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can be unbounded when the instruments are weak, as is true of any test with correct
coverage. But, even when they are bounded, their length may be very misleading,
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A similar property manifests itself, for similar reasons, when a confidence set for a
single parameter is based on inverting an F test for two or more parameters.
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1. Introduction

Classical confidence intervals are, at least implicitly, defined by “inverting” a test. A
confidence set at level 1 − α, which may or may not be a single bounded interval,
is simply the set of parameter values for which a test at level α does not reject the
null hypothesis that each value in the set is the correct one. This seems to imply
that inverting an exact test must lead to a confidence set that has good properties.
However, as we show in this paper, that is not the case when the test statistic involves
more restrictions than the dimension of the confidence set.

Rather than attempting to state and prove a general result, the paper deals with
two special cases. The first is inverting an F test of two or more restrictions to
obtain a one-dimensional confidence interval. This is not something that any sensible
econometrician would do, of course, but it shows just what the issues are in a very
simple context.

The main focus of the paper is confidence sets obtained by inverting the test pro-
posed by Anderson and Rubin (1949). In the linear simultaneous-equations model
with weak instruments, the asymptotic distributions of t statistics often provide poor
guides to their finite-sample distributions; see Staiger and Stock (1997). As a conse-
quence, confidence intervals based on inverting t tests often have very poor coverage.
One proposed solution to this problem is to invert a test which has better finite-
sample properties. In a model with just one right-hand-side endogenous variable, the
Anderson-Rubin test for the value of the coefficient of that variable is exact under
classical assumptions. It has therefore been suggested in several papers, including
Dufour (1997), Zivot, Startz, and Nelson (1998), and Dufour and Taamouti (2005),
that one should invert the AR test to produce what we shall refer to as an “AR
confidence set.”

In this paper, we argue that, although AR confidence sets have correct unconditional
coverage, at least under classical assumptions, they have many undesirable properties.
Although some of these properties have previously been studied, notably by Zivot,
Startz, and Nelson (1998) and Mikusheva (2010), we offer some new theoretical results
together with supporting simulation evidence. AR confidence sets do not have correct
coverage conditional on the type of confidence set that actually occurs. Moreover,
when they are bounded, their length depends on the value of the Sargan statistic for
the validity of the overidentifying restrictions. Therefore, any AR confidence set that
is actually observed does not have correct coverage. It can be empty, misleadingly
short, misleadingly long, or unbounded.

Having correct coverage unconditionally, while desirable, is by itself not very useful.
One can always create a (1 − α)% confidence set with the correct unconditional
coverage by setting it equal to the empty set with probability α and the real line
with probability 1 − α. But such a straw-man confidence set provides no useful
information. Unfortunately, when the instruments are weak, the AR confidence set
may not be much more informative than this straw-man one. Even when they are
strong, it never has the correct conditional coverage.
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Forchini and Hillier (2003) have argued that the AR statistic is not in fact pivotal,
because it does not depend on the parameter of interest everywhere in the para-
meter space, and that confidence sets based on it are therefore invalid. Our paper is
concerned with the more detailed properties of AR confidence sets, but some of the
issues that arise below are related to this important point.

It is well known that AR confidence sets may be unbounded. In general, when
the instruments in a linear simultaneous-equations model are sufficiently weak, a
confidence set with correct coverage must be unbounded with positive probability;
see Gleser and Hwang (1987) and Dufour (1997). Thus the possible unboundedness
of AR confidence sets can actually be seen as a positive feature. What is less widely
appreciated is that AR confidence sets may be empty or extremely small. They
can thus provide a very misleading impression of how much information the sample
provides about the parameter of interest.

The problem of confidence sets that are empty or very small can arise whenever
we invert a test that has more degrees of freedom than the number of parameters
in which we are interested. In the next section, we show that it can occur when
we invert an F test in the classical normal linear regression model. In Section 3,
we introduce Anderson-Rubin confidence sets and show that there are four types of
them. In Section 4, we explore the important relationship between AR confidence
sets and the Sargan statistic for overidentification. In Section 5, we use simulation
experiments to study the properties of AR confidence sets. In Section 6, we briefly
discuss alternative ways of forming confidence sets in regression models estimated by
instrumental variables. Section 7 concludes.

2. Inverting the F Test

The fundamental problem with AR confidence sets is that they are obtained by
inverting a test statistic with more than one degree of freedom. A simpler example
of the same problem arises in the context of the classical normal linear model

y = xβ +X2β2 +Zγ + u, u ∼ N(0, σ2I), (1)

where y and x are n× 1 vectors, X2 is an n× k2 matrix, and Z is an n× k3 matrix.
We assume that the k ≡ k2+k3+1 columns of x, X2, and Z are linearly independent.
Suppose we attempt to construct a confidence set for β by inverting the F test for
the joint hypothesis

H(β0) : β = β0; β2 = 0,

assuming of course that the true β2 is indeed zero. The null model can be written as

y − xβ0 = Zγ + u,

and the alternative as

y − xβ0 = Xδ +Zγ + u, (2)

– 2 –



where X ≡ [x X2]. Clearly, (1) and (2) are just different parametrizations of the
same model. The F statistic for a test of H(β0) at nominal level α is

F (β0) =
‖PMZX(y − xβ0)‖2/(k2 + 1)

‖M[X Z]y‖2/(n− k)
. (3)

Any value of β0 for which F (β0) ≤ q, where q is the 1− α quantile of the
Fk2+1,n−k distribution, belongs to the confidence set formed by inverting the F test.

Here and throughout the paper, PB is for any matrix B the orthogonal projection
B(B>B)−1B> on to the columns of B, and MB ≡ I − PB is the complementary
orthogonal projection on to the orthogonal complement of the space spanned by the
columns of B; for details see Davidson and MacKinnon (2004), section 2.3. These
matrices are symmetric and idempotent.

The inequality F (β0) ≤ q can be expressed as a quadratic inequality in β0:

(x>PMZXx)β2
0 − 2(x>PMZXy)β0 + y>(PMZX − cM[X Z])y ≤ 0, (4)

where c ≡ (k2 + 1)q/(n− k). The discriminant of the quadratic is

∆ ≡ 4
(
(x>PMZXy)2 − x>PMZXx y>(PMZX − cM[X Z])y

)
. (5)

The probability that ∆ < 0 is the probability of obtaining an empty confidence set,
because the coefficient of β2

0 in (4) is always positive. Therefore, if the corresponding
quadratic equation has no real roots, the quadratic function is everywhere positive,
and the inequality is satisfied nowhere. This probability is, of course, less than α.

From (5), we see that ∆ < 0 if and only if

y>(PMZX − cM[X Z])y >
(x>PMZXy)2

x>PMZXx
. (6)

The right-hand side of this inequality is the squared norm of the projection of y on to
the direction of PMZXx. But, since PMZXx = PMZXMZx = MZx, the right-hand
side of (6) is simply y>PMZxy.

If we subtract y>PMZxy from both sides of (6), the first term inside the parentheses
on the left-hand side becomes PMZX − PMZx. Since

PMZX = PMZx + PM[x Z]X2 , (7)

the inequality (6) can then be rewritten as

y>(PM[x Z]X2 − cM[X Z])y > 0,

which can be rearranged as

y>PM[x Z]X2y/k2

y>M[X Z]y/(n− k)
>

(
1 +

1

k2

)
q. (8)
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The left-hand side of this inequality is distributed as Fk2,n−k, and so the probability
that ∆ < 0 can readily be calculated. The numerical value depends on the nominal
coverage 1 − α, the sample size n, and the numbers k and k2 of regressors in the
model (1).

Suppose without loss of generality that the true value of β is zero and the true value
of σ is one. Then the confidence set covers zero if and only if it is non-empty, that
is, ∆ > 0, and the two real roots of the quadratic have opposite signs. The product
of the roots is the ratio of the last term on the left-hand side of (4) to the coefficient
of β2

0 . Since the latter is always positive, the roots have opposite signs if and only if

y>(PMZX − cM[X Z])y < 0, (9)

since this inequality implies that ∆ > 0; compare (6). The inequality (9) can be
rewritten as

y>PMZXy/(k2 + 1)

y>M[X Z]y/(n− k)
< q, (10)

and the probability that the inequality is satisfied is of course just 1 − α, since the
left-hand side of (10) is distributed as Fk2+1,n−k.

Consider next the statistic for the F test of the part of H(β0) that has nothing to do
with β0, namely, that β2 = 0. This statistic is

F2 ≡ y>PM[x Z]X2y/k2

y>M[X Z]y/(n− k)
. (11)

From (7), the left-hand side of (10) can be rewritten as

k2
k2 + 1

F2 +
y>PMZxy/(k2 + 1)

y>M[X Z]y/(n− k)
,

and so, if we write s2 = y>M[X Z]y/(n− k), the coverage event can be expressed as

k2F2 +
y>PMZxy

s2
< (k2 + 1)q,

or, equivalently,
y>PMZxy < s2

(
(k2 + 1)q − k2F2

)
. (12)

The two sides of this inequality are independent, and the left-hand side is distributed
as χ2(1). Therefore, conditional on F2 and s2, coverage is given by the CDF of χ2(1)
evaluated at the right-hand side of (12). It is almost never equal to 1 − α, and the
larger is the value of F2, the shorter is the interval.

The inequality (12) can never be satisfied if ∆ < 0. From (8) and (11), we see that
the event ∆ < 0 can be written as k2F2 > (k2 + 1)q. It follows that, whenever the
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statistic F2 for β2 = 0 is sufficiently large, the confidence interval defined by (4) must
be the empty set.

When the confidence interval does exist, its length is the distance between the two
roots of the quadratic in (4), that is, 2

√
∆/x>PMZXx. It can be seen from (5)

and (11) that
∆ = 4x>PMZXx s2

(
(k2 + 1)q − k2F2

)
,

and so the length of the interval, when it exists, is

2s
(
(k2 + 1)q − k2F2

)1/2
(x>PMZXx)1/2

. (13)

As noted earlier, the coverage of the confidence interval defined by (4) is given by
the CDF of χ2(1) evaluated at the right-hand side of (12). From (13), this coverage
can also be expressed as the CDF of χ2(1) evaluated at 4 times the squared length
of the interval multiplied by x>PMZXx.

It is evident from expression (13) that, if β̂2 differed substantially from a zero vector,
and F2 were consequently a large number, (k2 + 1)q − k2F2 would be negative, and
there would not exist a bounded interval. That could happen either by chance or
because β2 6= 0. It seems very unsatisfactory that the length, and even the existence,
of a confidence interval for β should depend on the value of β2.

Of course, in the context of the classical linear model (1), it makes no sense to base
a confidence interval for β on the statistic F (β0) defined in (3). The usual interval is
instead based on the t statistic for β = β0. But, as we shall see in the next section,
inverting an AR test is very much like inverting F (β0).

3. Anderson-Rubin Confidence Sets

We deal with the simultaneous two-equation linear model

y1 = βy2 +Zγ + u1 (14)

y2 = Wπ + u2 = Zπ1 +W2π2 + u2. (15)

Here y1 and y2 are n--vectors of observations on endogenous variables, Z is an n× k
matrix of observations on exogenous variables, and W is an n×l matrix of exogenous
instruments with the property that S(Z), the subspace spanned by the columns of
Z, lies in S(W ), the subspace spanned by the columns of W. The n× (l− k) matrix
W2 is constructed in such a way that S(Z,W2) = S(W ), and W is assumed to
have full column rank. Equation (14) is a structural equation, and equation (15) is
a reduced-form equation. The model is overidentified if l > k + 1, the number of
overidentifying restrictions being l − k − 1.

The disturbance vectors u1 and u2 are assumed to be serially uncorrelated and
homoskedastic, with mean zero and contemporaneous covariance matrix

Σ ≡
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
.
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For the AR test to be exact, we also need the disturbances to be normally distributed.

The Anderson-Rubin statistic for a test of the hypothesis that β = β0 is

AR(β0) =
n− l

l − k

(y1 − β0y2)
>P1(y1 − β0y2)

(y1 − β0y2)>MW (y1 − β0y2)
, (16)

where P1 ≡ MZ −MW = PW − PZ . Under the null hypothesis, the AR statistic
(16) is distributed as F (l − k, n − l). This statistic is, of course, minimized at the
LIML estimator β̂LIML.

Let q now denote the 1 − α quantile of the F (l − k, n − l) distribution. Then β0

belongs to the confidence set at level 1−α if and only if AR(β0) ≤ q. This inequality
can be reformulated as

(y2
>Ay2)β

2
0 − 2(y1

>Ay2)β0 + y1
>Ay1 ≥ 0, (17)

where A = cMW − P1, with c = q(l − k)/(n − l); compare (4). Zivot, Startz, and
Nelson (1998) study this inequality in some detail. For convenience, we summarize
their results here.

The discriminant of the quadratic equation obtained by replacing the inequality
in (17) by an equality is

D ≡ 4(y1
>Ay2)

2 − 4y1
>Ay1 y2

>Ay2; (18)

compare (5). If D < 0, the equation has no real roots, so that the inequality (17) is
either always or never satisfied. It is always satisfied if y2

>Ay2 > 0, and so, in this
case, the confidence set is the entire real line. It is never satisfied if y2

>Ay2 < 0,
which implies that the confidence set is empty.

If D > 0, the equation has two real roots. If y2
>Ay2 < 0, the confidence set is the

interval between them, while, if y2
>Ay2 > 0, it is the set composed of the disjoint

union of the open infinite interval from the upper root to +∞ and that from the
lower root to −∞.

Regardless of the sign of D, in the knife-edge case for which y2
>Ay2 = 0, the inequal-

ity (17) is satisfied with equality when β0 = y1
>Ay1/(2y1

>Ay2), and the confidence
set extends unboundedly from this value to the right or left according as y1

>Ay2 is
negative or positive. In the doubly knife-edge case with y2

>Ay2 = y1
>Ay2 = 0, the

confidence set is the whole real line if y1
>Ay1 ≥ 0, and is empty if y1

>Ay1 < 0.

It follows that the confidence set is unbounded whenever y2
>Ay2 ≥ 0. This condition

can be rewritten as
cy2

>MWy2 − y2P1y2 ≥ 0.

Using the definition of c and a little algebra allows us to rewrite this inequality as

y2P1y2/(l − k)

y2
>MWy2/(n− l)

≤ q. (19)
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The quantity on the left-hand side of (19) is the ordinary F statistic for π2 = 0 in
equation (15), and q is the critical value for a test at level α based on this statistic.
Thus, as Zivot, Startz, and Nelson (1998) showed, the the AR confidence set is
unbounded whenever the statistic for π2 = 0 in (15) is less than q, that is, whenever
we cannot reject the hypothesis that the instruments that are not also explanatory
variables (namely, the columns of W2) have no explanatory power for y2.

It should be noted that the confidence set cannot be empty if the model is just iden-
tified. In that case, the LIML estimator β̂LIML is equal to the instrumental-variables
(IV) estimator β̂IV, which satisfies the estimating equation y2

>P1(y1 − y2β̂IV) = 0.
In this case, the image of P1 is one-dimensional. Thus the vector y1 − y2β̂LIML is
orthogonal to all vectors in that image, and we see from (16) that AR(β̂LIML) is zero.
Consequently, β̂LIML always belongs to the confidence set in the just-identified case,
whatever the significance level.

There is no point calculating an AR confidence set whenever the inequality (19)
holds, because a set that consists of the entire real line, perhaps with a hole in the
middle, tells us nothing useful about the value of β. In contrast to the confidence set,
the identifiability test statistic does provide valuable information, since it provides a
natural measure of the strength of the instruments; see Stock and Yogo (2005).

The fact that some types of AR and other confidence set are unbounded when the
instruments are sufficiently weak can be viewed as a consequence of a fundamental
result of Dufour (1997), who showed that no valid confidence set which is almost
surely bounded exists in the neighborhood of a point where the parameter is not
identified.

Unconditionally, the AR confidence set always has the correct coverage. However,
once we observe what type of set it is, that is no longer the case. By construction,
the empty set undercovers, and the real line overcovers. The bounded interval and
the disjoint interval can either overcover or undercover. This is of course the case for
any confidence set that may be empty or the whole real line.

4. Relations with the Sargan Test

The Sargan statistic for overidentifying restrictions (Sargan, 1958) should be com-
puted whenever l− k − 1 > 0, that is, unless the system is just identified. It is most
commonly computed as 1/σ̂2

1 times the minimized value of the IV criterion function,

1

σ̂2
1

(y1 − β̂IVy2)
>PW (y1 − β̂IVy2) =

1

σ̂2
1

(y1 − β̂IVy2)
>P1(y1 − β̂IVy2), (20)

where β̂IV is the IV (or two-stage least squares) estimate of β, and the estimated
variance σ̂2

1 denotes n−1û1
>MZû1, with û1 ≡ y1−β̂IVy2. The equality in (20) follows

from the fact that

(MZ −MW )(y1 − β̂IVy2) = (I−MW )(y1 − β̂IVy2) = PW (y1 − β̂IVy2),

– 7 –



because Z is orthogonal to the IV residuals.

It is evident that the numerator of the expression on the right-hand side of equation
(20) would be identical to the numerator of the AR statistic (16) if β̂IV were replaced
by β0. The latter will always be no smaller than the former, because β̂IV minimizes
the numerator. That is why the AR statistic has l − k degrees of freedom in the
numerator, while the Sargan statistic (which, of course, is not exact) has l − k − 1.
It is not hard to show that the numerator of (16) can be rewritten as

(y1 − β̂IVy2)
>P1(y1 − β̂IVy2) + (β̂IVy2 − β0y2)

>P1(β̂IVy2 − β0y2). (21)

The first term in (21) is the numerator of the Sargan statistic (20). Thus, if the
Sargan and AR statistics had the same denominator, the latter would always be
no smaller than the former. This is not always true in finite samples, because the
denominators are not the same, although they both estimate σ2

1 consistently under
the null. But there is inevitably a very strong tendency for large values of the Sargan
statistic to be associated with large values of the AR statistic.

In order to analyze the statistical properties of the AR confidence set and its relation-
ship to the Sargan statistic, we need to specify a data-generating process. Following
Davidson and MacKinnon (2008), we use the DGP:

y1 = βy2 + u1,

y2 = aw + u2,
(22)

where w ∈ S(W ) is an n--vector with ‖w‖2 = 1, and

u1 = rv1 + ρv2,

u2 = v2,

[
v1

v2

]
∼ N(0, I), r2 + ρ2 = 1. (23)

This DGP is a special case of the more general model specified by (14) and (15).
However, by varying the three parameters β, ρ, and a, we can generate AR or Sargan
statistics with the same distributions as those generated by any DGP contained in
the more general model; see section 3 of Davidson and MacKinnon (2008).

The vector w1 lies in the direction of Wπ in (15). It provides all the explanatory
power of all the instruments in the matrix W. Since it is only S(W ) that matters,
we are perfectly free to perform a linear transformation on W that makes this the
case. Similar reasoning shows that we may ignore any exogenous covariates in the
matrix Z by the expedient of replacing all other variables by the respective residuals
from regressing them linearly on Z, that is, by pre-multiplying each variable by MZ .

By normalizing the vector w to have squared length unity, we are implicitly using
weak-instrument asymptotics; see Staiger and Stock (1997). The strength of the
instruments is measured by the parameter a. The square of this parameter is called
the scalar concentration parameter; see Phillips (1983, p. 470) and Stock, Wright,
and Yogo (2002).
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Finally, the fact that we can without loss of generality set the variances σ2
1 and σ2

2

in (22) to unity is a consequence of the fact that all the statistics we consider are
homogeneous of degree zero with respect to y1 and y2 separately.

As we have seen, the AR confidence set is a bounded interval if and only if D > 0
and y2

>Ay2 < 0. In this case, the length of the interval is the distance between the
two roots of the quadratic in (17), which is −√

D/y2
>Ay2. Under the DGP given

by (22) and (23), the limit of this ratio as a → ∞ is zero. The quantity that has a
non-trivial limit as a → ∞ is thus the length of the interval times a. It can be shown
that this limit is the square root of

c(y1 − βy2)
>MW (y1 − βy2)− (y1 − βy2)

>(P1 − Pw)(y1 − βy2). (24)

The first term in (24) is c times a random variable that follows the χ2(n− l) distribu-
tion. The second term is an independent random variable that follows the χ2(l−k−1)
distribution. Of course, both these quantities would have to be divided by σ2

1 if we
had not set it to unity. The distribution of the second term, and its independence from
the first term, both follow from the fact that the matrix P1 −Pw = PW −PZ −Pw

projects onto the l − k − 1 components of W that do not lie in S(w,Z).

Expression (24) is random and may be either positive or negative. It is most likely to
be negative when α is large, so that q, the 1− α quantile of F (l− k, n− l), is small.
There is evidently a non-empty confidence set only when it is positive. Since we are
considering the limit as a → ∞, there is no danger that the set will be unbounded.

It is interesting to see how expression (24) is related to a slightly modified version of
the Sargan statistic (20). The modified statistic is

S =
û1

>P1û1

σ̌2
1

, σ̌2
1 =

1

n− l
û1

>MW û1, (25)

where again û1 = y1 − β̂IVy2. This differs from (20) because, instead of using
the usual variance estimate σ̂2

1 , it uses the same one as the AR statistic for testing
β = β̂IV.

The numerator of S is

û1
>P1û1 = (y1 − β̂IVy2)

>P1(y1 − β̂IVy2) = y1
>P1(y1 − β̂IVy2), (26)

where the second equality follows from the estimating equation y2
>P1(y1−β̂IVy2) = 0

that defines β̂IV. This equation implies that

β̂IV =
y2

>P1y1

y2
>P1y2

. (27)

Substituting (27) into the rightmost expression in (26) yields

û1
>P1û1 = y1

>P1y1 − y1
>P1y2(y2

>P1y2)
−1y2

>P1y1

= y1
>(P1 − PP1y2)y1 = u1

>(P1 − PP1y2)u1.
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Thus from (25) we have

σ̌2
1S = u1

>(P1 − PP1y2
)u1 = u1

>P1u1 − (u1
>P1y2)

2

y2
>P1y2

. (28)

If we replace y2 by aw + u2 and retain only the leading-order terms as a → ∞,
the term that is subtracted in the rightmost expression here tends to (w>u1)

2 =
u1

>Pwu1, where the equality follows from the fact that w>w = 1. Thus, in the limit,

σ̌2
1S = u1

>(P1 − Pw)u1 = (y1 − βy2)
>(P1 − Pw)(y1 − βy2). (29)

It is easy to see that β̂IV tends to β as a → ∞. From (27),

β̂IV =
(aw + u2)

>P1

(
β(aw + u2) + u1

)

(aw + u2)>P1(aw + u2)
= β +

(aw + u2)
>P1u1

(aw + u2)>P1(aw + u2)
.

Since the second term in the rightmost expression here is O(a)/O(a2) = O(a−1), that
expression vanishes as a → ∞. The consistency of β̂IV implies that

û1
>MW û1/(n− l) = (y1 − βy2)

>MW (y1 − βy2)/(n− l) +O(a−1)

as a → ∞. Thus the first term in (24) can be replaced by

q(l − k)
û1

>MW û1

n− l
= q(l − k)σ̌2

1 .

Similarly, by (29), the second term can be replaced by σ̌2
1S. We conclude that, in

the limit as a → ∞, the length of the bounded AR interval, if it exists, is simply

σ̌1

(
q(l − k)− S

)1/2
. (30)

This is a deterministic function of σ̌1 and S, which is proportional to the former and
nonlinear in the latter. As S increases, the interval becomes shorter and eventually
ceases to exist.

Although the result (30) is strictly true only in the limit, it may be expected to provide
a good guide whenever a is reasonably large, that is, whenever the instruments are
reasonably strong. It implies that, when the AR confidence set is a bounded interval,
its coverage will vary inversely with the magnitude of the Sargan statistic. This
may be especially problematic in practice if, as will very often be the case, the
overidentifying restrictions are not quite satisfied. In consequence, observed Sargan
statistics may well tend to be larger than they should be by chance, and bounded
AR intervals consequently shorter.

The fundamental reason for the result that the AR confidence set depends on the
value of the Sargan statistic is that the AR statistic has more than one degree of
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freedom. The Sargan statistic plays exactly the same role in (30) as k2 times the
statistic F2 did in (13). In obtaining (13), there was no need to consider a limiting
argument. The only reason we needed a limiting argument to obtain (30) is that
the Sargan statistic does not have a unique distribution independent of the model
parameters when a is finite.

Figure 1 illustrates all four types of interval by graphing AR(β0) against β0. The
dashed horizontal line is the critical value, q. Two variants of the bounded interval
case are shown. In one of these, the interval is very short, and in the other it
is quite long. What type of interval we obtain depends on α. In particular, the
probability that the interval is an empty set diminishes as α becomes smaller and q
consequently becomes larger. All five intervals in the figure are for samples drawn
from the same data-generating process, for which the instruments are moderately
weak. The figure illustrates the fact that sampling variation can produce radically
different AR confidence sets.

The confidence sets considered in Zivot, Startz, and Nelson (1998), which were con-
structed by inverting the LR test and variants of the LM test, share a number of
properties with AR confidence sets. They, too, can be unbounded, and so they have
incorrect coverage conditional on being bounded or not. What differentiates AR
confidence sets from these others is that, since the AR statistic depends on the Sar-
gan statistic, an AR confidence set can be empty, and, as the figure illustrates, a
bounded interval can be very much too short. Thus we cannot interpret an observed
AR confidence set, even a bounded interval, in the way we would like to interpret a
confidence interval. On average, at least when the model is well identified, bounded
intervals must overcover, in order to offset the failure of empty sets to cover at all.
But there will always be bounded intervals like the one shown in the top panel of
Figure 1 which give the misleading impression that we have estimated β much more
accurately than is actually the case.

The AR set in the just-identified case is not subject to this criticism. This is a natural
consequence of the fact that, in this case, the Sargan statistic is zero. In fact, it is
easy to see that, for a just-identified model, the AR test statistic is equal to the
version of the LM statistic proposed by Kleibergen (2002) and Moreira (2009).

5. Properties of AR Confidence Sets

In this section, we use simulation experiments to study various properties of AR
confidence sets, including their conditional coverage. We generate artificial data
from the DGP specified by (22) and (23). Because this DGP uses weak instrument
asymptotics, the sample size does not matter much once it exceeds a threshold size.
In Davidson and MacKinnon (2010), we found that the performance of various test
statistics for β changed very little once n exceeded 400. We therefore set n = 400 in
all our experiments. For each DGP, we generated 500,000 simulated datasets.

The key parameters in our experiments are a, ρ, and l− k. To save space, we report
results only for l − k = 7, which means that the model is moderately overidentified.

– 11 –



Results for substantially smaller or larger values of l − k might look quite different,
but that would primarily be because a needs to increase with l − k in order to keep
the strength of the instruments constant. The basic structure of the results does not
seem to change much with l − k.

Figure 2 shows how the frequencies of the four types of 95% AR confidence set
depend on a and ρ. The figure has four panels, which correspond to four different
values of a. The value of ρ, which varies from 0.00 to 0.99 by increments of 0.01, is
on the horizontal axis. Negative values are not included, because the figures would
simply be symmetric around ρ = 0.

When a = 1, the instruments are extremely weak, and when a = 8 they are minimally
strong. In the former case, the 95% AR confidence set is unbounded about 90% of
the time. For most values of ρ, the unbounded set is usually the entire real line.
However, as ρ becomes larger, the case of two unbounded segments becomes more
common, until it almost completely drives out the real-line case when ρ = 0.99. The
results for a = 2 are similar to those for a = 1, except that the bounded interval
becomes somewhat more common (but it still occurs less than 25% of the time), and
the two unbounded sets become somewhat less common.

The results change dramatically when we move from a = 2 to a = 4. The 95% AR
confidence set is now bounded more than 80% of the time, and the empty set is a
good deal more common than it was before. Finally, when a = 8, there is just a
handful of unbounded confidence sets in 50 million replications, and the bounded
interval occurs between 97.1% and 97.4% of the time. The empty set occurs very
slightly more often as ρ increases.

Figure 3 shows conditional coverage for four types of confidence set for the same
experiments as Figure 2. We do not bother to show coverage for the real line or
the empty set. Instead, we show it for bounded intervals when the Sargan statistic,
computed in the usual way as (20), either exceeds the 0.90 quantile of the χ2(l−k−1)
distribution (“S large”) or falls short of the 0.50 quantile (“S modest”). Several
striking results are apparent from the figure.

• When a is small, the bounded interval may either overcover slightly (when ρ
is small) or undercover severely (when ρ is large and a = 1). When a is not
small, the bounded interval always overcovers, as it must do in order to offset
the undercoverage associated with the empty set.

• The two-segment confidence set undercovers when ρ is small. However, as ρ
increases, its coverage increases, and it eventually overcovers. This type of con-
fidence set does not occur when a = 8.

• The coverage of the bounded interval changes dramatically when we condition
on the Sargan statistic. When the latter rejects at the nominal 0.10 level, the
bounded interval always undercovers, often severely. In contrast, when it fails
to reject at the 0.50 level, the bounded interval always overcovers except for
larger values of ρ when a = 1. This overcoverage is generally quite extreme.
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For example, when a = 8, the 95% bounded AR interval always covers at least
99.8% of the time when the Sargan statistic fails to reject at the 0.50 level.

These results suggest that the length of a bounded AR confidence interval will gen-
erally provide a poor guide to the precision with which the parameter β is estimated.
To investigate this conjecture, we calculated the dispersion of β̂LIML as the difference
between its 0.025 and 0.975 quantiles over the 500,000 replications. In Figure 4, we
compare this with the median and with the 0.01 and 0.99 quantiles of the lengths of
the 95% AR confidence sets when they are bounded intervals. Ideally, the median
length of the bounded AR intervals should be very similar to the dispersion of the
estimates, and the upper-tail and lower-tail quantiles of interval length should not
be too much higher or lower than the median.

The three left-hand panels of Figure 4 show results for 95% AR confidence sets when
they are bounded intervals, and the three right-hand panels show results for con-
ventional Wald intervals based on β̂LIML. It is appropriate to compare AR intervals
with ones based on β̂LIML, because the AR statistic is minimized at β̂LIML. Results
are presented for a = 4, a = 8, and a = 16. We do not present results for smaller
values of a because most of the AR confidence sets were unbounded (see Figure 2)
and because it is unreasonable to expect any method to produce reliable results in
these cases. Note that the vertical axis is logarithmic.

It is evident that the median length of the bounded 95% AR interval is generally a
poor guide to the dispersion of β̂LIML. The former always overestimates the latter,
and the problem does not go away as a becomes larger. Moreover, the length of the
bounded AR intervals evidently varies greatly. When a = 4, the upper-tail quantile
of the distribution of their lengths can be more than 80 times the dispersion of β̂LIML,
while the lower-tail quantile can be no more than 1/4 of the dispersion. Of course, as
the theory of Section 4 makes clear, there are a few bounded intervals that are just
barely longer than zero, but these are evidently well to the left of the 0.01 quantile.
For large a, this occurs whenever q(l− k)−S in equation (30) is just barely positive.

Whereas the median length of the AR intervals always overstates the dispersion of
β̂LIML, that of the Wald LIML intervals always understates it (although just by a
whisker when a = 16). The lengths of the Wald intervals vary much less than those
of the AR intervals.

The conventional Wald intervals improve more rapidly as a increases than do the AR
intervals. When a = 8, and even more so when a = 16, the former have much better
properties than the latter. The median length of the Wald intervals is just slightly
smaller than the dispersion of the LIML estimates, while the median length of the
AR intervals is much greater. Moreover, the distribution of the lengths of the Wald
intervals is much tighter than that of the AR intervals. For a = 16, even the 0.99
quantile of the former is always smaller than the median length of the latter.

These results suggest that one would never want to use an AR confidence set when
the instruments are reasonably strong. Even when they exist, AR intervals are much
less informative than Wald ones. They do not have correct coverage conditional on

– 13 –



being bounded and non-empty. Moreover, they do not provide reliable information
about the dispersion of β̂LIML; they can be much too long or much too short.

The results in Figure 4 complement those of Mikusheva (2010), who compares the AR
confidence set with ones obtained by inverting the conditional likelihood ratio (CLR)
test of Moreira (2003) and the LM test of Kleibergen (2002) and Moreira (2001),
but not with conventional Wald tests. She finds that the AR interval tends to be
somewhat longer, in expectation, than the CLR interval but considerably shorter
than the LM interval based on the test of Kleibergen (2002).

6. Which Confidence Sets Should We Use?

The goal of this paper is simply to study the properties of AR confidence sets, not
to settle the more difficult problem of which confidence set(s) to use when making
inferences about β in equation (14) when the instruments are not strong. Davidson
and MacKinnon (2013), a companion paper, tackles the latter problem.

The results of Mikusheva (2010) suggest that inverting the CLR test can work very
well (and that inverting the LM test generally works poorly) and discusses how to
invert the CLR test without using simulation. Davidson and MacKinnon (2013)
proposes an explicit algorithm for inverting asymptotic CLR tests and finds that, in
large samples, CLR confidence sets perform extremely well (unconditionally), even
when the instruments are very weak.

Dufour’s (1997) result that any confidence set with correct coverage must be un-
bounded with positive probability in the neighborhood of a point at which the para-
meter of interest is not identified has consequences for any such possibly unbounded
confidence set. The coverage probabilities conditional on the set being bounded, or
on being unbounded, are not in general equal to the unconditional coverage prob-
ability. This fact is not an argument in favor of trying to use conditional coverage
probabilities; rather, it underscores the undesirability of making inferences on nearly
unidentified parameters.

Table 1 compares the behavior of AR confidence sets and ones obtained by inverting
the CLR test for our reference case with n = 400 and l − k = 7, and for various
values of a and ρ. It shows the percentages of the time when 95% confidence sets are
empty, the whole real line, the real line with a hole, or bounded. It also shows the
coverage probabilities conditional on the confidence set being neither empty nor the
whole real line.

Only the AR confidence sets can be empty, but both can be unbounded with weak
instruments. Both types of set exhibit coverage conditional on being bounded that
is very different from the unconditional coverage when there is a non-negligible prob-
ability of an unbounded set. Like the AR sets, the CLR sets have very satisfactory
unconditional coverage, but their conditional coverage is often quite unsatisfactory.
The CLR sets always have a higher probability of being bounded than do the AR
sets, and of course they cannot be empty. When a = 8, the CLR sets are all bounded,
at least in our simulations, so that conditional and unconditional coverage are the
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same, and very close to the nominal level. But there are still empty AR sets, and so
coverage for bounded sets exceeds the nominal level.

In our view, there exist no circumstances in which one should use an AR confidence
set. The dependence on the value of the Sargan statistic means that, even when
the set is a bounded interval, its length provides very unreliable information about
the precision with which the parameter of interest has been estimated. Moreover,
as the instruments become stronger, the AR interval continues to perform poorly;
see Figure 4. Thus the real defect of AR confidence sets is that, even when the
instruments are strong, so that unbounded sets do not occur, the length of the sets
can lead one to believe that the parameter of interest has been estimated either more
or less precisely than is in fact the case.

CLR confidence sets certainly have merit and may well be worth using in practice, at
least when the sample size is not too small. However, in addition to sometimes having
seriously unsatisfactory conditional coverage, they have two practical disadvantages.
First, they cannot readily be extended to handle two or more right-hand-side endo-
genous variables; see Mikusheva (2010). Second, because they are based on the LR
statistic, they cannot easily deal with heteroskedasticity of unknown form.

Normally, higher power of an underlying test is reflected in shorter confidence inter-
vals. Since the length of a bounded AR confidence set depends on the value of the
Sargan statistic, test power must also depend on it. Without conditioning on the
Sargan statistic, the relationship between the power of the AR test and that of other
tests is complicated; see Davidson and MacKinnon (2008). It is shown there that
the CLR test is, except for a few configurations of a and ρ, at least as powerful as
the AR test. That is not the case for the LM test of Kleibergen (2002) and Moreira
(2001), which is often much less powerful.

In contrast to CLR confidence sets, confidence intervals based on Wald tests can
readily handle any number of endogenous variables and can easily be modified to
allow for heteroskedasticity of unknown form. In our view, this type of interval has
far more merit than it is generally given credit for. In Davidson and MacKinnon
(2008), we proposed a procedure for bootstrapping t tests on β called the restricted
efficient, or RE, bootstrap. In Davidson and MacKinnon (2010), we proposed a wild
bootstrap variant of this procedure called the wild restricted efficient, or WRE, boot-
strap that allows for heteroskedasticity of unknown form. Both procedures seem to
work extraordinarily well, very much better than the pairs bootstrap or semipara-
metric bootstraps that do not impose restrictions, except when the instruments are
extremely weak.

It is conceptually straightforward to invert t tests based on either β̂LIML or β̂IV that
have been bootstrapped using either the RE or WRE bootstraps. The idea is simply
to locate the ends of the interval at the points where the bootstrap P value is equal
to α. This procedure can be computationally intensive, however. The problem is
that, since the bootstrap DGP must impose a restriction on β, it is necessary to
generate a different set of bootstrap samples for every candidate value of the upper
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and lower limits of the confidence interval. If the interval has a hole, which is possible,
it is also necessary to generate a set of bootstrap samples for every candidate value
of the limits of the hole. Thus forming one confidence set can involve generating a
great many bootstrap samples.

In Davidson and MacKinnon (2013), we present some simulation results for confidence
intervals based on t statistics and the RE bootstrap, and we find that that they
generally work quite well, especially the ones based on β̂LIML. In large samples, they
perform almost as well as asymptotic CLR intervals, provided the instruments are
not very weak, and in small samples they perform much better.

7. Conclusion

It seems natural to make inferences about a parameter or parameters by inverting
an exact test, such as the Anderson-Rubin test, because the resulting confidence
set necessarily has correct coverage unconditionally. However, we argue that this
is a very bad idea whenever the test has more degrees of freedom than there are
parameters of interest. By considering two special cases, namely, inverting an F test
and inverting an AR test for a scalar parameter, we show that the resulting confidence
set provides very little useful information about the parameter of interest. It may
be empty, extremely short, or excessively long. In the case of the AR confidence set,
it may also be unbounded, although that is a problem shared by all confidence sets
with good unconditional coverage when the instruments are weak.

The basic problem was explained in Section 2 in the context of inverting an F test
to obtain a confidence set for a single parameter in a linear regression model. The
problem arises because the confidence set depends not only on what the data tell us
about that parameter but also on what they tell us about a number of additional
restrictions. When those restrictions are moderately incompatible with the data, the
confidence set will be a misleadingly short interval. When they are very incompatible
with the data, it will not exist at all.

As we saw in Section 4, exactly the same problem arises in the context of the AR
test. The additional restrictions are now the overidentifying restrictions that may be
tested using a Sargan test. In this case, because the Sargan test is not exact, our
results are necessarily asymptotic. When the Sargan statistic is moderately large,
the AR confidence set is a misleadingly short interval. When it is very large, the
AR confidence set does not exist. The simulation results in Section 5 provide strong
support for our theoretical results and show that AR confidence sets can be very
misleading even when the instruments are strong.

We emphasize that, although our analysis has treated only two special cases in detail,
the conclusion about the misleading nature of confidence sets based on inverting tests
with extra degrees of freedom over and beyond those needed for inference on the
number of parameters of interest is quite general. In particular, when dealing with
confidence sets for more than one parameter, the problem persists, although it may
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well manifest itself in different ways, such as by giving rise to a confidence set with
holes, like a torus.
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Table 1

R ∅ hole bounded coverage hole bounded

a = 1 ρ = 0.10 78.46 0.11 12.64 8.79 0.950 0.643 0.959

82.06 — 8.09 9.85 0.942 0.426 0.880

ρ = 0.50 76.66 0.13 14.37 8.84 0.950 0.726 0.892

80.64 — 9.43 9.93 0.943 0.588 0.814

ρ = 0.95 28.05 1.02 63.13 7.80 0.950 0.977 0.673

33.66 — 53.36 12.98 0.944 0.957 0.746

a = 2 ρ = 0.10 60.98 0.34 14.29 24.39 0.950 0.737 0.962

66.50 — 7.99 25.50 0.943 0.568 0.911

ρ = 0.50 53.27 0.47 21.91 24.35 0.950 0.865 0.937

59.33 — 13.27 27.40 0.943 0.757 0.909

ρ = 0.95 0.04 2.49 75.09 22.38 0.950 0.986 0.935

0.09 — 52.95 46.96 0.946 0.949 0.942

a = 4 ρ = 0.10 10.46 1.59 5.34 82.61 0.950 0.853 0.968

13.98 — 2.75 83.26 0.945 0.771 0.941

ρ = 0.50 3.83 1.98 12.09 82.11 0.950 0.944 0.971

5.68 — 5.57 88.76 0.946 0.840 0.949

ρ = 0.95 0.00 2.84 15.94 81.23 0.950 0.976 0.979

0.00 — 2.89 97.11 0.947 0.465 0.961

a = 8 ρ = 0.10 0.00 2.68 0.00 97.32 0.950 N/A 0.976

0.00 — 0.00 100.00 0.947 N/A 0.947

ρ = 0.50 0.00 2.71 0.00 97.29 0.950 N/A 0.977

0.00 — 0.00 100.00 0.947 N/A 0.947

ρ = 0.95 0.00 2.84 0.00 97.16 0.950 N/A 0.978

0.00 — 0.00 100.00 0.947 N/A 0.947

The middle block of columns gives the percentage for each type of confidence set: R = whole
real line, ∅ = empty set, hole = real line with a hole, bounded = finite bounded interval.
The rightmost block gives the unconditional coverage, followed by coverage conditional on a
set that is the real line with a hole, and finally coverage conditional on a bounded interval.
For each pair of values for a and ρ, results for the AR set are in the first line, and results
for the CLR set are in the second line.
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Figure 1. Five types of Anderson-Rubin confidence set

– 20 –



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................

.........................................................................................................................................................................................................................................................................................
.................................................................

...................................
........................
..................
...............
...............
.............
.............
.............
.............
............
.............
.............
............
............
.............
............
.............
............
............
............
.............
............
............
.............
............
............
.............
....

......................................................................................................................... ρ

a = 1
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................

.........................................................................................................................................................
..........................................................

....................................
..............................

........................
......................
....................
...................
................
................
...............
................
..............
...............
..............
..............
...............
.............
.............
..............
...............
..............
.......................
.......................

................................................................................................... ρ

a = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................

................................................................................................................................................
.................................................................

..........................................................
............................................................................

........................................................................................................................................................
............................................................................. ρ

a = 4
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................
ρ

a = 8

Case 1 (bounded): ........................................................................................................... Case 2 (empty): ...............

Case 3 (two segments): ........................................................................................................... Case 4 (real line): ....................

Figure 2. Frequencies of each type of confidence set as functions of ρ

– 21 –



0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9


.............
.............
............

..........................................................................................................................................
........................................................

.........................................
........................................

...........................
..............................

...........................
.........................
........................
........................
......................
.......................
.........................
......................

.....................................................................................
...
...
...
.

................................................................................................................................................................................................................................................................................................................................
...........
...........
..........
........

ρ

a = 1
0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0 ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....................

........................................................................................
.....................................................

......................................
..................................

................................
..................................

................................
.......................................

...............................................
..................................................................................................

...

......................
..................

.........
........

.....
....
....
..

......................................................................................................................................................................................................................................................................................................................

ρ

a = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0 ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................
....................................................

.....................................................
...................................................................

....................................................................................................................................................................................
..................................................................

................
...........

.......
.......

.......
........

.........
......................................................................................................................................................................................................................................................................................................................

ρ

a = 4
0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0 ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................
................

..............

......................................................................................................................................................................................................................................................................................................................

ρ

a = 8

Case 1 (bounded): ...........................................................................................................

Case 3 (two segments): ...........................................................................................................

Case 1, S large: ...............

Case 1, S modest: ................................................................................

Figure 3. Coverage of each type of confidence set as functions of ρ

– 22 –



0.0 0.2 0.4 0.6 0.8 1.0

0.25
0.50

1
2

5
10

25
50

100

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................

...................
...........

.............
...............

....

............................................................

..............................................................................................................................................................................................................................................................................................................................

................................................

................................................
ρ

AR and Wald LIML intervals, a = 4

0.0 0.2 0.4 0.6 0.8 1.0

0.25
0.50

1
2

5
10

25
50

100

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................

................................................

................................................
ρ

Wald IV intervals, a = 4

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

1

2

3

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................

.........................
...............

...............
.....

.............................................................

..............................................................................................................................................................................................................................................................................................................................

...........................
....................

.

................................................

ρ

AR and Wald LIML intervals, a = 8

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

1

2

3



.......................................
.........

................................................

ρ

Wald IV intervals, a = 8

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.20

0.40

0.60

0.90

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................

............................................................

.............................................................

..............................................................................................................................................................................................................................................................................................................................

................................................

................................................

ρ

AR and Wald LIML intervals, a = 16

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.20

0.40

0.60

0.90



................................................

................................................

ρ

Wald IV intervals, a = 16

Dispersion of LIML or IV estimates: ...........................................................................................................

Median lengths of AR confidence intervals: .................................................................................

Median lengths of Wald confidence intervals: .................................................................................

0.99 and 0.01 quantiles of AR interval lengths: ...............

0.99 and 0.01 quantiles of Wald interval lengths: ............

Figure 4. Dispersion of estimates and lengths of confidence intervals

– 23 –


