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1. Introduction

Since about 1980 and into the current century, income inequality in many developed
economies rose dramatically to historic levels (Guvenen et al. (2022)) driven by advances
in automation, globalization and shifting production patterns, and long-run demographic
forces. The resulting labour market effects were experienced quite differently by different
groups of workers over different regions of the income distribution (e.g., Acemoglu et al.,
(2016); Autor, Dorn and Hanson (2013); Beach (2016); and Goos, Manning and Salomons
(2014)). More specifically, so-called middle-class workers in the labour market lost out
substantially to higher-skilled and top-income recipients. More recently, the advent of the
covid pandemic (and resulting policy responses), inflation and higher interest rates, and
wars in Ukraine and the Middle East are eliciting major economic adjustments to inter-
national trade patterns, natural resource and high-tech investments and supply chains.
Again, these changes affect different groups of the workforce and different regions of the
income/earnings distributions in ways that can only be analyzed in a quite disaggregated
fashion. Perhaps not surprisingly, economists have been showing growing interest in dis-
tributional National Accounts within statistical agencies, greater heterogeneity of agent
behaviour in macro model development, and a greater focus in the media on attaining
equitable growth and common prosperity (The Economist, (2021a,b)).

This paper seeks to provide statistical tools that can help dealing with these concerns.
More specifically, the paper (i) establishes the (asymptotic) variance-covariance structure
– and hence standard errors – of quantile means and income shares in terms of explicit
easily-computable formulas, and (ii) forwards a toolbox of quantile-based disaggregative
income inequality measures along with their statistical properties so as to allow for de-
tailed inferential analysis of such inequality measures. In doing so, it helps to simplify and
unify income distribution analysis in a common statistical framework that involves ex-
plicit variance-covariance formulas that are distribution-free and can be directly estimated
without density estimation or burdensome computational procedures.

This set of disaggregative statistical tools can be applied well beyond traditional income
inequality analysis. They can be applied to all of income, earnings, wages, and wealth
distributions. They can better allow for detailed comparisons of, say, male vs female earn-
ings distributions and how they may have changed over time, or of age, regional, industry,
or occupational earnings differences as well. Such a set of disaggregative statistical tools
makes better use of the torrent of microdata bases such as large Census files that have
become available over the last several decades. The paper is also written in the spirit of
Cowell (2011), Lambert (2001), and Jenkins (1999) of expanding the broad set of statistical
tools available to general empirical practitioners in the income distribution field.

The paper proceeds as follows. The next section uses a stochastic quantile function ap-
proach to work out formulas for (asymptotic) variances and covariances — and hence
standard errors — of quantile mean statistics where a distribution is divided up into a
set of K ordered quantile income groups. Corresponding results for the income shares of
these quantile (e.g., decile) groups are derived in Section 3 and Appendix 1. Section 4
presents a toolbox or set of disaggregative distributional statistics on income inequality
and polarization all related to the quantile means and income share statistics and sets out
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their corresponding standard error formulas of each. An empirical illustration of the use
of these quantile toolbox statistics based on Canadian Census earnings data appears in
Section 5. The paper then concludes with several implications of the results of the analysis.

2. Quantile Function Approach for Quantile Means

In this section we develop what we may call the stochastic quantile function approach.
Some of the analysis in this section is based to some extent on material in Davidson
(2018).

Consider first some formal concepts and notation. Suppose the distribution of income Y
is divided into K ordered income groups. Let the dividing proportions of recipients be
p1 < p2 < . . . < pK−1 (with p0 = 0 and pK = 1). Then in terms of the underlying (pop-
ulation) distribution F of income recipients, the mean income of recipients with incomes
between the pi−1 and pi−1 quantiles, i = 1, . . . ,K, is given by

µi =

∫ ξi

ξi−1

y dF (y)
/ ∫ ξi

ξi−1

dF (y), (1)

where ξi is the pi quantile of the distribution F , and ξ0 is taken to be the smallest (possibly
negative) income in the support of the distribution. Note that the proportions pi do not
need to be equally spaced. They could for instance be more refined at one or both ends of
the distribution.

Suppose we have a random sample, yj , j = 1, . . . , N , drawn from the population charac-
terised by F . The empirical distribution function (EDF) of the sample is

F̂ (y) =
1

N

N∑
j=1

I(yj ≤ y),

where I is the indicator function, with value 1 if its argument is true, and 0 otherwise.
Natural estimators of the numerator and denominator of (1) are∫ ξ̂i

ξ̂i−1

y dF̂ (y) and

∫ ξ̂i

ξ̂i−1

dF̂ (y), (2)

respectively, where ξ̂i is the pi quantile of the empirical distribution. The estimator of the
denominator is F̂ (ξ̂i)− F̂ (ξ̂i−1), which is just pi−pi−1, since F̂ (ξ̂i) = pi by the definition of
the sample quantiles. The estimator is of course non-random, and can therefore be ignored
for the purpose of deriving an asymptotic expression for the estimator of the numerator.
Denote by ni the numerator of µi in (1), so that ni = µi(pi−pi−1), and by n̂i the estimator
given in (2), which can be rewritten as∫ ξ̂i

ξ̂i−1

y dF̂ (y) =

∫ ξi

ξi−1

y dF̂ (y) +

∫ ξi−1

ξ̂i−1

y dF̂ (y) +

∫ ξ̂i

ξi

y dF̂ (y). (3)
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Note that this formulation captures the randomness both of the sample quantiles ξi and of
the EDF itself, without any need for restrictive assumptions on the population distribution
function F . Under the usual assumption that the ξ̂i and F̂ are root-n consistent, we see
that ∫ ξ̂i

ξi

y dF̂ (y) = ξi
(
F̂ (ξ̂i)− F̂ (ξi)

)
= ξi(pi − F̂ (ξi)) +Op(N

−1),

and similarly ∫ ξi−1

ξ̂i−1

y dF̂ (y) = −ξi−1(pi−1 − F̂ (ξi−1)) +Op(N
−1).

With this, (3) becomes, to leading order asymptotically,

piξi − pi−1ξi−1 +N−1
N∑
j=1

[
yjI(ξi−1 < yj ≤ ξi)− ξiI(yj ≤ ξi) + ξi−1I(yj ≤ ξi−1)

]
. (4)

Let wij = yjI(ξi−1 < yj ≤ ξi) − ξiI(yj ≤ ξi) + ξi−1I(yj ≤ ξi−1), and denote by Wi the
random variable of which the wij are IID drawings, that is,

Wi = Y I(ξi−1 < Y ≤ ξi))− ξiI(Y ≤ ξi) + ξi−1I(Y ≤ ξi−1), (5)

where Y denotes the random variable of which the yj are IID drawings. Then, since

E
(
Y I(ξi−1 < Y ≤ ξi)

)
=

∫ ξi

ξi−1

y dF (y), E
(
I(Y ≤ xi−1)

)
= pi−1, and E

(
I(Y ≤ ξ)

)
= pi,

it follows that
E(Wi) = ni − piξi + pi−1ξi−1. (6)

Then the expression (4), which is asymptotically equal to n̂i, has an expectation of ni if
terms of order N−1 are neglected, so that (4) is a root-n consistent estimator of ni.

The next task is to derive the asymptotic variance of (4). But, before doing so explicitly,
note that the variance can be estimated by the sample variance of the wij , j = 1, . . . , N ,
in a distribution-free manner. However, it is not difficult to obtain an analytic expression
for the asymptotic variance, which can in turn be estimated. We have

W 2
i = Y 2I(ξi−1 < Y ≤ ξi)+ξ2i I(Y ≤ ξi) + ξ2i−1I(Y ≤ ξi−1)

−2Y ξiI(ξi−1 < Y ≤ ξi)− 2ξi−1ξiI(Y ≤ ξi−1)
,

whence
E(W 2

i ) = n2i + piξ
2
i + pi−1ξ

2
i−1 − 2ξini − 2pi−1ξi−1ξi,

where we make the definition n2i =
∫ ξi
ξi−1

y2 dF (y). Thus the variance of Wi is

Var(Wi) = E(W 2
i )−

(
E(Wi)

)2
= n2i − n2

i + ξ2i pi(1− pi) + ξ2i−1pi−1(1− pi−1)

−2ξi−1ξipi−1(1− pi)− 2ni

(
ξi(1− pi) + ξi−1pi−1

)
.

(7)
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This expression can be estimated in an obvious manner from the sample information.
Specifically,

V̂ar(Wi) = n̂2i − n̂2
i + ξ̂2i pi(1− pi) + ξ̂2i−1pi−1(1− pi−1)

− 2ξ̂i−1ξ̂ipi−1(1− pi)− 2n̂i

(
ξ̂i(1− pi) + ξ̂i−1pi−1

)
, (8)

where

n̂i =

∫ ξ̂i

ξ̂i−1

y dF̂ (y) = N−1
∑

ξ̂i−1<yj≤ξ̂i

yj and (9)

n̂2i =

∫ ξ̂i

ξ̂i−1

y2 dF̂ (y) = N−1
∑

ξ̂i−1<yj≤ξ̂i

y2j . (10)

Now, since n̂i is asymptotically equal to expression (4), of which the variance is the variance
of Wi divided by N, it follows that the variance of n̂i can also be estimated by the right-
hand side of (8) over N . Standard errors are then given by the square roots of the estimated
variances. Since µi = ni/(pi − pi−1), we can estimate µi by µ̂i = n̂i/(pi − pi−1), and the
standard errors of the µ̂i are just those of the n̂i divided by pi − pi−1.

Covariances

For some purposes we may need not only estimates of the variances of the µ̂i but also their
covariances. For j < i, compute as follows:

WiWj =
[
Y I(ξi−1 < Y ≤ ξi)− ξiI(Y ≤ ξi) + ξi−1I(Y ≤ ξi−1)

][
Y I(ξj−1 < Y ≤ ξj)− ξjI(Y ≤ ξj) + ξj−1I(Y ≤ ξj−1)

]
= −Y (ξi − ξi−1)I(ξj−1 < Y ≤ ξj) + ξj(ξi − ξi−1)I(Y ≤ ξj)− ξj−1(ξi − ξi−1)I(Y ≤ ξj−1)

= (ξi − ξi−1)
[
ξjI(Y ≤ ξj)− ξj−1I(Y ≤ ξj−1)− Y I(ξj−1 < Y ≤ ξj)

]
.

Then
E(WiWj) = (ξi − ξi−1)(pjξj − pj−1ξj−1 − nj),

and, since cov(Wi,Wj) = E(WiWj)− E(Wi)E(Wj), from this we see that, for j < i,

cov(Wi,Wj) = (ξi − ξi−1)(pjξj − pj−1ξj−1 − nj)

− (nj − pjξj + pj−1ξj−1)(ni − piξi + pi−1ξi−1). (11)

Consequently, cov(µ̂i, µ̂j) is asymptotically equal to the above expression divided by
N(pi − pi−1)(pj − pj−1). As with the variances, the covariances can be estimated in
an obvious distribution-free manner, replacing the quantiles ξi in the expression (11) by

their estimates ξ̂i and the ni by their estimates n̂i as in (9). Appendix 2 provides some
evidence from simulations that the estimated variances for the quantile means and income
shares are indeed very reliable and show no apparent biases.
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3. Quantile Function Approach for Income Shares

The income share that accrues to recipients with incomes between ξi−1 and ξi is

ISi =
1

µ

∫ ξi

ξi−1

y dF (y) = (pi − pi−1)µi/µ = ni/µ, (12)

where µ =
∫∞
0

y dF (y) is the mean income of the population characterised by the distri-
bution F . The natural estimator of ISi is

ÎSi =
1

µ̂

∫ ξ̂i

ξ̂i−1

y dF̂ (y).

By an asymptotic argument like those used above, it can be seen that

ÎSi − ISi =
1

µ2

[
µ

∫ ξ̂i

ξ̂i−1

y dF̂ (y)− µ̂

∫ ξi

ξi−1

y dF (y)
]
+Op(N

−1). (13)

and so, asymptotically,

ÎSi − ISi =
1

µ
n̂i −

µ̂

µ2
ni, (14)

It is immediate that the expectation of the right-hand side above is zero, thereby showing
that ÎSi is a root-n consistent estimator of ISi. By use of (4), we see that the right-hand
side of (14) is

1

µ

(
piξi − pi−1ξi−1 +N−1

N∑
j=1

wij −
ni

µ
N−1

N∑
j=1

yj

)

=
1

µ

(
piξi − pi−1ξi−1 +N−1

N∑
j=1

(
wij − niyj/µ

))
,

and its variance is the variance of the random variable µ−1(Wi − niY/µ), divided by N .
Make the definitions

mi =

∫ ξi

ξ0

y dF (y) =

i∑
k=1

nk and m2i =

∫ ξi

ξ0

y2 dF (y) =

i∑
k=1

n2k. (15)

Note that µ = mK . The variance of Wi was given in (7). The variance of Y is

Var(Y ) ≡ σ2 =

∫ ξK

ξ0

(y − µ)2 dF (y) = m2K − µ2 = m2K − (mK)2, (16)
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and the covariance of Wi and Y is E
(
Wi(Y − µ)

)
= E(WiY )− µE(Wi). Now, from (5),

E(WiY ) = E
(
Y 2I(ξi−1 < Y ≤ ξi)

)
− ξiE

(
Y I(Y ≤ ξi)

)
+ ξi−1E

(
Y I(Y ≤ ξi−1)

)
= n2i − ξimi + ξi−1mi−1,

whence
cov(Wi, Y ) = n2i − µni − ξi(mi − piµ) + ξi−1(mi−1 − pi−1µ). (17)

As before, distribution-free estimates are readily obtained for Var(Wi), Var(Y ), and

cov(Wi, Y ). Finally, the asymptotic variance of ÎSi is

N−1 Var
(
µ−1(Wi − niY/µ)

)
=

1

Nµ4

(
µ2 Var(Wi) + n2

i Var(Y )− 2µni cov(Wi, Y )
)
, (18)

and it is estimated by use of the estimates of the variances and the covariance. Details of
this and also the covariances of the ÎSi are given in Appendix 1.

4. A Quantile Toolbox of Distributional Measures

The above analytical development suggests a statistical toolbox of distributional statistics
that are quantile-based and hence share the property of having an (asymptotic) variance-
covariance structure that is distribution-free. Indeed, a number of disaggregative inequal-
ity measures can be obtained from the quantile means and income share statistics. These
statistics provide the basis for useful computer programs to describe and assess the sta-
tistical reliability of detailed distributional change over time or distributional differences
between population groups.

In order to estimate the variance-covariance results of the previous sections, one should
initially calculate some basic preliminary distributional statistics. These include standard
estimates of the summary parameters µ, σ, and σ/µ, and the quantile cut-off income levels
ξ1, . . . , ξK−1 for the K ordered income groups.1 The quantile toolbox then consists of
three sets of quantile-based statistics and their corresponding standard errors: statistics
about income shares, those about quantile means, and those about income gap and income
polarization measures.

1 Since the asymptotic variances and covariances of the ξ̂i depend on the density f(ξi) and
hence are not distribution-free (Wilks (1962) p. 273), these variance-covariance estimates are
not included in the quantile toolbox.

– 6 –



Income Share-Related Statistics

Formulas for estimating the (asymptotic) variances and covariances – and implied standard

errors – of the income shares ÎSi are presented in Section 3 above and in Appendix 1. But
these can also form the basis for deriving corresponding expressions for some related fre-
quently used statistics. The first is Lorenz curve ordinates. A frequently applied criterion
for income inequality dominance is based on Lorenz curve comparisons (see, for example,
Maasoumi (1998); Lambert (2001); and Aaberge (2000, 2001)). Atkinson, in his famous
1970 paper, stated and proved what has come to be known as the Lorenz curve dominance
theorem. According to this theorem, for any summary inequality measures (such as the
Gini coefficient) satisfying the distributional properties of symmetry, mean independence,
population homogeneity, and the classic principle of transfers, if the Lorenz curve for dis-
tribution A lies everywhere above the Lorenz curve for distribution B, then all summary
inequality measures satisfying these four properties will indicate that overall inequality
in A is less than in B.

A Lorenz curve can be empirically represented by its set of quantile ordinates, which
in turn are cumulated income shares. Thus the above formulas for the (asymptotic)
variance-covariance structure of a set of sample income shares can be easily applied to
a corresponding set of sample Lorenz curve ordinates, and these allow a formal statistical
test for overall inequality dominance or ranking. One could obviously cumulate the income
shares quantile-by-quantile and work out their corresponding (asymptotic) variances and
standard errors. But the most direct approach is to simply define the ith quantile Lorenz
curve ordinate as that of the income share over the interval from ξ0 up to ξi, and then
plug the terms estimated from the sample into the formulas already presented.

Another concept frequently cited in the media and literature is the relative mean income
(RMI) or ratio of a quantile mean to the overall mean of an income distribution:

RMIi = µi/µ, i = 1, . . . ,K.

The RMIs intuitively display the size of the gap or distance of quantile group mean incomes
to the overall mean in proportional or percentage terms. So while the dollar gap values can
change substantially over time, the underlying proportional gaps may change very little.
Also, analogous to Atkinson’s (1970) decomposition of an empirical measure of overall
social welfare into efficiency and equity components (as represented by the mean and one
minus the Atkinson inequality index, respectively), the RMI can serve as a way – at a
disaggregated quantile level – to decompose individual quantile means into efficiency and
equity components: ni = µµi. Growth in the individual ni can be attributed to growth of
incomes generally, as well as to the shifting of relative economic well-being among quantile
groups. For example, one of the characteristic features in recent decades has been the
dramatic rise in top incomes in many economies – a rising tide evidently does not raise all
boats evenly.

From (12) it can be seen that

ISi = (pi − pi−1)RMIi.
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Consequently, RMIi is simply a scalar transform of ISi, so that the standard error of R̂MIi
is the standard error of ÎSi divided by pi − pi−1. The RMIs thus provide a simple link
or bridge between the primary concepts of the income shares and corresponding quantile
means.

Quantile Mean-Related Measures

Quantile means are of interest not just as simple descriptive tools. A comparison of
respective quantile means between two population groups, such as women and men, can
serve as a basis for estimating the extent of potential earnings discrimination between
the groups (Jenkins 1994; del Rio et al., 2011). Salas et al. (2018) also show that a
comparison of cumulative mean incomes up to a given quantile cut-off can serve as a
basis for the measurement of second-order earnings discrimination between two population
groups, which arises when the earnings distribution for one population group second-order
stochastically dominates that for another population group. But the analytical results in
Section 2 also provide the basis for statistical inference for several other related inequality
measures.

One aspect of concern about rising income inequality is the implied growing economic
and social distance between income groups, economic inclusion, and the potential political
fracturing that this may bring about. The literature and media have focused on the
widening gap between top incomes and the rest of the distribution, and the increasing
difficulty of lower-income workers to pull ahead into stable middle-income status – the
sense of belonging to the middle class may be weakening. One way to measure the growing
economic distances between different income groups across a distribution may be in terms
of a “distributional distance function” of mean differences between adjacent quantiles,
µ̂i − µ̂i−1. These differences or income gaps can be viewed as successive steps on a ladder
as one moves up a distribution. The wider the gaps, the greater the steps needed to
advance up the distribution. Now, for inference we have

Var(µ̂i − µ̂i−1) = Var(µ̂i) + Var(µ̂i−1)− 2 cov(µ̂i, µ̂i−1), (19)

and asymptotic approximations to the three terms on the right-hand side of (19) are
provided in Section 2. The standard error of the income gap then comes from these
estimates.

A second related measure is the set of quantile income gaps relative to the overall mean,
|µ̂i − µ̂|. Here this measure can be viewed as representing how far away the incomes in
each quantile group are from average incomes in the distribution. In this case, we have
that

Var(µ̂i − µ̂) = Var(µ̂i) + Var(µ̂)− 2 cov(µ̂i, µ̂),

with Var(µ̂) = σ2. Now µ̂ = m̂K =
∑K

j=1 n̂j , and µ̂i = n̂i/(pi − pi−1), so that

(pi − pi−1) cov(µ̂i, µ̂) =
K∑
j=1

cov(n̂i, n̂j) = Var(n̂i) +
∑
j ̸=i

cov(n̂i, n̂j). (20)
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Now recall from (8) and (11) that Var(n̂i) = Var(Wi) and cov(n̂i, n̂j) = cov(Wi,Wj). It
follows that an asymptotic approximation to (20) can be computed using (8) and (11).
Observe that the formula (11) is for i < j. Thus if j < i, the indices i and j must
be interchanged in the formula. Again the standard error is just the square root of the
estimated variance.

A further application of results for quantile means reflects growing concerns with equitable
growth and common prosperity. The Economist (2021c), for example, refers to so-called
Piketty lines of different growth rates of quantile means across the various regions of the
income distribution. That is, one can look at

ĝi =
µ̂i1 − µ̂i0

µ̂i0
=

µ̂i1

µ̂i0
− 1

for time periods 0 and 1. Then by the delta method (see Rao (1965)), we have approxi-
mately

Var(ĝi) = Var(µ̂i1)/µ
2
i0 +Var(µ̂i0)

µ2
i1

µ4
i0

,

under the assumption that µ̂i0 and µ̂i1 are uncorrelated. Again everything above can be
estimated from the data in a distribution-free manner. Standard errors follow accordingly.

Income Polarization Statistics

An alternative way of characterizing the quantile income gap separating lower or higher
incomes from middle incomes could serve as a measure of the degree of polarization or
pulling apart in an income distribution. The intuitive concept of polarization can be
viewed as having two quite distinct dimensions or aspects. One is the size dimension or
the relative concentration of income recipients at the two ends of the distribution. This
could be labelled tail frequency polarization. It could be captured, for example, by the
proportion of recipients in the lower or higher income groups (Wolfson, 1994), say below
half the median or above twice the median. The other is the distance dimension or the size
of the income gap separating lower or upper incomes and middle-class incomes. This could
be referred to as income polarization, and could be captured by, say, the gaps µ̂K − µ̂M

and µ̂M − µ̂1 where µ̂M is some measure of the middle income level. Both provide useful
insights. However, the statistical properties of these two polarization measures are quite
different. Tail frequency statistics are generally distribution-dependent (Davidson, 2018),
while quantile-based mean income statistics are as we have seen distribution-free and hence
their (asymptotic) variance-covariance structure is easy to estimate by direct formulas. For
this reason, we focus on income polarization measures only.

It is useful, then, to consider what may be called an “income polarization function”
|µ̂i − µ̂M | over different quantile values of i and where µ̂M is the sample mean income
in the middle quantile. This formulation has clear similarities to the Foster and Wolfson
(1992) concept of a polarization curve presented in Kovacevic and Binder (1997. p. 50) as
B(p) = |ξp − ξM |/ξM where ξM is the median income and ξp is the income cut-off level for
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quantile group p. In the case of deciles, say, let µ̂M = (0.5)(µ̂5 + µ̂6), and for vigintiles use
µ̂M = (0.5)(µ̂10 + µ̂11). For quintiles, simply use µ̂M = µ̂3. Then in the case of deciles,

Var(µ̂i − µ̂M ) = Var(µ̂i) + Var(µ̂M )− 2 cov(µ̂i, µ̂M ) for i = 1, . . . , 4; 7, . . . , 10,

where
Var(µ̂M ) = 0.25Var(µ̂5) + 0.25Var(µ̂6) + 0.5 cov(µ̂5, µ̂6)

and
cov(µ̂i, µ̂M ) = 0.5 cov(µ̂i, µ̂5) + 0.5 cov(µ̂i, µ̂6).

Again, standard errors of (µ̂i−µ̂M ) are based on sample estimates of the above expressions.

The quantile toolbox of distributional statistics, then, consists of:

1. the basic preliminary statistics;

2. the estimated quantile means and income shares along with their estimated variances
and covariances (i.e. the estimated asymptotic variances and covariances divided
by N , the size of the sample used for estimation) and standard errors; and

3. the distributional statistics detailed in the subsections of this section along with their
estimated standard errors. Standard “t-ratios” can also be reported correspond-
ing to the standard errors of the various statistics. All of these statistics allow for
distribution-free statistical inference procedures.

5. Empirical Illustration

In this section, we present results obtained using data from the Canadian Census Public
Use Microdata Files (PUMF) for Individuals for 2000 and 2005, as recorded in the 2001
and 2006 censuses. Beach (2016) used data from the PUMF for several censuses since
1971, along with data from other sources, for his comprehensive account of the evolving
fate of the Canadian middle class.

It is of interest to separate data for men and women, as their wages and labour-market
participation rates are quite different. Accordingly, for each census year, two samples,
one for each sex, are extracted from the census data files and are treated separately. In
both cases, individuals younger than 15 years of age are dropped from the sample, as
well as individuals who did not work in that year, or for whom the information on weeks
worked is missing. In these files, the term earnings refers to annual earnings. Although
income is split into wage income and income from self-employment, we simply combine
them to yield the earnings variable. In many cases, incomes have been rounded to an
integer multiple of $1000, leading to a potential complication in the analysis, mentioned
later. In all the results given in this section, earnings are expressed in thousands of 2005
(Canadian) dollars.
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Basic information

In all cases, results are obtained for deciles. Table 1 below shows the basic results for
women in 2005. Number of observations = 218250. The mean income of the sample is
µ̂ = 30.077067, sample variance σ̂2 = 935.883906, all measured in thousands of dollars.

pi ξ̂i µ̂i R̂MIi ÎSi

0.1 4.000 1.884768 0.062665 0.006266

(0.015773) (0.000500) (0.000050)

0.2 8.000 5.855212 0.194674 0.019467

(0.029013) (0.000880) (0.000088)

0.3 12.000 10.035693 0.333666 0.033367

(0.035601) (0.001040) (0.000104)

0.4 18.000 14.934158 0.496530 0.049653

(0.058761) (0.001600) (0.000160)

0.5 24.000 20.456312 0.680130 0.068013

(0.061880) (0.00160)) (0.000160)

0.6 30.000 26.699885 0.887716 0.088772

(0.061860) (0.001610) (0.000161)

0.7 37.000 33.145475 1.102018 0.110202

(0.068618) (0.001780) (0.000178)

0.8 46.000 40.994777 1.362991 0.136299

(0.079067) (0.002060) (0.000206)

0.9 61.000 52.641833 1.750232 0.175023

(0.105270) (0.002590) (0.000259)

1.0 94.122554 3.129379 0.312938

(0.397366) (0.008700) (0.000870)

Table 1: Women in 2005 (asymptotic standard errors in brackets)

The complication mentioned earlier arises on account of the fact that, with incomes
rounded to integer multiples of $100, $500, or $1000, there are many obervations with
identical incomes. This in no way invalidates the results in sections 2 and 3, as the
distribution-free calculations work equally well for continuous or discrete variables. But it
does invalidate equations (9) and (10), at least as they are written. We want the number of
observations in the quantile group between ξi−1 and ξi to be equal to N(pi−pi−1), but the

number of observations yj such that ξ̂i−1 < yj ≤ ξ̂i can be very considerably different from

N(pi − pi−1), precisely because there may be several observations equal to any given ξ̂i.
Instead, the incomes should be sorted in increasing order. Then, for i = 1, . . . ,K − 1,
let ki = ⌈N(pi − pi−1⌉. The observations in the quantile group labelled i are the order
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statistics from y(ki−1+1) to y(ki) inclusive, and ξ̂i is set equal to y(ki). In some cases, we
found that use of (9) and (10) as written led to negative estimated variances. When the
quantile groups are constructed as above, this cannot happen.

Results for men in 2005 are given in Table 2. Number of observations = 238350. Mean
income of sample is µ̂ = 47.553074; sample variance = σ̂2 = 4803.637463.

pi ξ̂i µ̂i R̂MIi ÎSi

0.1 6.000 2.658557 0.055907 0.005591

(0.023209) (0.000480) (0.000048)

0.2 12.000 8.691252 0.182770 0.018277

(0.041749) (0.000890) (0.000089)

0.3 20.000 15.610111 0.328267 0.0328270

(0.068173) (0.001420) (0.000142)

0.4 28.000 23.537151 0.494966 0.049497

(0.075639) (0.001680) (0.000168)

0.5 35.000 31.483533 0.662071 0.066207

(0.069189) (0.001860) (0.000186)

0.6 44.000 39.572981 0.832186 0.083219

(0.088359) (0.002270) (0.000227)

0.7 53.000 48.485337 1.019605 0.101960

(0.084788) (0.002620) (0.000262)

0.8 66.000 59.433732 1.249840 0.124984

(0.109780) (0.003120) (0.000312)

0.9 87.000 75.171177 1.580785 0.158078

(0.140133) (0.003750) (0.000375)

1.0 170.886913 3.593604 0.359360

(1.171779) (0.015240) (0.001524)

Table 2: Men in 2005 (asymptotic standard errors in brackets)

Comparisons across sexes and across time

Because we will make comparisons across time, we have chosen to express all dollar amounts
in thousands of constant 2005 Canadian dollars. This means simply that amounts for the
year 2000 are multiplied by 1.11937, based on Statistics Canada’s CPI series v41690973.
Results analogous to those in the preceding subsection, but for the year 2000, are reported
in Table A3 for women and in Table A4 for men, both in Appendix 3, using data from the
2001 Census. These results, combined with those in Tables 1 and 2, make it possible to
conduct formal tests of a number of interesting hypotheses, all at a disaggregated quantile-
group level.
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First, a comparison of the outcomes for men and women. Tables 3 (for 2000) and 4 (for
2005) show, for each decile, the difference in quantile means, µ̂i for men minus µ̂i for
women, along with the asymptotic t statistics for the hypotheses that these differences are
zero, and also the same numbers for differences in income shares, ISi.

pi diffce in µ̂i t-ratio for µ̂i ÎSi t-ratio for ÎSi

0.1 0.729934 29.910532 -0.000104 -1.573142

0.2 3.161883 56.554601 0.000981 7.013191

0.3 6.435799 76.734036 0.003153 16.523288

0.4 9.802160 108.406476 0.004990 26.016292

0.5 11.886115 123.468649 0.002984 15.329323

0.6 13.534368 124.035908 -0.000450 -2.155213

0.7 15.206590 149.144450 -0.004331 -22.984861

0.8 18.265594 143.996406 -0.005826 -25.654844

0.9 22.022688 144.282527 -0.009859 -34.553494

1.0 43.959026 106.158246 0.008462 10.875604

Table 3: Differences in outcomes men vs women in 2000

Remarks:

Note that the orders of magnitude for the µi and the ISi are different, since the
µi are measured in thousands of dollars, while the income shares must add up
to one. The t-ratios are dimensionless of course, but reveal important differences
between the comparisons of the µ̂i and those of the ÎSi. Unsurprisingly, men
uniformly have higher decile mean incomes than women, with very significant
differences even for the bottom decile. But the story is quite different for the
income shares. In 2005, women have significantly larger income shares across all
nine lower deciles, but for the top decile a dramatic reversal occurs with men
having a significant larger income share.
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pi diffce in µ̂i t-ratio for µ̂i ÎSi t-ratio for ÎSi

0.1 0.773789 27.574851 -0.000676 -9.661025

0.2 2.836040 55.783648 -0.001190 -9.474489

0.3 5.574418 72.481036 -0.000540 -3.064506

0.4 8.602993 89.818780 -0.000156 -0.675446

0.5 11.027221 118.797680 -0.001806 -7.360500

0.6 12.873095 119.349066 -0.005553 -19.938694

0.7 15.339861 140.635727 -0.008241 -26.006552

0.8 18.438955 136.292613 -0.011315 -30.248492

0.9 22.529344 128.541567 -0.016945 -37.143363

1.0 76.764359 62.040705 0.046422 26.444959

Table 4: Differences in outcomes men vs women in 2005

The next two tables give the results of comparisons across time, from 2000 to 2005, for
women in Table 5 and for men in Table 6.

pi diffce in µ̂i t-ratio for µ̂i ÎSi t-ratio for ÎSi

0.1 0.422538 20.298319 0.000933 13.508549

0.2 0.654866 15.642643 0.000498 3.784233

0.3 0.366390 6.646151 -0.001903 -11.701750

0.4 0.356495 4.620082 -0.003521 -16.835039

0.5 0.348522 4.045508 -0.005333 -24.537802

0.6 0.754702 7.968999 -0.005867 -25.753603

0.7 0.962875 10.508515 -0.007188 -32.382247

0.8 1.843891 16.519533 -0.006509 -24.661344

0.9 3.191459 22.868528 -0.005353 -16.009639

1.0 17.717747 40.033925 0.034242 33.950916

Table 5: Differences in outcomes 2000 vs 2005 for women
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pi diffce in µ̂i t-ratio for µ̂i ÎSi t-ratio for ÎSi

0.1 0.466392 15.134383 0.000361 5.395841

0.2 0.329023 5.229941 -0.001673 -12.466862

0.3 -0.494991 -4.972270 -0.005596 -27.641097

0.4 -0.842672 -7.893728 -0.008668 -40.126566

0.5 -0.510372 -4.989776 -0.010122 -44.887654

0.6 0.093430 0.773989 -0.010970 -41.687486

0.7 1.096146 9.298306 -0.011098 -37.701233

0.8 2.017252 13.620515 -0.011997 -34.369073

0.9 3.698115 19.898222 -0.012438 -29.504212

1.0 50.523080 41.161870 0.072202 44.189154

Table 6: Differences in outcomes 2000 vs 2005 for men

Remarks:

Women clearly made gains in decile mean incomes in all deciles over the five-year
period, whereas changes for men are mixed with losses over the lower-mid range
and big gains at the top end. Quantile mean incomes show gains for all deciles
above the median and for the bottom two deciles. However, income shares for
all but the top and bottom two deciles fell. The deterioration in the fate of the
middle deciles relative to the higher ones for men is quite evident in the results of
table 6. Income shares fell for all but the bottom and top deciles. Lower income
polarization measures (based on the sample covariances in appendix table A5)
changed relatively little over the period for both women and men. But upper
income polarization estimates rose quite considerably, especially among men.

One could also consider Piketty lines or the growth rates of earnings levels across decile
groups. As table 7 shows, the growth rates of earnings between 2000 and 2005 are higher
for women than for men for the nine lower deciles, but for the top decile group the growth
of men’s earnings is substantially larger than that for women. The asymptotic t statistics
for the hypotheses that the growth rates are the same for both sexes reject these hypotheses
at conventional significance levels, except for the pi-quantile group for i = 7.
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pi ĝi women ĝi men t-ratio for difference

0.1 0.288968 0.212754 3.416455

(0.016117) (0.015423)

0.2 0.125927 0.039346 7.508514

(0.008592) (0.007690)

0.3 0.037892 -0.030735 8.147466

(0.005828) (0.006081)

0.4 0.024455 -0.034564 8.597427

(0.005348) (0.004304)

0.5 0.017333 -0.015952 6.211744

(0.004321) (0.003169)

0.6 0.029088 0.002367 5.554504

(0.003711) (0.003061)

0.7 0.029919 0.023131 1.773544

(0.002885) (0.002516)

0.8 0.047097 0.035134 3.049874

(0.002919) (0.002621)

0.9 0.064539 0.051741 3.251210

(0.002902) (0.002659)

1.0 0.231893 0.419753 -15.324946

(0.006076) (0.010647)

Table 7: Piketty line ordinates from 2000 to 2005 for women and men

In order that we might use the estimated covariances as well as variances, we computed
the income polarization functions |µ̂i − µ̂M | for i = 1 and i = 10, that is, the bottom and
top deciles. The results, along with standard errors, are shown in Table A5 for the four
data sets analysed in this paper: women in 2000, men in 2000, women in 2005, and men
in 2005. The table also displays the estimated covariance matrices of the four decile mean
earnings estimates needed for the computation, namely µ̂1, µ̂5, µ̂6, and µ̂10.

Finally, we undertook four joint tests, for which the null hypotheses are that all decile
differences in income shares are zero. These tests have nine degrees of freedom, not ten,
since the shares sum to one in all cases. For the hypothesis that there is no difference be-
tween income shares of men and those of women in 2000, the Wald statistic is 1098.120771,
allowing the hypothesis to be rejected at any conventional significance level. For the same
hypothesis but for 2005, the statistic is 1395.077848. For comparisons across time, the
first hypothesis is that income shares were the same in 2000 and 2005: the test statistic
for men is equal to 1583.309008; for women it is 234.500725, still enough for rejection,
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6. Conclusions and Implications

This paper uses a stochastic quantile function approach to derive the (asymptotic) variance-
covariance structure of quantiles and income shares, and obtains explicit distribution-free
formulas that do not depend on any assumptions about the distribution function. Conse-
quently, the formulas are quite straightforward to compute using sample estimates from the
available microdata. The paper then develops a toolbox of quantile-based disaggregative
income inequality measures – such as Lorenz curve ordinates, relative mean income ratios,
distributional distance measures and quantile income gaps, income polarization measures,
and Piketty quantile growth rates – that can all be obtained from the quantile means and
income share estimates, and hence also have distribution-free (asymptotic) variances and
standard errors. This allows for a simple unified empirical framework of inferential anal-
ysis of distributional change. The framework is then implemented with Canadian Census
public-use microdata files in order to investigate some of the earnings inequality changes
that have occurred between 2000 and 2005.

The empirical findings show that, with large microdata sets, one can obtain quite strong
statistically significant results (even over adjacent censuses). Three findings are high-
lighted:

1) Earnings differences between women and men are highly statistically significant right
across the distribution with men having significantly higher earnings levels, but with
women having significantly larger income shares in 2005 for all nine lower deciles,
while for the tenth decile the opposite is the case.

2) Changes in decile earnings levels are also highly statistically significant right across
the earnings distribution between 2000 and 2005, with gains most marked at the top
of the distribution. The income shares for both women and men rose significantly
at the very bottom and very top of the distributions, but fell across the broad mid
ranges of the distribution.

3) The Piketty line (i.e., the growth rates in decile earnings levels between 2000 and
2005) for women lies significantly above that for men for the nine lower deciles, but
the growth of top decile earnings was much greater among men.

Several implications follow from the analysis of this paper. First, government statistical
agencies – which already publish data series on decile means and decile income shares,
such as the U.S. Bureau of the Census and Statistics Canada – should now also provide
reliability measures (such as standard errors) for these statistics based on the formulas
in this paper. In an era when most data series are available online, the addition of a
reliability appendix, or an addendum of such information, should be quite straightforward
to implement at relatively minimal cost.

Second, the approach of fairly detailed quantile analysis of income distributions, and how
they have changed over time or differ across population groups, allows one to consider
factors which may affect only specific regions of an income distribution (e.g., a change in
the minimum wage). It thus complements and serves as a bridge between simple descriptive
analysis and a much more structural approach, such as quantile regressions (Firpo et al .,
2009).
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Third, the stochastic quantile function approach is quite broadly applicable. When ap-
plied to median-based inequality measures, for example, it again leads to explicit formulas
for (asymptotic) variances and covariances (Davidson, 2018). But the formulas are not
distribution-free, since they depend on the population density function f evaluated at
median-based points. However, one could combine this approach with computer-based
algorithmic techniques for density ordinate evaluation, such as bootstrapping or kernel
estimation methods to obtain an estimate f̂ , and once again have a usable formula for
making statistical inferences. In this case, the f̂ algorithm would have to be undertaken
at the initial data-calculation stage rather than in a stand-alone toolbox program whose
input is the output of the initial data-calculation results.
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Appendix 1: Covariances of Income Shares

The estimate of the asymptotic variance of ÎSi is given by replacing all the quantities
in (18) by their estimates. The ξ̂i are sample quantiles, and with those, n̂i and n̂2i are
defined by (9) and (10). From (15) we define the m̂i and m̂2i as the cumulative sums of
the n̂i and n̂2i respectively. Next µ̂ is given by m̂K . These are enough to estimate Var(Wi)
using (7), Var(Y ) using (16), and cov(Wi, Y ) using (17), and these provide an estimate of

the asymptotic variance (18) of ÎSi.

The asymptotic relation (14) can be written as

ÎSi − ISi =
1

µ
(n̂i − ni)−

ni

µ2
(µ̂− µ).

Now from (4) and (6), we can see that, asymptotically,

n̂i − ni = N−1
N∑
j=1

(
wij − E(Wi)

)
,

while

µ̂− µ = N−1
N∑
j−1

(yj − µ),

so that

ÎSi − ISi =
1

Nµ2

N∑
j=1

[
µ(wij − E(Wi)− ni(yj − µ)

]
. (21)

Let the random variable Vi be defined as follows:

Vi =
1

µ

(
Wi − E(Wi)

)
− ni

µ2
(Y − µ)

)
. (22)

Then the terms of the sum in (21) are IID drawings from Vi. It is easy to check that the

expression (18) for the asymptotic variance of ÎSi is just the variance of Vi divided by N .

For the covariance of ÎSi and ÎSj with j < i, we get directly from (22) that, asymptotically,

N cov(ÎSi, ÎSj) =
1

µ2
cov(Wi,Wj) +

ninj

µ4
Var(Y )− ni

µ3
cov(Wj , Y )− nj

µ3
cov(Wi, Y ) (23)

Everything in this expression can be estimated in a distribution-free manner using the
results (11), (16), and (17). Note that the complete K ×K covariance matrix of the ÎSi

is singular, since
∑K

i=1 ISi =
∑K

i=1 ÎSi = 1.
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Algorithm

Since one of our aims in this paper is to make available a straightforward procedure for
disaggregative statistical analysis of samples consisting of data on incomes, wealth, or
other variables of interest, we provide here a detailed algorithm for constructing estimates
of quantile-based measures of these variables, along with their variance-covariance matrices
and standard errors.

1. Compute µ̂ as the sample mean, and σ̂2 = V̂ar(Y ) as the sample variance.

2. Select the number of groups K for which inference is to be carried out, and the
probabilities pi i = 0, . . . ,K, 0 = p0 < p1 < p2 < . . . < pK = 1, the corresponding
quantiles of which separate the groups. The most usual choice is pi = i/K, but that
is not necessary for our analysis.

3. Sort the data, yj , j = 1, . . . , N , from smallest to largest, so as to find the order
statistics y(1) ≤ y(2) ≤ . . . ≤ y(N). Obtain the sample quantiles for the probabilities pi:

ξ̂0 = y(1), ξ̂K = y(N), and ξi = y(⌈Npi⌉) for i = 1, . . . ,K − 1.

4. Progressively, for i = 1, . . . ,K:

(i) compute n̂i and n̂2i using the formulas (9) and (10);

(ii) compute m̂i and m̂2i according to (15);

(iii) compute the mean income of group i as µ̂i = n̂i/(pi − pi−1);

(iv) compute R̂MIi as µ̂i/µ̂;

(v) compute the estimated income shares ÎSi as n̂i/µ̂;

(vi) obtain the estimated asymptotic variance of n̂i, noting that it is equal to V̂ar(Wi)
as given by (8), divided by N ;

(vii) divide the estimate V̂ar(n̂i) by (pi − pi−1)
2 to get the estimated asymptotic vari-

ance of µ̂i;

(viii) compute the estimate ĉov(Wi, Y ) by estimating the formula (17) using n̂i, n̂2i, µ̂,

ξ̂i, ξ̂i−1, m̂i, and m̂i−1, all of which have already been calculated;

(ix) estimate the asymptotic variance of ÎSi by use of the formula (18), using µ̂, n̂i,

V̂ar(Wi), V̂ar(Y ), and ĉov(Wi, Y ), all now available;

(x) if i > 1, then, for j = 1, . . . , i − 1, obtain the estimated asymptotic covari-
ances ĉov(µ̂i, µ̂j) by estimating formula (11) for cov(Wi,Wj) and dividing by

N(pi − pi−1)(pj − pj−1), with the estimates ξ̂j , ξ̂j−1, ξ̂i, ξ̂i−1. n̂j , n̂i;

(xi) if i > 1, then, for j = 1, . . . , i − 1, obtain the estimated asymptotic covariances

ĉov(ÎSj , ÎSi) by estimating the right-hand side of (23) and dividing by N .

5. Take the square roots of all estimated variances in order to obtain corresponding
standard errors.

As a check, verify that µ̂ is equal to m̂K , and that σ̂2 = V̂ar(Y ) is equal to m̂2K − (m̂K)2;

see (16). Another check: verify that
∑K

i=1 ÎSi = 1.
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Although the above algorithm makes only one pass through the data, it may be useful to
think of the calculations as occurring in two stages. The first stage operates on the raw
data of the available microdata file, and includes the calculations for µ̂, σ̂2, ξ̂i, n̂i, n̂2i, m̂i,

m̂2i, µ̂i, ÎSi, R̂MIi; that is, steps 1–4(v) of the algorithm. These then serve as the input to
a separate stand-alone program, or second stage, that calculates all the desired inference
statistics such as the estimated variances, covariances, standard errors, and “t-ratios”;
steps 4(vi)–5. One can then treat the second stage calculations as a “black box” program
that would allow empirical practitioners to undertake convenient quantile-based inferential
analysis of income (or other) distributions.

Appendix 2: Simulation Evidence

Simulations were run in order to see to what extent the numerous estimates produced
by the above algorithm do indeed approximate finite-sample properties. The simulated
data were generated, using a lognormal distribution, as the exponential of drawings from
the standard normal distribution N(0, 1). The simulated samples contained N = 1000
IID drawings from this distribution, and were split into deciles, so that K = 10, pi = i/10,
i = 0, 1, . . . , 10. The true values of all the estimated properties are readily computed for
the lognormal distribution.2

For each of 100,000 replications, realisations were obtained for µ̂i, ÎSi, V̂ar(µ̂i),and

V̂ar(ÎSi), i = 1, . . . , 10.3 The realisations were then averaged over the 100,000 replica-
tions, and the results compared with the true theoretical values, as shown in Tables A1
and A2 below.

2 Since the range of the lognormal distribution is unbounded above, the 0.999999 quantile was
used for ξ10.

3 The variances and their estimates were not divided by N = 1000, to avoid very small numbers.
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It is clear that the estimates are quite reliable, with no indication of bias, either upwards
or downwards.

i µi µ̂i ISi ÎSi

1 0.185612 0.185921 0.011258 0.011292

2 0.354597 0.355120 0.021507 0.021565

3 0.510099 0.510601 0.030939 0.031005

4 0.681505 0.682043 0.041335 0.041412

5 0.883971 0.884670 0.053616 0.053710

6 1.137309 1.138167 0.068981 0.069094

7 1.476320 1.477357 0.089543 0.089674

8 1.976805 1.978381 0.119899 0.120066

9 2.865101 2.867734 0.173777 0.173992

10 6.414457 6.405586 0.389056 0.388166

Table A1: point estimates

i Var(µ̂i) V̂ar(µ̂i) Var(ÎSi) V̂ar(ÎSi)

1 0.001131 0.001143 0.000519 0.000522

2 0.002604 0.002625 0.001238 0.001236

3 0.004433 0.004466 0.002049 0.002036

4 0.007174 0.007247 0.003105 0.003081

5 0.011571 0.011685 0.004536 0.004491

6 0.019172 0.019363 0.006567 0.006489

7 0.033776 0.034133 0.009649 0.009525

8 0.067099 0.067829 0.014975 0.014785

9 0.173934 0.175825 0.027561 0.027307

10 2.218927 2.231962 0.256691 0.253030

Table A2: variance estimates
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Appendix 3: More Empirical Results

In this appendix, results are given for the basic information in 2000. First, women, in
Table A3

pi ξ̂i µ̂i R̂MIi ÎSi

0.1 3.259605 1.462230 0.053337 0.005334

(0.013585) (0.000470) (0.000047)

0.2 7.302770 5.200345 0.189689 0.018969

(0.030181) (0.000980) (0.000098)

0.3 11.894426 9.669303 0.352700 0.035270

(0.042092) (0.001250) (0.000125)

0.4 16.790550 14.577663 0.531738 0.053174

(0.050011) (0.001350) (0.000135)

0.5 22.387400 20.107790 0.733456 0.073346

(0.059940) (0.001470) (0.000147)

0.6 29.103620 25.945183 0.946382 0.094638

(0.071710) (0.001610) (0.000161)

0.7 35.044117 32.182600 1.173900 0.117390

(0.060723) (0.001320) (0.000132)

0.8 43.655430 39.150886 1.428077 0.142808

(0.078785) (0.001650) (0.000165)

0.9 56.058050 49.450373 1.803763 0.180376

(0.091620) (0.002110) (0.000211)

1.0 76.404807 2.786959 0.278696

(0.194850) (0.005090) (0.000509)

Table A3: Women in 2000 (asymptotic standard errors in brackets)

Next, men, in Table A4

– 23 –



pi ξ̂i µ̂i R̂MIi ÎSi

0.1 5.037165 2.192164 0.052300 0.005230

(0.020273) (0.000460) (0.000046)

0.2 11.753385 8.362229 0.199502 0.019950

(0.047063) (0.001000) (0.000100)

0.3 20.148660 16.105102 0.384228 0.038423

(0.072545) (0.001440) (0.000144)

0.4 27.984250 24.379823 0.581642 0.058164

(0.075331) (0.001360) (0.000136)

0.5 35.484029 31.993904 0.763295 0.076329

(0.075331) (0.001270) (0.000127)

0.6 43.655430 39.479551 0.941884 0.094188

(0.082244) (0.001330) (0.000133)

0.7 52.198462 47.389190 1.130588 0.113059

(0.081904) (0.001350) (0.000135)

0.8 63.804090 57.416480 1.369814 0.136981

(0.099414) (0.001570) (0.000157)

0.9 81.714010 71.473062 1.705169 0.170517

(0.122080) (0.001920) (0.000192)

1.0 274.245650 120.363833 2.871581 0.287158

(0.365381) (0.005880) (0.000588)

Table A4: Men in 2000 (asymptotic standard errors in brackets)
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 0.000185 0.000278 0.000270 0.000181
0.000278 0.003593 0.003706 0.002479
0.000270 0.003706 0.005142 0.003692
0.000181 0.002479 0.003692 0.037967


 0.000411 0.000518 0.000458 0.000483
0.000518 0.005675 0.005392 0.005681
0.000458 0.005392 0.006764 0.007640
0.000483 0.005681 0.007640 0.133504


 0.000249 0.000315 0.000259 0.000321
0.000315 0.003829 0.003370 0.004180
0.000259 0.003370 0.003827 0.005054
0.000321 0.004180 0.005054 0.157900


 0.000539 0.000540 0.000569 0.001176
0.000540 0.004787 0.005365 0.011092
0.000569 0.005365 0.007807 0.017396
0.001176 0.011092 0.017396 1.373067


Women 2000 Men 2000 Women 2005 Men 2005

lower measure 21.564256 33.544564 21.693331 32.869700
(0.060609) (0.072390) (0.057220) (0.072536)

upper measure 53.378320 84.627105 70.544455 135.358656
(0.189296) (0.354948) (0.390211) (1.162071)

Table A5: covariance matrices and income polarization statistics
covariance matrices: left column women, right column men, first row 2000, second row 2005
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