data from the PUMF for several censuses since
1971, along with data from other sources, for his comprehensive account of the evolving
fate of the Canadian middle class.

It is of interest to separate data for men and women, as their wages and labour-market
participation rates are quite different. Accordingly, for each census year, two samples, one
for each sex, are extracted from the census data files and are treated separately. In both
cases, individuals younger than 15 years of age are dropped from the sample, as well as
individuals who did not work in that year, or for whom the information on weeks worked
is missing. In these files, the term earnings refers to annual earnings. Although income is
split into wage income and income from self-employment, we simply combine them to yield
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the earnings variable. In many cases, incomes have been rounded to an integer multiple of
$1000. In all the results discussed in this section, earnings are expressed in thousands of
2005 (Canadian) dollars.

Density estimates were given by the approach outlined in Appendix 2. We experimented
with different values of the parameter n using samples drawn from the lognormal distribu-
tion, for which the density is known analytically. It appeared that a larger value of n gave
more accurate estimates, but that numerical overflow occurred in the computation of the
gamma function for values of n greater than around 170. We found that setting n = 100
gave satisfactory results, although other choices in the neighbourhood of 100 gave results
that were not markedly different.

Results are given in Appendix 3. In Table 1, results are shown for men in 2000. The entries
for ξ̂ are the upper income cutoff for group L, and the lower income cutoff for group H.
For group M the entry is the sample median. Asymptotic standard errors are in brackets.

Table 2 shows the corresponding results for women in 2000.

In Table 3 and Table 4 there are similar results for men and women respectively in 2005.

The sample sizes for these four tables of basic distributional results are quite large (202,491
and 238,356). So it should perhaps not be surprising that the asymptotic standard errors
are quite small, and all the reported statistics in these basic tables are highly statistically
significant. They involve averages or proportions, which seem to be robustly estimated.
The estimates of A and B are also all quite sensible in that they imply that the estimated
density ratio f̂(bm̂)/f̂(m̂) is considerably larger than f̂(am̂)/f̂(m̂) – which is what one
would expect for a right-skewed distribution such as for an earnings distribution.

Table 5 and Table 6 show the differences in outcomes between men and women for the
years 2000 and 2005, with asymptotic standard errors for these differences in parentheses.
A positive difference means that the relevant outcome is greater for men than for women; a
negative difference the reverse. Again, all the differences are highly statistically significant.
Two results are evident. In both years, men are relatively more concentrated in the middle-
income group with women relatively more concentrated in the lower- and higher- income
groups within each distribution. This is consistent with more part-time women workers
as well as generally higher levels of education for women than for men in recent decades.
Second, the earnings gap between men and women changes very little within the lower and
middle income groups over 2000–2005. But in the higher income group, men’s earnings
shot up quite dramatically compared to women’s over this period.

Table 7 and Table 8 present differences or changes over time in the distributional outcome
measures between 2000 and 2005, separately for men and women. For outcomes that are
greater in 2005 than in 2000, the differences are positive. Again, asymptotic standard
errors are in parentheses, and again all but one of the changes are highly statistically
significant. Here the changes are quite dramatic given that major distributional changes
have typically been rather slow and gradual over time. For both men and women, the
proportion of workers in the middle-income group fell substantially between 2000 and
2005 as did relative-mean incomes of the middle group. On the other hand, mean earnings
levels in the higher-income group went up dramatically. As a result, the earnings share
of the middle group of so-called middle-class earners markedly declined and was made up
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by a corresponding dramatic rise in the earnings share of the higher-income group. This
pattern occurred for both women and men in the Canadian labour market between 2000
and 2005, but the changes were two to three times stronger in the earnings distribution
for men than for women.

Table 9 and Table 10 further pursue this significant pattern of change and show results for
several measures of polarization within the earnings distributions (see section 3.2 above).
Table 9 focuses on population shares or the proportion of workers towards the two ends of
the distributions, while Table 10 bases alternative polarization measures on mean earnings
gaps over the ends of the distributions. Again, in both sets of polarization measures,
one finds broadly similar patterns of change for both men and women (though with some
differences). In the case of PS-based measures (Table 9), the general polarization of
workers out of the middle-class region was driven by an increased proportion of workers
in the H earnings group among men, but by an increased proportion of workers in the
L earnings group among women. In the case of the earnings-gap measures (Table 10), the
greatly widening gaps in earnings between groups in the distributions is almost entirely
driven by the widening gap between middle-class and higher earnings levels – for both men
and women in the labour market. Again, the changes are about twice as strong among
men than among women workers, and again the results are highly statistically significant.

Finally, Table 11 and Table 12 display estimates of and changes in the compound po-
larization measures (in section 3.2) that combine the population share and earnings gap
dimensions. As can be seen, for both men and women, changes in the upper end of the
earnings distributions over the 2000–2005 period were much greater than changes in the
lower end of the distributions. For women, the changes were about twice as big, while
for men it was about eight times. Clearly, the big changes have been occurring between
the middle-class earnings group and the higher-earnings group. This recommends the use
of separate polarization measures for the lower and upper ends of the distribution rather
than one that blends or combines the two and thus potentially hides the basic structural
changes that are going on over the different regions of the distribution and in the Canadian
labour market. Note also that, for men, both components of CPH contribute to the big
increases in earnings polarization – both increases in PSH as well as the rising earnings
gap (µH − µM ) – while for women, the increase in CPH is driven completely by rapidly
rising upper earnings levels. Again, these polarization changes are all highly statistically
significant.

5. Conclusions

This paper considers income distributions that are divided into lower, middle and upper
regions based on separating points that are scalar multiples of the median. For example,
the lower region (L) could consist of recipients with incomes less than half the median,
the middle group (M) includes those with incomes between 50 percent and 200 percent
of the median, and those with incomes above twice the median lie in the higher income
group (H). Such a characterization of an income distribution is very useful in evaluating
changes over time in the economic experience of the middle-class income group and in the
nature of polarization in the distribution. For each of these three income groups, separate
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estimates are obtained for their income shares (ISi), group size or population shares (PSi)
and their mean income levels (µi). The paper derives explicit formulas for the asymptotic
variances (and hence standard errors) of sample estimates of the groups’ population shares,
income shares, and mean incomes. It is shown that these formulas are not distribution-
free, but that a density-estimation technique of Comte and Genon-Catalot (2012) is well
suited to provide needed data-based density estimates in empirical income distribution
analyses. The results are then applied to derive asymptotic variances for relative-mean
income ratios, for each income group, for various polarization measures, and for decile-
mean income ratios. This statistical framework is implemented with Canadian Census
public-use microdata files in order to investigate some of the key features of changes in the
Canadian earnings distribution.

The empirical findings show that, with such large microdata sets, population and income
shares and income-group means can indeed be estimated with a high degree of reliability.
Major patterns of distributional change that have been previously highlighted in the lit-
erature have indeed been found to be highly statistically significant. The distributional
framework and statistical approach used in this paper thus allow one to move beyond
descriptive analysis of distributional change to a formal framework of statistical inference
and hypothesis testing.

Further, since ISi = PSi · RMIi, changes in group income shares have been found to
arise from changes in both population shares and relative mean incomes. Estimating
these two dimensions separately allows for (i) a rich economic interpretation and testing
of the driving factors behind distributional change, and (ii) an extensive characterization
(and hence better understanding) of polarization as a key aspect of on-going distributional
change.

The results of this paper suggest that official government statistical agencies – such as
Statistics Canada and the U.S. Bureau of the Census – may wish to consider providing
median-based estimates of population shares, income shares and income-group means to
complement their regularly published series on decile income shares and decile means.
They could also provide user information on the general reliability of these estimates.
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Appendix 1: Detailed Calculations

a: Variance of µ̂L:

Recall from (33) that

X(b) =
1

PSL

(
U1(b)− µLU(b)

)
.

Since E(U(b)) = PSL −B/2, E(U1(b)) = nL − bmB/2, and µL = nL/PSL, it follows that

E
(
X(b)

)
=

B

2PSL
(µL − bm). (63)

Next,

X2(b) =
1

PS2
L

(
U2
1 (b) + µ2

LU
2(b)− 2µLU(b)U1(b)

)
.

For the expectation of this, we use (7) for E(U2(b)), (22) for E(U2
1 (b)), and (51) for

E
(
U(b)U1(b)

)
. Thus

E
(
X2(b)

)
=

1

PS2
L

[
n2,L + 1−

2
(bmB)2 − 2bmBnL

+µ2
L

(
PSL(1− 2B) + 1−

2
B2
)
− 2µLnL(1−B) + 2bmBnL − µLbmB2

]]
.

By collecting coefficients of powers of B, we see that

E
(
X2(b)

)
=

1

PS2
L

[
n2,L − nLµL + 1−

2
B2(bm− µL)

2
]
,

while from (63) we have

(
E(X(b))

)2
=

B2

4PS2
L

(bm− µL)
2,

and so

Var
(
X(b)

)
=

1

PS2
L

[
n2,L − nLµL + 1−

4
B2(bm− µL)

2
]
,

b: Variance of µ̂H

From (38) we have

X(a) =
1

PSH

[
Y − U1(a)− µH

(
1− U(a)

)]
,

and so

X2(a) =
1

PS2
H

[(
Y − U1(a)

)2
+ µ2

H

(
1− U(a)

)2 − 2µH

(
Y − U1(a)

)(
1− U(a)

)]
.
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From (39), it is easy to see that

E
[(
Y − U1(a)

)2]
= µ2 − n2,H + (amA)2/2;

E
[(
1− U(a)

)2]
= PSH +A2/2;

E
[(
Y − U1(a)

)(
1− U(a)

)]
= µ− nH + amA2/2.

It then follows that E
(
X2(a)

)
is

1

PS2
H

[
µ2 − n2,H + (amA)2/2 + µ2

H(PSH +A2/2)− 2µH

[
µ− nH + amA2/2

]
=

1

PS2
H

(
µ2 − n2,H − PSHµ2

H +A2(µH − am)2/2
)
.

From (40) we have [
E
(
X(a)

)]2
=

A2

4PS2
H

(
µh − am

)2
,

and so we conclude that the asymptotic variance of µ̂H is

Var
(
X(a)

)
=

1

PS2
H

[
µ2 − n2,H − PSHµ2

H + 1−
4
A2(µH − am)2

]
. (64)

c: Variance of µ̂M

Recall the definition (44):

X(b, a) =
1

PSM

[(
U1(a)− U1(b)

)
− µM

(
U(a)− U(b)

)]
,

whence

X2(b, a) =
1

PS2
M

[(
U1(a)− U1(b)

)2
+ µ2

M

(
U(a)− U(b)

)2
−2µM

(
U1(a)− U1(b)

)(
U(a)− U(b)

)]
. (65)

Note that

U(a)− U(b) = I(bm < Y ≤ am)− (A−B) I(Y ≤ m) and

U1(a)− U1(b) = Y I(bm < Y ≤ am)−m(aA− bB) I(Y ≤ m),

so that E
(
U(a−U(b))

)
= PSM−(A−B)/2 and E

(
U1(a)−U1(b)

)
= nH−nL−m(aA−bB)/2.

Further,(
U(a)− U(b)

)2
= I(bm < Y ≤ am) + (A−B)2 I(Y ≤ m)− 2(A−B) I(bm < Y ≤ m),
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so that
E
[(
U(a)− U(b)

)2]
= PSM + (A−B)2/2− (A−B)(1− 2PSL). (66)

Next, (
U1(a)− U1(b)

)2
= Y 2 I(bm < Y ≤ am) +m2(aA− bB)2 I(Y ≤ m)

− 2m(aA− bB)Y I(bm < Y ≤ m),

so that

E
[(
U1(a)− U1(b)

)2]
= n2,H − n2,L +m2(aA− bB)2/2− 2m(aA− bB)(nmed − nL). (67)

Then(
U(a)− U(b)

)(
U1(a)− U1(b)

)
= Y I(bm < Y ≤ am) +m(A−B)(aA− bB) I(Y ≤ m)

−
[
(A−B)Y +m(aA− bB)

]
I(bm < Y ≤ m),

so that

E
[(
U(a)− U(b)

)(
U1(a)− U1(b)

)]
= nH − nL +m(A−B)(aA− bB)/2

− (A−B)(nmed − nL)−m(aA− bB)( 1−
2
− PSL).

From all this, we see that

E
[
X2(b, a)

]
=

1

PS2
M

[
n2,H−n2,L+

1−
2

[
m2(aA−bB)2+µ2

M (A−B)2−2µM (A−B)m(aA−bB)
]

+2
(
µM (A−B)−m(aA− bB)

)
(nmed − nL)− µM

(
µM (A−B)−m(aA− bB)

)
(1− 2PSL)

+µ2
MPSM − 2µM (nH − nL)

]
.

To ease notation in the above expression, write

D = µM (A−B)−m(aA− bB),

as in (46). We get

E
[
X2(b, a)

]
=

1

PS2
M

[
n2,H −n2,L−µ2

MPSM +D2/2+D
(
2(nmed−nL)+2µMPSL−µM

)]
.

Now

E
(
X(b, a)

)
=

1

2PSM

(
µM (A−B)−m(aA− bB)

)
=

D

2PSM
, (68)

and so

Asy var(µ̂M ) = Var
(
X(b, a)

)
= E

[
W 2(b, a)

]
−
[
E
(
X(b, a)

)]2
=

1

PS2
M

[
n2,H − n2,L − µ2

MPSM +D2/4 +D
(
2(nmed − nL) + 2µMPSL − µM

)]
,
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as stated in (45).

d: Covariance of P̂SM and ÎSM :

Recall that what we need is the covariance of U(a) − U(b) and W (a) − W (b). With
C = A−B, we have

U(a)− U(b) = I(bm < Y ≤ am)− C I(Y ≤ m) and

W (a)−W (b) =
1

µ2

[
Y µ I(bm < Y ≤ am)− Y (nH − nL)− µm(aA− bB) I(Y ≤ m)

]
.

from which we see that(
U(a)− U(b)

)(
W (a)−W (b)

)
=

1

µ2

[
Y µ I(bm < Y ≤ am)− Y (nH − nL) I(bm < Y ≤ am)

−µm(aA− bB) I(bm < Y ≤ m)− µCY I(bm < Y ≤ m) + CY (nH − nL) I(Y ≤ m)

+µCm(aA− bB) I(Y ≤ m)
]

Thus
E
(
U(a)− U(b)

)
= PSM − C/2 and

E
(
W (a)−W (b)

)
= −m(aA− bB)/(2µ),

and

E
[(
U(a)− U(b)

)(
W (a)−W (b)

)]
= ISM (1− ISM )− 1

2µ
m(aA− bB)(1− 2PSL)

+
C

µ

[
ISMnmed − nmed + nL + 1−

2
m(aA− bB)

]
.

Therefore

cov(P̂SM , ÎSM ) = E
[(
U(a)− U(b)

)(
W (a)−W (b)

)]
− E

(
U(a)− U(b)

)
E
(
W (a)−W (b)

)
= ISM (1− ISM )− 1

2µ
m(aA− bB)(PSH − PSL)

+
C

µ

[
ISMnmed − nmed + nL + 1−

4
m(aA− bB)

]
.

e: Covariances of estimates of income group means:

For the purposes of evaluating the reliability of income polarization estimates, µ̂H − µ̂L,
µ̂H − µ̂M , and µ̂M − µ̂L, it is necessary to calculate the asymptotic covariances of the
income group means. For the case of µ̂H − µ̂L, we use the result that

Asy cov(µ̂H , µ̂L) = E
[
X(b)X(a)

]
− E

[
X(b)

]
E
[
X(a)

]
.

By use of the same approach to evaluation of asymptotic variances for income group means
as set out in section 2, one obtains

Asy cov(µ̂H , µ̂L) =
1

4PSL · PSH
(µL − bm)(am− µH)AB. (69)
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Since µL < bm and µH > am, it follows that this is strictly positive.

For the case of µM − µL, we have

Asy cov(µ̂M , µ̂L) = E
[
X(b)X(b, a)

]
− E

[
X(b)

]
E
[
X(b, a)

]
=

1

4PSL · PSM
(µL − bm)BC (70)

+
1

2PSL · PSM
(µL − bm)B

(
µmed + PSL(µM − µL)

)
.

For µH − µM , we have

Asy cov(µ̂H , µ̂M ) = E
[
X(a)X(b, a)

]
− E

[
X(a)

]
E
[
X(b, a)

]
=

1

4PSH · PSM
(am− µH)AC (71)

+
1

PSH · PSM
(am− µH)A

(
PSL(µM − µL)− (µM − µmed)/2

)
.

f: Compound measures:

Throughout this section, the results collected in the Table of Expectations will be freely
used in the calculations.

Each of the compound measures in Section 3.2 involves the product of two terms, for
instance

CPL ≡ PSL(µM − µL).

We see that

Asy var(ĈPL) = (µM − µL)
2 Asy var(P̂SL)

+ PS2
L

(
Asy var(µ̂M ) + Asy var(µ̂L)− 2Asy cov(µ̂M , µ̂L)

)
+ 2CPL

(
Asy cov(P̂SL, µ̂M )−Asy cov(P̂SL, µ̂L)

)
.

All of the asymptotic variances above are given in Section 2, and the covariance of µ̂M

and µ̂L in equation (70). What remains is to compute the two asymptotic covariances

with P̂SL.

First we consider Asy cov(P̂SL, µ̂L). It is equal to the covariance of U(b) in (4) and X(b)
in (33):

cov
(
U(b),X(b)

)
= E

(
U(b)X(b)

)
− E

(
U(b)

)
E
(
X(b)

)
=

1

PSL

[
E
(
U(b)U1(b)

)
− µLE

(
U2(b)

)]
+

B

2PSL
(bm− µL)(PSL −B/2)

=
1

PSL

[
nL(1−B)− bmB PSL + bmB2/2− µL PSL(1− 2B)− µLB

2/2
]

= 1−
4
B(bm− µL)

(
B/PSL − 2

)
. (72)
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In similar fashion, the asymptotic covariance of P̂SL and µ̂M is the covariance of U(b) and
X(b, a) in (44):

cov
(
U(b), X(b, a)

)
= E

(
U(b)X(b, a)

)
− E

(
U(b)

)
E
(
X(b, a)

)
.

Here,

E
(
U(b)

)
E
(
X(b, a)

)
=

D

4PSM
(2PSL −B),

while

E
(
U(b)X(b, a)

)
=

1

PSM
E
(
U(b)U1(a)− U(b)U1(b)− µMU(b)U(a) + µMU2(b)

)
=

1

PSM

[
B(nL − nmed + µM/2) + 1−

2
D(2PSL −B)

]
;

recall the definition (46) of D. Thus

cov
(
U(b), X(b, a)

)
=

1

PSM

[
B(nL − nmed + µM/2) + 1−

4
D(2PSL −B)

]
(73)

Consider next the case of CPH ≡ PSH(µH − µM ), for which we need the asymptotic

covariances with P̂SH of µ̂H and µ̂M . The first of these is

−Asy cov(1− P̂SH , µ̂H) = − cov
(
U(a), X(a)

)
,

which, after some algebra, becomes

1

4
A(µH − am)(2−A/PSH). (74)

Similarly, the asymptotic covariance of P̂SH and µ̂M is − cov
(
U(a), X(b, a)

)
, where

cov
(
U(a), X(b, a)

)
=

1

PSM

[
1−
4
D (2PSH −A)−A(nmed − nL)−APSLµM )

]
. (75)

The last compound polarization measure defined in Section 3.2 is CP , which was defined
as (1− PSM )(µH − µL). For this, we need the covariances with P̂SM of µ̂H and µ̂L. First,

Asy cov(P̂SM , µ̂L) = cov
(
U(a)− U(b), X(b)

)
=

1

PSL
cov
[
U(a)− U(b), U1(b)− µLU(b)

]
=

B

4PSL
(bm− µL)

(
C + 2(PSL − PSH)

)
.

In addition,

Asy cov(P̂SM , µ̂H) = cov
(
U(a)− U(b), X(a)

)
=

1

PSH
cov
[
U(a)− U(b), Y − U1(a)− µH

(
1− U(a)

)]
=

A

4PSH
(µH − am)

(
C + 2(PSL − PSH)

)
. (76)
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Finally, consider the compound middle-class measure CM = PSM µM . Then

Asy cov(ĈM) = µ2
M Asy var(P̂SM ) + PS2

M Asy var(µ̂M ) + 2CM Asy cov(P̂SM , µ̂M ).

As before, Asy var(P̂SM ) is given by (17), and Asy var(µ̂M ) is given by (45). For the
covariance,

Asy cov(P̂SM , µ̂M ) = cov
(
U(a)− U(b), X(b, a)

)
.

For this, cov
(
U(a), X(b, a)

)
is given by (75) and cov

(
U(b), X(b, a)

)
by (73).

Algorithm

Here is a detailed algorithm for the computation of estimates of the numerous measures
presented in this paper and of their standard errors.

1. Select the cut-off parameters a and b needed to define the three income groups. (We
used b = 0.5, a = 2.)

2. Choose a base unit of account. (Here it has been thousands of 2005 constant Canadian
dollars.) Convert raw income measures in the sample to the chosen unit of account,
and sort the converted data.

3. Compute the mean income µ̂, the mean squared income µ̂2, and the variance σ̂2 of
the sample.

4. Compute the sample median m̂ and the two cut-off incomes, bm̂ and am̂

5. By use of the approach described in Appendix 2, or otherwise, obtain the estimates
f̂(bm̂) and f̂(am̂) of the density at the cut-off incomes, and the estimates Â and B̂.

6. Count the number of data points with incomes in the three groups defined respectively
by [0, bm̂], (bm̂, am̂], and (am̂,∞), and divide these numbers by the sample size N in

order to obtain P̂SL, P̂SM , and P̂SH .

7. Compute asymptotic standard errors for the estimated population shares using the
formulas in section 2.4a.

8. Obtain estimates n̂L, n̂med, and n̂H of the quantities n(bm), n(m), and n(am) respec-
tively. This can be done by averaging the incomes in the low-income group, incomes
less than the median, and those in the low- and middle-income groups combined re-
spectively. Also obtain estimates n̂2,L and n̂2,H by averaging squared incomes in the
relevant groups.

9. Compute the estimated income shares: ÎSL = n̂L/µ̂; ÎSM = (n̂H − n̂L)/µ̂;

ÎSH = 1− n̂H/µ̂.

10. Compute the estimated income group means: µ̂L = n̂L/P̂SL, µ̂M = (n̂H − n̂L)/P̂SM ,

µ̂H = (µ̂ − n̂H)/P̂SH , and µ̂med = 2n̂med. Also obtain µ̂2,L = n̂2,L/P̂SL,

µ̂2,M = (n̂2,H − n̂2,L)/P̂SM , µ̂2,H = (µ̂2 − n̂2,H/P̂SH .

11. Compute the estimated relative mean income ratios using (48).
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12. Obtain the estimated asymptotic variances for population shares, income shares, and
group mean incomes by use of the formulas in section 2.4. For the relative mean
income ratios, estimated asymptotic covariances are given by (54), (61), and (62).

13. Standard errors are found by dividing the asymptotic variances by the sample size N ,
and taking square roots.

14. The above computations provide all information necessary for the polarization mea-
sures introduced in section 3.2.

Table of Expectations

ref random variable expectation

Y µ

Y 2 µ2

(5) U(b) PSL −B/2

(5) U(a) 1− PSH −A/2

U1(b) nL − bmB/2

U1(a) nH − amA/2

(52) U(b)Y nL −Bnmed

(59) U(a)Y nH −Anmed

(26) U1(b)Y n2,L − bmBnmed

(26) U1(a)Y n2,H − amAnmed

(11) U(a)U(b) PSL(1−A)− 1−
2
B(1−A)

U1(a)U(b) PSL µL + amAB/2− amAPSL −Bnmed

U(a)U1(b) PSL µL(1−A) + bmAB/2− bmB/2

U1(a)U1(b) PSL µ2,L +m2abAB/2− bmBµmed/2− amAPSL µL

(7) U2(b) PSL(1− 2B) +B2/2

(7) U2(a) (1− PSH) +A2/2−A

(22) U2
1 (b) n2,L + (bmB)2/2− 2bmBnL

U2
1 (a) n2,H + (amA)2/2− 2amAnmed

(51) U(b)U1(b) nL(1−B)− bmB PSL + bmB2/2

(58) U(a)U1(a) nH −A(am+ 2nmed)/2 + amA2/2

(25) W (b) −bmB/(2µ)

W (a) −amA/(2µ)

W 2(b) µ−2[n2,L + (bmB)2/2− 2bmB nL] + µ−4n2
Lµ2 − 2µ−3nL[n2,L − bmB nmed]

(63) X(b) B(µL − bm)/(2PSL)

(40) X(a) −A(µH − am)/(2PSH)

(68) X(b, a) D/(2PSM )
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Appendix 2: Density Estimation on the Positive Real Line

In most applications, the support of the distribution F is a subset of the positive real line.
But it is known that in this case ordinary kernel density estimates are biased downwards.
A possible way around this difficulty is to transform the data, by taking logarithms for
instance, and getting kernel density estimates of the transformed data, which can then by
multiplied by the Jacobian of the transformation to obtain estimates of the density of the
positive data.

A better approach is suggested by Comte and Genon-Catalot (2012), where it is unneces-
sary to transform the data. Here is a brief description of their approach, roughly quoted
from their paper. Instead of a Gaussian or Epanechnikov kernel defined for both positive
and negative arguments, consider a density function K(u) defined on the positive real line,
with expectation equal to 1. Let U1, . . . , Un be an IID set of random variables with distri-
bution characterised by the density K. Then the density of the mean Ū = (U1+. . .+Un)/n
is given by Kn(u) = nK∗n(nu), where K∗n is the n-fold convolution of K with itself. As
n → ∞, the distribution with density Kn(u) converges to a point mass at 1. The proposal
is to estimate the density f(x) for x > 0 by

f̂n(x) =
1

Nx

N∑
i=1

Kn(yi/x) (77)

using the random sample yi, i = 1, . . . , N . The motivation they give is as follows:

In usual kernel methods, the intuition is that the estimation at x counts the number of
observations Xk such that Xk − x is close to 0. In our strategy, the intuition is that the
estimator at x counts the number of observations Xk such that Xk/x is close to 1.

They also point out that n−1/2 plays the same role here as does the bandwidth in conven-
tional kernel methods.

The paper provides some examples of functions K for which the corresponding Kn can be
computed analytically. The easiest of these has K equal to the density of the exponential
distribution, which is also the gamma distribution with parameter unity: K(u) = e−u,
from which it can be shown that

Kn(u) =
1

Γ(n)
e−nunnun−1.

With this choice, (77) becomes

f̂n(x) =
nn

xNΓ(n)

N∑
i=1

exp(−nyi/x)(yi/x)
n−1.

Asymptotic theory requires that n → ∞ as N → ∞, but the guidelines as to how fast or
how slowly in Comte and Genon-Catalot are very loose:

n = k2 : log(N) ≤ k ≤ N/ log(N).

In section 4 we discuss how we chose n for the datasets considered in the empirical work.
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Appendix 3: Empirical Results

Table 1: Men in 2000

ξ̂ P̂ S ÎS µ̂ R̂MI

L 17.7420 0.2702 0.0500 7.7588 0.1851

(0.0007) (0.0002) (0.0271) (0.0006)

M 35.4840 0.5811 0.5745 41.4371 0.9886

(0.0770) (0.0012) (0.0019) (0.0937) (0.0018)

H 70.9681 0.1487 0.3755 105.8242 2.5248

(0.0009) (0.0019) (0.3020) (0.0045)

Sample size is 227828, and the estimate Â = 0.8603, and B̂ = 0.4362.

Table 2: Women in 2000

ξ̂ P̂ S ÎS µ̂ R̂MI

L 11.1937 0.2925 0.0564 5.2879 0.1929

(0.0008) (0.0002) (0.0200) (0.0006)

M 22.3874 0.5296 0.5205 26.9463 0.9829

(0.0640) (0.0013) (0.0022) (0.0828) (0.0022)

H 44.7748 0.1779 0.4231 65.2021 2.3783

(0.0011) (0.0022) (0.1770) (0.0038)

Sample size is 202491, Â = 1.1229, B̂ = 0.6276.

Table 3: Men in 2005

ξ̂ P̂ S ÎS µ̂ R̂MI

L 17.5000 0.2742 0.0466 8.0874 0.1701

(0.0007) (0.0002) (0.0267) (0.0006)

M 35.0000 0.5538 0.4762 40.8862 0.8598

(0.0828) (0.0012) (0.0021) (0.1031) (0.0027)

H 70.0000 0.1719 0.4772 131.9640 2.7752

(0.0009) (0.0022) (0.7438) (0.0088)

Sample size is 238356, Â = 0.9659, B̂ = 0.5133.
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Table 4: Women in 2005

ξ̂ P̂ S ÎS µ̂ R̂MI

L 12.0000 0.3034 0.0605 5.9934 0.1993

(0.0007) (0.0002) (0.0195) (0.0006)

M 24.0000 0.5190 0.4867 28.2055 0.9378

(0.0670) (0.0012) (0.0020) (0.0822) (0.0023)

H 48.0000 0.1775 0.4528 76.7076 2.5504

(0.0010) (0.0021) (0.2834) (0.0056)

Sample size is 218253, Â = 1.0437, B̂ = 0.6432.

Table 5: Differences Men-Women in 2000

∆P̂S ∆ÎS ∆µ̂ ∆R̂MI

L -0.0224 -0.0064 2.4709 -0.0078

(0.0011) (0.0003) (0.0337) (0.0008)

M 0.0516 0.0540 14.4908 0.0057

(0.0018) (0.0029) (0.1251) (0.0029)

H -0.0292 -0.0476 40.6221 0.1465

(0.0014) (0.0029) (0.3500) (0.0059)

Table 6: Differences Men-Women in 2005

∆P̂S ∆ÎS ∆µ̂ ∆R̂MI

L -0.0292 -0.0138 2.0940 -0.0292

(0.0010) (0.0003) (0.0331) (0.0009)

M 0.0348 -0.0106 12.6807 -0.0780

(0.0017) (0.0029) (0.1319) (0.0035)

H -0.0056 0.0244 55.2564 0.2248

(0.0014) (0.0030) (0.7949) (0.0104)

Table 7: Differences 2000–2005 for Men

∆P̂S ∆ÎS ∆µ̂ ∆R̂MI

L 0.0041 -0.0034 0.3285 -0.0150

(0.0010) (0.0003) (0.0380) (0.0008)

M -0.0273 -0.0983 -0.5509 -0.1288

(0.0017) (0.0028) (0.1394) (0.0032)

H 0.0232 0.1017 26.1398 0.2504

(0.0013) (0.0029) (0.8027) (0.0099)
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Table 8: Differences 2000–2005 for Women

∆P̂S ∆ÎS ∆µ̂ ∆R̂MI

L 0.0109 0.0040 0.7054 0.0064

(0.0011) (0.0003) (0.0279) (0.0008)

M -0.0105 -0.0338 1.2592 -0.0451

(0.0018) (0.0030) (0.1167) (0.0032)

H -0.0004 0.0297 11.5055 0.1721

(0.0015) (0.0031) (0.3316) (0.0067)

Table 9: Measures of Polarization I

P̂SL P̂SH P̂SL + P̂SH

Men, 2000 0.2702 0.1487 0.4189

(0.0007) (0.0009) (0.0012)

Women, 2000 0.2925 0.1779 0.4704

(0.0008) (0.0011) (0.0013)

Men, 2005 0.2742 0.1719 0.4462

(0.0007) (0.0009) (0.0012)

Women, 2005 0.3034 0.1775 0.4810

(0.0007) (0.0010) (0.0012)

Table 10: Measures of Polarization II

µ̂H − µ̂M µ̂M − µ̂L µ̂H − µ̂L

Men, 2000 64.3871 33.6783 98.0654

(0.2785) (0.1080) (0.2912)

Women, 2000 38.2558 21.6584 59.9142

(0.1659) (0.0930) (0.1664)

Men, 2005 91.0779 32.7988 123.8767

(0.7251) (0.1169) (0.7356)

Women, 2005 48.5021 22.2121 70.7142

(0.2687) (0.0925) (0.2722)
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Table 11: Compound Polarization Measures

CPL CPH CP

Men, 2000 9.0985 9.5755 41.0773

(0.0305) (0.1294) (0.0995)

Women, 2000 6.3360 6.8053 28.1855

(0.0296) (0.0784) (0.0705)

Men, 2005 8.9947 15.6603 55.2714

(0.0339) (0.1704) (0.1504)

Women, 2005 6.7398 8.6109 34.0111

(0.0307) (0.0961) (0.0824)

Table 12: Changes in Polarization Measures 2000–2005

∆CPL ∆CPH ∆CP

Men -0.1039 6.0848 14.1941

(0.0456) (0.2140) (0.1804)

Women 0.4038 1.8056 5.8256

(0.0426) (0.1240) (0.1084)

Appendix 4: Simulation Evidence

Simulations were run in order to see to what extent the numerous estimates produced by
the algorithm do indeed approximate finite-sample properties. The simulated data were
generated, using a lognormal distribution, as the exponential of drawings from the standard
normal distribution N(0, 1). The simulated samples contained n = 1001 IID drawings from
this distribution. As in the empirical work, the parameters a and b are set to 2.0 and 0.5
respectively. The true values of all the estimated properties are readily computed for the
lognormal distribution.

For each of 100,000 replications, realisations were obtained for P̂Si, ÎSi, and µ̂i, for
i = L,M,H . The variances of these realisations were computed, and then multiplied by
the sample size n, since the theoretical work concerns asymptotic variances. The estimates
of the theoretical asymptotic variances, as given in the summary of results, were also
computed for each replication, and then averaged over all of them. In some cases, a second
estimate of an asymptotic variance was obtained for each replication as the sample variance
of quantities like the ûi(b) defined in (6). These too are averaged over the replications.
In Table A1 below, the averages of the point estimates are given, and in Table A2 the
averages of the variance estimates.

– 35 –



PS IS µ

Value for low incomes 0.2441 0.0452 0.3054

Estimated value 0.2439 0.0453 0.3052

Value for middle incomes 0.5118 0.3343 1.0768

Estimated value 0.5122 0.3352 1.0777

Value for high incomes 0.2441 0.6205 4.1910

Estimated value 0.2439 0.6195 4.1926

Table A1: point estimates

PS IS µ

VarL(α) 0.1472 0.0104 0.1551

VarL(β) 0.1467 0.0103 0.1548

VarL(γ) 0.1480 0.0104 0.1546

VarL(δ) 0.1483 0.0105 0.1547

VarM (α) 0.2499 0.4282 2.4579

VarM (β) 0.2512 0.4317 2.4434

VarM (γ) 0.2519 0.4359 2.4882

VarM (δ) 0.2522 0.4327 2.4956

VarH(α) 0.1472 0.4938 52.6442

VarH(β) 0.1475 0.4934 52.6775

VarH(γ) 0.1504 0.4971 53.1611

VarH(δ) 0.1504 0.4976 53.2143

Table A2: estimates of asymptotic variances

The asymptotic variances denoted Vari(α) for i = L,M,H are the theoretical variances
as described in the summary of results with the true values computed for the lognormal
distribution; those denoted Vari(β) are the variances of the sets of point estimates from
all the replications; those denoted Vari(γ) are the estimates of the theoretical variances
averaged over the replications; and those denoted Vari(δ) are the sample variances of
quantities like the ûi(b) in (6), again averaged over the replications.
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