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1. Introduction

Numerous procedures for testing nonnested regression models have been developed,
directly or indirectly, from the pathbreaking work of Cox (1961, 1962). The most
widely used, because of its simplicity, is the J test proposed in Davidson and MacKin-
non (1981); see McAleer (1995) for evidence on this point. Like almost all nonnested
hypothesis tests, the J test is not exact in finite samples. Indeed, as many Monte
Carlo experiments have shown, its finite-sample distribution can be very far from the
N(0, 1) distribution that it follows asymptotically.

Several ways have been proposed to improve the finite-sample properties of the J test.
Fisher and McAleer (1981) proposed a variant, called the JA test, which is exact in
finite samples under the usual conditions for t tests in linear regression models to
be exact; see Godfrey (1983). Unfortunately, the JA test is often very much less
powerful than other nonnested tests; see, among others, Davidson and MacKinnon
(1982) and Godfrey and Pesaran (1983). The latter paper suggested a different
approach, applied not to the J test but to variants of the Cox test based on the
work of Pesaran (1974). This approach first corrects the bias in the numerator of
the test statistic, then estimates the variance of the corrected numerator, and finally
calculates a t-like statistic. It does not yield exact tests, but it does yield tests that
perform considerably better than the J test under the null and have good power.

More recently, Fan and Li (1995) and Godfrey (1998) have suggested bootstrapping
the J test and other nonnested hypothesis tests. Because the J test is cheap and
easy to compute, this is very easy to do. The Monte Carlo results in these papers
suggest that bootstrapping the J test often works very well. However, neither paper
provides any theoretical explanation of why it does so.

In this paper, we develop a theoretical approach that enables us to show precisely
what determines the finite-sample distribution of the J test. We explain why it
often works very badly without bootstrapping and why it almost always works very
well indeed when bootstrapped. The theory allows us to identify situations in which
the tests can be expected to achieve their worst behavior, and our Monte Carlo
experiments focus on these. Since the tests perform very well even in such situations,
the experiments need to be very accurate. Fortunately, our theory provides a low-cost
way to perform experiments that use extremely large numbers of replications.

The assumptions needed for our theoretical analysis are fairly restrictive: The errors
are assumed to be normally distributed, and the regressors are assumed to be exo-
genous. However, additional Monte Carlo experiments strongly suggest that these
assumptions are not crucial. Even when both of them are violated, the bootstrap
J test performs in almost exactly the same way as it does when they are satisfied.

In the next section, we briefly describe the J test. In Section 3, we derive a theoretical
expression for the test statistic and use it to obtain a number of interesting results.
In Section 4, we use a combination of theory and simulation to study the finite-
sample properties of the asymptotic J test. In Section 5, we study the finite-sample
properties of the bootstrap J test. In Section 6, we relax the restrictive assumptions
made up to this point and show that the bootstrap J test works extraordinarily well

– 1 –



in almost every case in which a nonnested test is worth doing. Finally, in Section 7,
we briefly discuss the effect of bootstrapping on the power of the J test.

2. The J Test

Although the J test can be applied to both linear and nonlinear regression models,
we restrict our attention to the linear case, since it would be extremely difficult to
obtain general results about the finite-sample properties of the J test in the nonlinear
case. Consider two nonnested, linear regression models with IID normal errors:

H1 : y = Xβ + u, u ∼ N(0, σ2 I), and

H2 : y = Zγ + v, v ∼ N(0, σ2 I),
(1)

where y, u, and v are n× 1, X and Z are n× k and n× l, respectively, β is k × 1,
and γ is l × 1. The J statistic is the ordinary t statistic for α = 0 in the regression

y = Xb + αPZy + residuals, (2)

where PZ ≡ Z(Z>Z)−1Z>, so that PZy is the vector of fitted values from OLS
estimation of H2. Asymptotically, the J statistic is distributed as N(0, 1) under H1.
In practice, the t(n − k − 1) distribution is often used for finite-sample inference
although, except in one special case, there is no formal justification for doing so.
The J statistic for testing H1 can be written as

J =
(n− k − 1)1/2y>PZMXy

[
(y>MXy)(y>PZMXPZy)− (y>PZMXy)2

]1/2
. (3)

where PX ≡ X(X>X)−1X> and MX ≡ I − PX . Like any t statistic, J is
(n− k − 1)1/2 times the cotangent of the angle between two vectors in n--dimen-
sional Euclidean space. The vectors are MXy, the vector of OLS residuals from
estimating H1, and MXPZy. As can be seen from (3), J can be expressed in terms
of the three scalar products defined by these two vectors: y>MXy, which is the sum
of squared residuals from H1, y>PZMXy, and y>PZMXPZy. Since J depends on
the regressor matrices only through the projections PX and PZ , it is invariant to
changes in X and Z that do not change the linear spaces spanned by the columns
of these matrices, which we will denote by S(X) and S(Z), respectively.

3. The Distribution of the J Statistic

Although no closed-form expression can be found for the distribution of the J stat-
istic (3) under the hypothesis H1, the statistic can be expressed as a function of a
small number of standard normal variables and a chi-squared variable, all mutually
independent. The function also depends on the true values of the parameters, β
and σ2, and on certain features of the regressors of the two nonnested models, which
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are assumed to be exogenous and are thus treated as nonrandom in our analysis.
Some parts of the analysis, which necessarily involves some notational complexity,
are relegated to the Appendix.
We begin by studying some geometrical features of the space S(X,Z) spanned by
the regressors X and Z. We denote this space by S0. The spaces S(X) and S(Z)
spanned by the columns of X and Z, respectively, will, in general, have an intersec-
tion of dimension greater than 0. Denote this intersection by S1. Denote by S2 the
intersection of S(X) with the orthogonal complement S⊥(Z) of S(Z), and by S3 the
orthogonal complement of the direct sum S1 ⊕ S2 in S(X). Thus the spaces S1, S2,
and S3 are mutually orthogonal, and

S(X) = S1 ⊕ S2 ⊕ S3.

Similarly, let S4 be the intersection of S(Z) with S⊥(X), and let S5 be the orthogonal
complement of S1 ⊕ S4 in S(Z). Thus S1, S4, and S5 are mutually orthogonal, and

S(Z) = S1 ⊕ S4 ⊕ S5.

Further, since S4 ⊆ S⊥(X), S4 is orthogonal to S2 and S3 as well as to S1. Similarly,
S5 is orthogonal to S2, but not to S3, since all vectors in S(Z) that are orthogonal
to all of S(X) are in S4, and hence not in S5.
If we denote by Pi the orthogonal projections on to the Si, i = 0, 1, . . . , 5, and
by Mi ≡ I− Pi the corresponding complementary projections on to the orthogonal
complements of the Si, we have

PX = P1 + P2 + P3 and PZ = P1 + P4 + P5. (4)

In order to express P0 as a sum of projections on to mutually orthogonal spaces, we
define S6 = MXS5, that is, the image of S5 under MX . In fact,

S6 = (I− P1 − P2 − P3)S5 = S5 − P3S5 = M3S5,

since S5 is already orthogonal to S1 and S2. It follows that S6 is orthogonal to
everything that is orthogonal to S3 and S5, and by construction also to S3. Thus S1,
S2, S3, S4, and S6 are all mutually orthogonal, and

P0 = P1 + P2 + P3 + P4 + P6. (5)

If we denote the dimensions of the spaces Si by si, (5) implies that s0 = s1 + s2 +
s3 + s4 + s6. From (4), it follows that k = s1 + s2 + s3 and l = s1 + s4 + s5. Since
dim(S0) = k + l − s1, it can be seen that s5 = s6. In fact, it is also true that
s3 = s5 = s6. This can be seen by considering PZ as a linear mapping from S(X)
to S(Z). The null space of this mapping consists of all vectors in S(X) that are
orthogonal to S(Z), which by construction is the space S2. Thus the dimension of
the image of S(X) under PZ is k− s2 = s1 + s3. The orthogonal complement of this

– 3 –



image in S(Z) is the set of vectors in z ∈ S(Z) which are orthogonal to all vectors
of the form PZx, for any x ∈ S(X). For such a z, we have

z>PZx = z>x = 0 for all x ∈ S(X).

This is just the defining condition for a vector z to be in S4. Thus the dimension of
the orthogonal complement in S(Z) of the image of S(X) under PZ is s4, and so the
dimension of the image itself is l − s4 = s1 + s5. We saw above that this dimension
is also equal to s1 + s3, and so s3 = s5, as we wished to show. Thus we see that S5

is the image of S(X) under PZ .
We can now state our principal theoretical result.

Theorem 1
Suppose that the n--vector y is generated by the data-generating process
H1, defined in (1), for specific values of β and σ2. Then the J statistic (3)
can be written as

(n− k − 1)1/2
(
θ>v6 + v6

>v5 + ‖v4‖2
)

[(
V 2 + ‖v4‖2 + ‖v6‖2

)(‖θ‖2 + 2θ>v5 + ‖v4‖2 + ‖v5‖2
)

− (
θ>v6 + v6

>v5 + ‖v4‖2
)2

]1/2
. (6)

In (6), the random s4--vector v4 is distributed as N(0, I), the s5--vectors v6 and v3

are distributed as N(0, I), and the random scalar V 2 is distributed as χ2(n−s0). All
these variables are mutually independent. The s5--vector v5 is defined in terms of v3

and v6 by the formula
v5 = ∆(Dv3 + ∆v6), (7)

where D is an s5 × s5 diagonal matrix, the elements of which are the canonical
correlations between the spaces S3 and S5, and ∆ is a positive definite diagonal
matrix defined by ∆2 = I−D2. Further, the s5--vector θ satisfies the relation

‖θ‖2 = β>X>PZMXPZXβ/σ2 = ‖MXPZXβ‖2/σ2. (8)

Proof: See Appendix.

The formula (6) has a great many interesting properties. It expresses J in terms of
deterministic quantities and independent random variables all of which have known
distributions. It is therefore possible to simulate J directly from (6), by drawing
these random variables from their respective distributions. This will turn out to be
extremely useful when we undertake Monte Carlo experiments. Note that v5 is not
independent of v3 and v6; see (7). It is used in (6) in place of v3, which is independent
of v6, only because doing so makes (6) much easier to write.
Since n − k = n − s1 − s2 − s5, the only dimensions, or degrees of freedom, that
influence (6) are s4, s5, and N ≡ n − s1 − s2. To see this, observe that J depends
on n or N only through n − k − 1 = N − s5 − 1 in the numerator of (6), and
through V 2, which has n−s0 = N −s4−2s5 degrees of freedom, in the denominator.
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In particular, the dimensions of the spaces S1 and S2 have no effect other than to
reduce the number of degrees of freedom. For the remainder of the paper, therefore,
we use N rather than n to measure the sample size. The actual design of the matrices
X and Z influences (6) only through the canonical correlation coefficients di, which
are determined by the s5--dimensional spaces S3 and S5 alone.
The other thing that influences (6) is the parameter vector θ. In fact, J depends
on θ only through ‖θ‖2, θ>v6, and θ>v5. Since all components of v5 and v6 have
distributions that are symmetric about the origin, it follows that the distribution
of J is invariant to changes in the sign of any component of θ. From (8), it is clear
that, unless for some reason θ = 0, ‖θ‖2 = O(n) = O(N) as N →∞. Equivalently,
θ = O(N1/2). The length of the vector θ will turn out to be crucial to the finite-
sample properties of the J test. Evidently, ‖θ‖ will tend to be smaller the smaller
is N, the larger is σ2 relative to β, and the closer is PZX to lying in S(X).
In order to determine the asymptotic distribution of J , for θ 6= 0, we divide numerator
and denominator in (6) by N and then let N →∞. Since plimN→∞ V 2/N = 1 and
N−1/2θ = O(1), it follows that the limit of (6) is

plim
N→∞

J =
θ>v6

‖θ‖ . (9)

It is clear that this has the standard normal distribution independently of θ.
By use of (6), J can be expressed as a cotangent between two vectors in a Euclidean
space of dimension lower than n. It is easy to see that (6) is (N − s5 − 1)1/2 times
the cotangent between two vectors in a space of dimension s5 + s4 + 1. These two
vectors can be expressed as




θ + v5

v4

0


 and




v6

v4

V


. (10)

This fact will be seen later to provide an intuitive explanation of some properties of
the J test.
When we discuss bootstrapping the J test in Section 5, it will be necessary to have
an expression for the estimate θ̂ of the parameter vector θ given by OLS estimation
of model H1. It is shown in the Appendix that the appropriate expression is

θ̂ =
(

V 2 + ‖v4‖2 + ‖v6‖2
N − s5

)−1/2(
θ + ∆Dv3

)
. (11)

The two factors in this expression are independent. The first is a χ2(N −s5) variable
divided by N − s5 and raised to the power −1/2, and the second is normal with
mean θ and covariance matrix ∆2D2; recall that ∆ and D are diagonal, and they
therefore commute.
It is possible to rederive many known results about the J test by considering special
cases of (6). For example, if all the canonical correlations di tend to zero, we have the
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case of orthogonal models, because S3 becomes orthogonal to S5. The orthogonality
implies that X>Z = 0, and so, from (8), θ = 0. Thus (9) is not defined and the
J statistic does not have its usual asymptotic distribution. In addition, D = 0 and
∆ = I, and it follows from (7) that v5 = v6. With this, (6) gives

J =
(n− k − 1)1/2(‖v6‖2 + ‖v4‖2)[(

V 2 + ‖v6‖2 + ‖v4‖2
)(‖v6‖2 + ‖v4‖2

)− (‖v6‖2 + ‖v4‖2
)2]1/2

=
( ‖v6‖2 + ‖v4‖2

V 2/(n− k − 1)

)1/2

,

the square of which is proportional to the F statistic that tests the null of H1 against
the alternative of a model in which the regressors span the whole of S0. This special
case, along with others related to it, has been studied by Michelis (1999).
If we go to the other extreme, and let all the di tend to unity, then in the limit the
null is nested in the alternative, since we have S3 = S5. In this case, D = I, and
∆ = 0. Once more θ = 0, and this time v5 = 0. The statistic (6) becomes

J =
(n− k − 1)1/2‖v4‖2[(

V 2 + ‖v6‖2 + ‖v4‖2
)‖v4‖2 − ‖v4‖4

]1/2

=
‖v4‖[(

V 2 + ‖v6‖2
)
/(n− k − 1)

]1/2
,

the square of which is proportional to the F statistic against a nested alternative
with extra regressors contained in S4.
Next consider the special case in which s4 = 0, s5 = 1, that is, the case in which
model H2 contains just one regressor that is not in model H1. In this case, v6, v5,
and θ all become scalars that we denote as v6, v5, and θ, v4 vanishes, and (6) becomes

J =
(n− k − 1)1/2(θv6 + v6v5)[

(V 2 + v2
6)(θ2 + 2θv5 + v2

5)− (θv6 + v6v5)2
]1/2

.

The denominator here is the square root of

(V 2 + v2
6)(θ + v5)2 − v2

6(θ + v5)2 = V 2(θ + v5)2,

so that

J =
(n− k − 1)1/2v6(θ + v5)

V (θ + v5)
= (n− k − 1)1/2 v6

V
. (12)

In this case, J does not depend on θ at all. It is in fact just the usual t statistic for
a test of H1 against an alternative with one extra regressor contained in S5. This is
the one case in which the J statistic actually has the Student’s t distribution in finite
samples under the null.
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The J statistic could still be written as expression (6) if it were no longer assumed
that the vector u is normally distributed. However, the quantities that appear in (6)
have their specified distributions only under that assumption. A weaker and more
plausible assumption is that u ∼ IID(0, σ2I). All of the quantities in (6) that vanish
asymptotically depend on the vectors v4, v5, and v6. Since these three vectors are
suitably weighted sums of the components of u (see the Appendix), we can apply a
central limit theorem to each of these vectors and conclude that it is approximately
multivariate normal. Therefore, even though our results apply exactly only under the
assumption of normal errors, there is good reason to expect that they will provide
reasonable approximations under much weaker distributional assumptions.

4. Finite-Sample Performance of the J Test

Although analytic expressions for the distribution of the J statistic in finite samples
are not available, efficient Monte Carlo methods based on the results of the last
section can be used to study the properties of this distribution as functions of the
specific aspects of the models H1 and H2 on which they depend. As Theorem 1
shows, these are just N ≡ n− s1 − s2, s4, s5, the canonical correlations di, and the
parameter vector θ. It will be seen that, especially in the neighborhood of θ = 0, the
statistic has a distribution very different from the N(0, 1) or Student’s t(n − k − 1)
distributions, except for the case s4 = 0, s5 = 1, in which J reduces to (12).
In our Monte Carlo experiments, instead of generating regressors and error terms,
we generate realizations of v3, v4, v6, and V 2 and plug them into (6) to calculate
realizations of the J statistic for specific choices of θ and the di. By using N instead
of n, we can ignore s1 and s2. Since V 2 is the only one of the random variables that
depends on N, and V 2 for N is simply equal to V 2 for N − 1 plus one more indepen-
dent, squared, standard normal variable, we can inexpensively generate realizations
of J for a large number of different sample sizes at the same time. In this way, it
is feasible to conduct experiments with very large numbers of replications that yield
extremely accurate results. This procedure does require us to assume that the error
terms are normally distributed. However, that assumption will be relaxed in the
Monte Carlo experiments of Section 6.
The most interesting feature of the finite-sample performance of the J test is the way
in which it depends on θ. This is illustrated in Figure 1, which is based on 250,000
replications. Figure 1 shows rejection frequencies for a one-tailed test at the nominal
.05 level based on the Student’s t distribution with n − k − 1 = N − s5 − 1 degrees
of freedom for a large number of values of θ and some representative values of N.
Figure 1 pertains to what we will use as the baseline case, with s4 = 4, s5 = 2,
and d1 = d2 = 0.55. The J test can be expected to perform poorly in this case,
because there are 6 regressors in H2 that are not in H1. The reason for the choice of
d1 = d2 = 0.55 will be explained when we discuss bootstrap versions of the J test in
the next section.
In Figure 1, both θ1 and θ2 vary together, which is equivalent to varying σ2 while
holding β fixed. Only positive values of θ1 and θ2 are considered, because the distri-
bution of J is invariant under changes of sign of these components. Since d1 = d2 in
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this figure, it can be seen from (6) that the distribution of J is spherically symmetric
with respect to θ, and so there is no loss of generality in setting θ1 = θ2, since the
distribution depends only on ‖θ‖. For the curve labelled N = ∞, formula (6) was
replaced, not by the asymptotic formula (9), but by the limit of (6) as N →∞ with
fixed θ, namely,

θ>v6 + v6
>v5 + ‖v4‖2(‖θ‖2 + 2θ>v5 + ‖v4‖2 + ‖v5‖2

)1/2
. (13)

A striking feature of Figure 1 is that the curves for different values of N almost
coincide for values of θi greater than about 3. This is not too surprising, since
expression (6) depends on N only through the factor of (n−k−1)1/2 in the numerator
and through V 2 in the denominator. The implicit degrees-of-freedom correction
resulting from the use of the t(n − k − 1) distribution rather than the standard
normal appears to be very effective except in the immediate neighborhood of θ = 0.

It may appear from Figure 1 that the J test is not valid asymptotically, since the
rejection frequencies appear to be converging, as N → ∞, to a curve that is not a
horizontal line at .05. This is an illusion caused by the fact that the elements of θ
are defined to be O(N1/2); see (8). If we hold θ constant as N increases, then we are
implicitly making β smaller or making σ2 larger. For ‖θ‖ 6= 0, increasing N without
changing β or σ2 will cause θ to increase, and the rejection frequency will eventually
converge to .05. However, if ‖θ‖ = 0, this does not happen, and in the baseline case
of the figure, the test will reject nearly 80% of the time.

This is illustrated in Figure 2, which plots exactly the same experimental results as
Figure 1, but with N−1/2 times θ1 and θ2 on the horizontal axis. Thus, in this figure,
β and σ2 are held constant as N increases. We observe that the rejection frequency
converges to .05 for all N−1‖θ‖ 6= 0, and to a very much larger value, 0.787, for
N−1‖θ‖ = 0. Rejection frequencies for N = ∞ are not plotted; they simply form
an L shape with the top of the L at the point (0, 0.787) and the base extending
rightwards from the point (0, 0.05).

The extent to which the J test overrejects depends on the nominal level of the test.
Figure 3 shows P value discrepancy plots, in the sense of Davidson and MacKinnon
(1998), for the same baseline case as Figures 1 and 2, for N = 10 and N = ∞, for
three different values of θ1 and θ2. These are based on 500,000 replications. The
nominal level α is plotted on the horizontal axis, and the P value discrepancy, that is,
the difference between the true rejection probability and the nominal level, is plotted
on the vertical axis. As in Figure 1, the choice of N has only a modest effect on the
results, especially when ‖θ‖ is large. Since all the plots lie above the horizontal axis,
the test universally overrejects. The nominal level for which the overrejection is most
severe seems to increase with ‖θ‖.
Figure 4 demonstrates that the dependence of the rejection frequencies on the canon-
ical correlations di, i = 1, . . . , s5, is fairly moderate. The figure is based on 250,000
replications with N = 10. For the solid curves, d1 = d2 and both the di vary together.
For the dotted curves, d1 = 0.55 and only d2 varies. The dependence on the di is
strongest for small values of ‖θ‖ and becomes very small as ‖θ‖ becomes large.
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The next two figures demonstrate how the finite-sample performance of the J test
depends on s4 and s5. Figure 5, which is comparable to Figure 1, shows rejection
frequencies as a function of θ1 = θ2 for six different values of s4, with s5 = 2. These
results are based on 250,000 replications with N = 20, but other values of N would
have given very similar results. We see that the finite-sample performance of the J
test deteriorates as s4 increases, dramatically so for small values of ‖θ‖. Figure 6
is similar to Figure 5, except that s4 = 4 and s5 takes on three different values, 1,
3, and 5. It is clear that the rejection frequencies do depend on s5, but that this
dependence is much weaker than the dependence on s4. The shape of the curve is
somewhat different for s5 = 1 compared with all other values of s5. Results for s5 = 2
and s5 = 4, which are not shown to avoid cluttering the figure, were similar to those
for s5 = 3 and s5 = 5.

The reason for which s4 has such a strong effect compared with that of s5, and the
nature of that effect, can be seen by considering the two vectors in (10). Recall
that J is, except for a degrees-of-freedom factor, the cotangent of the angle between
these two vectors. As s4, which is the dimension of v4, increases, these vectors
acquire new components which are the same for each. In most circumstances, this
will cause the angle between the two vectors to become smaller, thus making J ,
and the rejection probability for a given nominal level, larger. This is what we see in
Figure 5. In contrast, as s5, the dimension of θ, v5, and v6, increases, the two vectors
gain new but different components. For small values of θ, the new components will
be positively correlated, since v5 is positively correlated with v6. Thus we expect
that increasing s5 will increase the rejection probability, as it does in Figure 6. For
large θ, the positive correlation will be less, and increasing s5 may either increase or
decrease the rejection probability. Both effects are observed in Figure 6.

If β and σ2 are held fixed as the sample size is increased, the performance of the
J test must improve, except when ‖θ‖ = 0, because ‖θ‖ is O(N1/2) except in that
special case. Figure 7 shows rejection frequencies for a test at the .05 nominal level
in the base case as a function of N for several fixed values of N−1/2θ1 = N−1/2θ2.

It is quite clear from Figure 7 that the J test does not have the N(0, 1) distribution
asymptotically when ‖θ‖ = 0. From (13), it is easy to see that, as N → ∞, the
limiting distribution when ‖θ‖ = 0 is the distribution of

v6
>v5 + ‖v4‖2(‖v4‖2 + ‖v5‖2

)1/2
. (14)

Figure 8 shows how greatly this distribution differs from the N(0, 1) distribution in
several specific cases with all the di equal to 0.55. Since the asymptotic distribution
is N(0, 1) for all ‖θ‖ 6= 0, there is a singularity in the asymptotic rejection proba-
bility function. As we will see in the next section, this causes the bootstrap to fail
asymptotically in this special case.

– 9 –



5. Bootstrapping the J Test

One way to perform a bootstrap test is to calculate a bootstrap P value and reject
the null hypothesis whenever it is less than the level of the test. This is equivalent to
rejecting the null whenever the test statistic exceeds a bootstrap critical value. The
latter approach is discussed by Horowitz (1994).
Because the error terms are assumed to be normally distributed, we will in this
section use a parametric bootstrap. A semiparametric bootstrap procedure will be
discussed in the next section. The first step in computing either type of bootstrap
P value is to estimate both H1 and H2 by OLS and calculate the J statistic, which
we denote by Ĵ. Estimation of H1 also yields unbiased parameter estimates β̂ and s2.
These estimates provide a bootstrap DGP, or data-generating process, which in the
parametric case can be written as

y∗ = Xβ̂ + u∗, u∗ ∼ N(0, s2I), (15)

where a star is used to denote random quantities generated by the bootstrap DGP.
Then B bootstrap samples are drawn from the DGP (15); ideally, B should be a
reasonably large number and should be chosen so that α(B + 1) is an integer for all
levels α of interest. For each bootstrap sample, a bootstrap test statistic is computed
in exactly the same way as Ĵ was computed from the original data. We denote the
bootstrap statistics by J∗j , j = 1, . . . , B. Finally, the bootstrap P value is computed
by the formula

p̂∗(Ĵ) =
1
B

B∑

j=1

I(J∗j ≥ Ĵ), (16)

where I(·) is an indicator function, equal to 1 if its argument is true and equal to 0
otherwise. This assumes that the test is a one-tailed test, as is usually the case with
nonnested tests.
Unless a test statistic is pivotal, which means that its distribution does not depend
on unknown parameters, a bootstrap test based upon it will not be exact. Beran
(1988) is the classic reference; see also Hall (1992). The problem is that the true
P value depends on the unknown true distribution of Ĵ , while the bootstrap P value
(16) is based on the distribution of the bootstrap statistics J∗j , which depends on
the bootstrap DGP (15). These two distributions will differ whenever a test statistic
is not pivotal and the parameter estimates used in the bootstrap DGP differ from
the true values of the parameters. However, provided the test statistic is asymptoti-
cally pivotal, the bootstrap distribution will converge to the true one as the sample
size increases. In consequence, as Beran (1988) showed, the bootstrap P value will
converge to the true P value at a rate faster than does the asymptotic P value.
Except when θ = 0, the J statistic is asymptotically pivotal. Nevertheless, as is clear
from Figures 1 through 7, it is far from being pivotal for small and moderate values
of ‖θ‖. This suggests that the bootstrap J test might be expected to perform poorly.
However, a more detailed analysis leads us to conclude that the bootstrap J test will
actually perform remarkably well except when ‖θ‖ is very close to 0. The key to this
analysis is a result that was proved in Davidson and MacKinnon (1999).
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For a given sample size, the rejection probability function, or RPF, R(α, θ) of the
J test is defined as the true rejection probability, under the DGP characterized by θ,
for the asymptotic test based on J at nominal level α. This is the function graphed
in Figures 1, 2, 5, and 6. Similarly, the critical value function, or CVF, Q(α, θ) is
defined to be the nominal level of the asymptotic test that yields a true rejection
probability of α. By construction, R(Q(α, θ), θ) = α.

By assumption, the data used to compute the statistic Ĵ and estimate the parameters
of the bootstrap DGP were generated by a DGP characterized by the true parameter
vector θ0, which depends on β0 and σ2

0 only through the ratio β0/σ0; recall that the
regressors X and Z are treated as exogenous and therefore fixed. The parameter
estimates θ̂ which characterize the bootstrap DGP are asymptotically independent
of Ĵ, because they were obtained under the null hypothesis. The difference between
the true and nominal rejection probabilities of a test will be referred to as the error in
rejection probabilities, or ERP. According to the result of Davidson and MacKinnon
(1999), whenever a test statistic is asymptotically independent of the bootstrap DGP,
the ERP of a bootstrap test is approximately given by

α− Eθ0

(
R

(
Q(α, θ0), θ̂

))
, (17)

where Eθ0 means that we are taking expectations under the DGP characterized
by θ0. The test will overreject or underreject depending on whether the sign of (17)
is positive or negative. By studying this expression, we can learn a great deal about
the performance of the bootstrap J test. Notice that (17) will equal 0 if the test
statistic is pivotal, because, in that special case, the rejection probability for the
critical value Q(α, θ0) will be the same for all θ̂.

By performing a second-order Taylor expansion of (17), it is easy to obtain an ap-
proximate expression for the ERP of the bootstrap J test:

−
s5∑

i=1

∂R

∂θi

(
Q(α, θ0), θ

)
E(θ̂i − θ0

i )

− 1−
2

s5∑

i=1

s5∑

j=1

∂2R

∂θi∂θj

(
Q(α, θ0),θ

)
E

(
(θ̂i − θ0

i )(θ̂j − θ0
j )

)
,

(18)

where θ0
i is the ith element of θ0, and the derivatives are evaluated at θ = θ0. If

it is supposed that θ = O(N1/2), it can be shown that the two terms in (18) are of
order N−3/2 and that higher-order terms in the Taylor series are of lower order.

The expectations that appear in expression (18) can be evaluated analytically. It can
be shown (see the Appendix) that the expectations of a χ2(m) variable raised to the
powers −1/2 and −1 are

Γ
(
(m− 1)/2

)

21/2 Γ(m/2)
and

1
m− 2

, (19)
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respectively. Thus the expectation of expression (11) is

E(θ̂) =
(

N − s5

2

)1/2 Γ
(
(N − s5 − 1)/2

)

Γ
(
(N − s5)/2

) θ ≡ bθ, (20)

and its mean squared error matrix is

E
(
(θ̂ − θ)(θ̂ − θ)>

)
=

N − s5

N − s5 − 2
∆2D2 +

2
(
(N − s5)(1− b) + (2b− 1)

)

N − s5 − 2
θθ>. (21)

The result (20) shows that the bias of θ̂ is positive, very small, and proportional to θ
itself. For N − s5 ≥ 14, the relative error in the estimate of each component of θ
is less than 2%, and for N − s5 ≥ 27, it is less than 1%. This implies that the first
term in (18) will always be extremely small, even when the RPF is quite steep, as it
can be when ‖θ‖ is small but not too close to 0 (see Figures 1, 2, 5, and 6). Thus
how well the bootstrap test performs will largely depend on the second term in (18),
which depends on the second derivatives of the RPF and the second moments of θ̂.
Expression (21) can easily be evaluated for various values of θ, N − s5, and the di.
It turns out to be fairly small, especially when ‖θ‖ is close to 0. In all the cases
we examined, the standard errors of the θi were between 0 and 1. These standard
errors are quite small relative to the scale on which the rejection probabilities vary
with the θi; see Figures 1, 5, and 6. Thus, even though the concavity of the RPF
near ‖θ‖ = 0 implies that the bootstrap test will overreject in that region, and the
convexity of the RPF for larger values of ‖θ‖ implies that the bootstrap test will
underreject in some other regions, the magnitude of these errors should be small.
It can be seen from (21) that, for fixed N and θ, and for d1 = d2 = d, the mean
squared error of θ̂ is maximized at d = 2−1/2. However, it can be seen from Figure 4
that the distortion of the asymptotic test is greatest for small values of d. Monte Carlo
experimentation shows that the distortion of the bootstrap rejection probability is
greatest for d around 0.55. It is for that reason that we set d = 0.55 in the baseline
case, in order to observe the worst case for the bootstrap test.
We have performed a large number of Monte Carlo experiments on the performance
of the bootstrap J test. For replication j, realizations Ĵj and θ̂j are generated using
(6) and (11) with θ = θ0, B bootstrap statistics are generated using (6) with θ = θ̂j ,
and then a bootstrap P value is computed by means of formula (16). Of course, this
procedure is available only in the context of a Monte Carlo experiment and could
never be used in practice. Each experiment used 500,000 replications for each of 41
different values of N, with B = 399. In applied work, it would be wise to use a larger
value of B, but experience shows that Monte Carlo experiments with B = 399 yield
reliable results, because simulation errors in the bootstrap P values tend to offset
each other over many replications.
In our experiments, a total of 200 million J statistics were computed for each of 41
sample sizes. This was feasible because (6) makes it possible to compute J statistics
for many sample sizes at once. In fact, each experiment for the baseline case took only
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about three and a quarter hours on a 450 MHz. Pentium II computer running Debian
GNU/Linux. The extremely large number of replications ensures that experimental
error is very small. It is essential that it be small, because, as we are about to
see, the bootstrap tests perform extraordinarily well. There is one disadvantage of
this procedure, however: The results for the various values of N within a single set
of experiments are positively correlated, probably quite highly correlated for values
of N that are close to each other.
In Figure 9, rejection probabilities for the bootstrap J test as a function of N are
shown for the baseline case (s4 = 4, s5 = 2, d1 = d2 = 0.55, and α = 0.05) for various
values of θ. As in Figure 7, the parameters are being held constant. Therefore,
N−1/2θ rather than θ is held fixed as N is varied. Except when θi = 0 for all i, the
bootstrap test performs extremely well. For the two largest values of θi, which are
not all that large, the test performs almost perfectly for all sample sizes. Figure 10
also shows rejection probabilities for the bootstrap J test in the baseline case, but
this time N−1/2θi is on the horizontal axis. This figure shows clearly that the test
overrejects for very small values of N−1/2‖θ‖ and underrejects for somewhat larger
values.
When θi = 0 for all i, the test modestly overrejects for all sample sizes, and there is
no real indication that this overrejection will go away as N becomes large. Thus, as
theory predicts, the bootstrap fails in this case. The extent of this bootstrap failure
in the asymptotic limit when N →∞ can very easily be estimated by Monte Carlo.
Expression (14) gives the asymptotic distribution of the J statistic, and the limit
of (11) for N → ∞ and θ = 0 is θ̂ = ∆Dv3. On the basis of 250,000 replications,
with B = 399, the limit as N →∞ of the rejection probability of the bootstrap test
at nominal level 0.05 is 0.0565. This value is entirely compatible with what we see
from Figures 9 and 10. Thus, although the theoretical prediction of bootstrap failure
is borne out, the actual extent of it is very small by conventional standards.
Figure 11 shows results of another set of experiments, this time for a more extreme
case, in which s4 = 5 and s5 = 4. Note that N ranges from 15 to 55, rather than
from 10 to 50 as it did in Figure 9, because the smallest value of N for which it is
possible to calculate the test statistic is 14. When θi = 0 for all i, and very small
values of the θi, the test performs noticeably worse than in the baseline case, but for
larger values it once again performs almost perfectly.
The experiments summarized in Figures 9, 10, and 11 are only 12 out of more than
100 similar ones that we have performed. Except when ‖θ‖ was small, the bootstrap
J test always worked essentially perfectly.

6. Simulation Results for Semiparametric Bootstrap Tests

All of the simulation results presented so far are for models with exogenous regres-
sors and normally distributed error terms. In this section, we relax both of these
assumptions. We consider a pair of models of the form

H1 : yt = Xtβ + δ1yt−1 + ut (22)

H2 : yt = Ztγ + δ2yt−1 + vt, (23)
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where the error terms are IID but not normally distributed. The first elements of Xt

and Zt are unity, and their dimensions are k − 1 and l − 1, respectively.

The J statistic is calculated in the usual way, but it is no longer appropriate to use
a parametric bootstrap. Instead, we use a semiparametric bootstrap, in which the
bootstrap errors are obtained by resampling the rescaled residuals. This means that,
in each bootstrap sample, every bootstrap error term u∗t is equal to each of the n
rescaled residuals (n/(n− k))1/2 ût with probability 1/n. Then the y∗t are generated
dynamically using the equation

y∗t = Xtβ̂ + δ̂1y
∗
t−1 + u∗t .

Here β̂ is the vector of OLS estimates of β from (22), δ̂1 is usually the OLS estimate
of δ1, and the actual value y0 is used for y∗0 . In order to ensure stationarity, values
of δ̂1 greater than 0.99 are replaced by 0.99, and values less than −0.99 are replaced
by −0.99. This replacement was very rarely needed.

It is extremely important to use rescaled residuals rather than ordinary residuals. The
ordinary residuals tend to be too small, and using them is therefore like using too
small a value of σ2 in the parametric bootstrap. This would effectively cause θ̂ to be
biased upwards, and our theory predicts that such a bias would cause the bootstrap
test to overreject. That is precisely what we found in a few experiments where we
did not rescale the residuals. For example, in the base case (described below) with
n = 20 and σ = 1, the rejection frequency for the bootstrap test at the .05 level was
0.0613 with ordinary residuals and 0.0515 with rescaled residuals. Since these two
experiments both had 100,000 replications and used the same sequence of random
numbers, the estimated difference of .0098 between the two rejection frequencies is
very accurate.

In all the experiments, the components of Xt, except for the constant term, were
distributed as N(0, 1). Each component of Zt was also normally distributed and
correlated with the corresponding component of Xt, with correlation ρ. When k > l
or l > k, any extra components of Xt or Zt were uncorrelated with everything else.
We experimented with the choice of δ1, σ, ρ, k, and l. We found that the values of δ1

and ρ had relatively little effect on the performance of the bootstrap J test, and we
settled on base-case values of δ1 = 0.8 and ρ = 0.5. The choice of k and l mattered
considerably more, and we settled on k = 5 and l = 7 for the base case. This implies
that the H2 model has 5 regressors that are not in the H1 model, which will cause
both the asymptotic and bootstrap J tests to perform relatively poorly. We used
the Student’s t distribution with 4 degrees of freedom, rescaled to have variance σ2,
to generate the error terms. Using the normal distribution or the Student’s t with a
different number of degrees of freedom had very little effect on the results.

These experiments were far more expensive than the ones described in the previous
section, because we were unable to make use of the formula (6). In order to reduce
computational costs, we used the procedure described in Davidson and MacKinnon
(1999) to estimate the performance of the bootstrap test without actually computing
the latter. For all sample sizes, we used 500,000 replications to compute an estimated
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rejection frequency for the bootstrap test. In addition, for sample sizes divisible by
10, we used 100,000 replications and calculated actual rejection frequencies for the
bootstrap test based on B = 399. Except in a few cases for n = 10, the estimated
bootstrap rejection frequencies never differed from the actual ones by more than
could be explained by experimental error.

Results for the base case with σ = 1, σ = 4, and σ = 16 for n = 10, 11, . . . , 70
are shown in Figure 12. For σ = 1, the bootstrap test appears to work perfectly
for n > 30. For the larger values of σ, it overrejects slightly, but its performance
improves as n increases, just as the theory predicts. Figure 12 bears a considerable
resemblance to Figures 9 and 11. The rejection frequency curves are more jagged
because there is no dependence among the experimental results for different values
of n, but the basic shape is quite similar. The curve for σ = 16 is flatter than the
curves for small values of θi in the earlier figures. This suggests that, in this case,
the presence of the lagged dependent variable may actually be causing the bootstrap
J test to overreject less severely for very small values of n.

Although Figure 12 strongly suggests that our theoretical results remain useful when
the errors are nonnormal and there is a lagged dependent variable, it deals with just
three cases. We performed a substantial number of experiments for other cases and
could present similar figures for them. However, in order to obtain a better sense of
how the performance of the bootstrap J test varies with all the parameters of the
model, it is more enlightening to take a different approach, which we now describe.

We performed 18,000 experiments, each with 10,000 replications and B = 199, in
which the parameters were chosen at random. There were three values of n: 15,
30, and 60, each value being used for 6000 experiments. The X and Z matrices
were chosen as described above for each experiment. The elements of β were uniform
(0.02, 2.00), δ1 was uniform (−0.99, 0.99), σ2 was uniform (0.1, 20), and ρ was uniform
(−0.95, 0.95). The error terms followed the t(c) distribution, where c = 4, 5, 6, 7, 8, 9,
and 10 with equal probability. Similarly, the parameters k and l were equal to 5, 6,
7, 8, and 9 with equal probability.

For each experiment, we recorded the proportion of the time that the asymptotic
and bootstrap J tests rejected the null hypothesis at the .05 level. We also recorded
the parameter values and the value of ‖θ‖, which, because of the lagged dependent
variable, was actually an average over the 10,000 replications. In all 18,000 experi-
ments, the highest rejection frequency for the bootstrap test was 0.0836, compared
with 0.8815 for the asymptotic test. Of course, since these are maxima over a great
many cases, both figures are inflated by experimental error. Thus we did not find a
single case in which the bootstrap J test could really be said to perform poorly.

The theory of Section 4 suggests that the bootstrap test will perform well whenever
‖θ‖ is reasonably large, but the test will probably overreject somewhat when it is
small. Since the relationship between rejection frequencies and ‖θ‖ must be nonlin-
ear, we estimated it using Nadaraya-Watson kernel regression.1 The results of this

1 We used the program N by Jeff Racine, with an Epanechnikov kernel and the default,
fixed, bandwidth.
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estimation, for n = 15, n = 30, and n = 60 separately, are shown in Figure 13. These
results are striking. For small values of ‖θ‖, there is indeed a modest tendency to
overreject, but for values greater than about 3, the rejection frequency is very nearly
0.05, as our theory says it should be when ‖θ‖ is large.

Of course, we do not claim that the nonparametric regression results shown in Fig-
ure 13 tell the whole story. As the theory predicts, rejection frequencies appear to
depend on more than just ‖θ‖, at least when ‖θ‖ is not large. The conditional vari-
ances from the nonparametric regressions are therefore larger for small values of ‖θ‖
than for larger values, presumably because other features of the model, such as k, l,
and the parameter values, matter as well.

We also performed a substantial number of additional experiments, similar to those
just described but with error terms generated from the χ2(c) distribution, recentered
to have mean 0 and rescaled to have variance σ2, where c was chosen randomly in the
same way as before. The object of these experiments was to see whether skewness of
the error terms would affect the results. It did not: The results of these experiments
were very similar to the ones shown in Figure 13.

The results of this and the preceding section suggest that, in the rare event that
the bootstrap J test yields a P value near the level of the test, it may be useful
to compute ‖θ̂‖, the sample analog of ‖θ‖, in which β̂ and s2 replace β and σ2 in
expression (8). If ‖θ̂‖ is large, it is almost certainly safe to accept the bootstrap P
value. However, if it is small and the P value is just a little smaller than the level of
the test, it may not be safe to do so. Of course, when ‖θ̂‖ is small, the J test may be
of only modest interest, because there may not be enough information in the sample
to discriminate between the two models.

The suggestion made in the previous paragraph appears to ignore the fact that ‖θ̂‖
is a random quantity. Indeed, expression (11) suggests that ‖θ̂‖ will often be quite
variable. In order to see whether this randomness would invalidate this suggestion,
we generated a further three million J statistics and their bootstrap P values, using
the same scheme as was used to generate the data that underlie Figure 13. There
were one million J statistics for each of n = 15, 30, and 60. Overall, 5.70% of the
bootstrap tests rejected at the .05 level when n = 15, 5.39% did so when n = 30, and
5.17% did so when n = 60. When we looked at the rejection frequencies conditional
on ‖θ̂‖ > 3, the rejection percentages fell to 4.96%, 5.02%, and 5.03%, respectively.
Despite the often considerable randomness of ‖θ̂‖, conditioning on ‖θ‖ > 3 instead
of ‖θ̂‖ > 3 produced almost identical results.

7. Effects of Bootstrapping on Power

It is natural to worry that bootstrapping the J test, or indeed any test, may adversely
affect its power. However, such worries are generally unfounded. When a test rejects
much less frequently under the null hypothesis after it is bootstrapped, as is often the
case for the J test, it will generally also reject less frequently under every alternative
hypothesis. But this does not mean that the bootstrap test is less powerful in any
meaningful sense. In order to compare power, we must hold test size constant. When
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this is done, Davidson and MacKinnon (1997) showed that there is no power loss at
all when the underlying test statistic is pivotal (assuming that B is very large), and
any difference between the size-corrected power of the two tests will be of low order
in the sample size when the underlying test statistic is not pivotal.

An easy way to compute and display size-corrected power was suggested by Davidson
and MacKinnon (1998). The idea is to perform two matched experiments, for one of
which the alternative is true, and for one of which the null is true. We then graph the
rejection frequencies under the alternative, on the vertical axis, against the rejection
frequencies under the null, on the horizontal axis, for a large number of possible
critical values. This yields a “size-power curve” which would ideally have the shape
of a Γ. The further the curve is above the 45◦ line, the more powerful is the test.

In the case of a nonpivotal statistic, the results of this procedure will depend on
precisely what parameter values are used to generate the data under the null hypo-
thesis. In Davidson and MacKinnon (1997), we suggested using the parameter values
associated with the “pseudo-true null,” that is, the parameter values which make the
null hypothesis as close as possible, in the sense of the Kullback-Leibler Information
Criterion, to the alternative against which power is being computed.

We have performed a few Monte Carlo experiments to verify that the general results
on the power of bootstrap tests alluded to above do indeed apply to the J test.
We used models similar to those of the last section, but with no lagged dependent
variables, since their presence would have made it harder to calculate the pseudo-true
nulls. For the alternative, we generated the data from the H2 model, equation (23),
with δ2 = 0 and all of the γi equal to 1. For the null, we generated the data from the
H1 model, equation (22), with δ1 = 0 and the βi chosen so that, on average, the H1

model fits the H2 data as well as possible.

We performed four experiments, each with 100,000 replications, k = l = 4, σ = 2 or
σ = 4, and n = 10 or n = 40. For the bootstrap tests, we used B = 999 in order
to minimize the power loss associated with using too small a number of bootstrap
samples. Results are shown in Figure 14. It is clear that, as the theory predicts,
bootstrapping the J test has very little effect on size-corrected power. If anything,
the bootstrap tests seem to be slightly more powerful than the asymptotic tests,
although this may be an artifact of the experimental design.

8. Conclusion

Most Monte Carlo experiments on the performance of hypothesis tests are not very
conclusive. They often suffer from excessive experimental error, and they inevitably
deal with only a tiny subset of all the possible DGPs. In contrast, except for the
thousands of experiments with random parameters discussed in Section 6, which
allow us to deal with a very large number of DGPs, our experiments utilize very large
numbers of replications. In the case of the experiments of Section 5, our theoretical
results made this feasible. In the case of the experiments of Section 6, we were able
to use a previous theoretical result to avoid actually computing bootstrap tests for
most sample sizes.
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The principal reason that our results are quite conclusive is that they are based on
a detailed theory of the finite-sample distribution of the J test. This theory shows
that the value of a parameter that we call ‖θ‖ is crucial. Based on this theory, we
were able to identify cases in which the bootstrap J test can be expected to work
particularly badly, and we made these the focus of our experiments. That the test
nevertheless works extraordinarily well, albeit somewhat less well in extreme cases
where ‖θ‖ is very small, provides very strong evidence that the bootstrap J test is a
reliable procedure in general.
Although our theoretical results were developed for the case in which the error terms
are normally distributed and the regressors are exogenous, there are, as we explained
in Section 3, good reasons to believe that they apply more generally. In Section 6,
we provided a great deal of simulation-based evidence that they in fact do so. The
theoretical results also did not deal with the case in which the null hypothesis is
false, but general results on bootstrap tests, which are confirmed by the simulations
of Section 7, suggest that bootstrapping the J test will have little effect on its size-
corrected power.
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Appendix

Proof of Theorem 1:

We introduce arbitrary orthonormal bases of the spaces S3, S5, and S6, all of which
are of dimension s5. We can represent these bases by three n × s5 matrices, Z3,
Z5, and Z6, the columns of which span their respective spaces. For i = 3, 5, 6,
orthonormality implies that the matrices satisfy Zi

>Zi = I and ZiZi
>= Pi.

Since s3 = s5, Z3
>Z5 is a square matrix. We can express its singular value decompo-

sition as follows:
Z3
>Z5 = U3DU5

>, (24)

where U3 and U5 are s5 × s5 orthogonal matrices, and D is an s5 × s5 diagonal
matrix. We denote the diagonal elements of D by di, i = 1, . . . , s5. The d2

i are the
eigenvalues of the positive definite matrix

(Z3
>Z5)>(Z3

>Z5) = Z5
>P3Z5,

and so the di are just the canonical correlations between Z3 and Z5. As such,
they are independent of the particular choice of orthonormal basis. Define new
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orthonormal bases in terms of the matrices Wi = ZiUi for i = 3, 5. Then Wi
>Wi = I,

WiWi
>= Pi, and

W3
>W5 = D. (25)

Similarly to (24), we can write

Z6
>W5 = U6∆V5

>, (26)

where U6 and V5 are orthogonal matrices, and ∆ is diagonal with diagonal ele-
ments δi, i = 1, . . . , s5, with the δ2

i the eigenvalues of W5
>P6W5. Let W6 = Z6U6.

Then
W6

>W5 = ∆V5
>. (27)

Note that every vector in S5 is in S3 ⊕ S6, since S3 and S6 are the only spaces in S0

to which S5 is not orthogonal. Thus (P3 + P6)W5 = W5, and so

I = W5
>W5 = W5

>P3W5 + W5
>P6W5 = W5

>W3W3
>W5 + W5

>W6W6
>W5

= D2 + V5∆
2V5

>, (28)

by (25) and (27). Since I, D, and ∆ are all diagonal matrices, the orthogonal
matrix V5 must be a permutation matrix that alters only the ordering of the elements
of ∆. Thus, reordering the rows and columns of U6 if necessary, we can choose V5 = I.
It follows that ∆2 = I−D2, or, equivalently, δ2

i = 1− d2
i for each i.

Under the assumptions of model H1, u ∼ N(0, σ2I). Because of the multivariate
normality of u, the projections Piu, i = 1, 2, 3, 4, 6, and M0u are all mutually
independent. In order to express the J statistic in terms of these quantities, it
is convenient to make the following definitions of mutually independent standard
normal variables:

v3 = σ−1W3
>u ∼ N(0, Is5)

v4 = σ−1W4
>u ∼ N(0, Is4)

v6 = σ−1W6
>u ∼ N(0, Is5),

(29)

and a χ2 variable independent of v3, v4, and v6:

V 2 = σ−2u>M0u ∼ χ2(n− s0).

From (4) and (5) it can be seen that

MX = M0 + P4 + P6. (30)

Thus

MXu = M0u + P4u + P6u, and u>MXu = σ2
(
V 2 + ‖v4‖2 + ‖v6‖2

)
. (31)

Further,
MXPZ = (M0 + P4 + P6)(P1 + P4 + P5) = P4 + P6P5. (32)
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Now MXPZy = MXPZXβ+MXPZu. Denote the deterministic vector MXPZXβ
by r. Since P4X = 0, we have that

r = P6P5Xβ. (33)

For the other term in MXPZy, we have that MXPZu = P4u + P6P5u. Using the
results that P5 = P5(P3 + P6) and V5 = I, we have from (25), (27), and (29) that

P6P5u = W6W6
>W5W5

>(W3W3
>u + W6W6

>u)

= W6∆(DW3
>u + ∆W6

>u) = σ
(
W6∆(Dv3 + ∆v6)

)
.

We define the vector v5 by (7):

v5 = ∆(Dv3 + ∆v6),

so that P6P5u = σW6v5. Then MXPZy = r + P4u + σW6v5.
We can now obtain suitable expressions for the other two scalar products on which
J depends. Let the vector θ be defined by

θ = σ−1W6
>r. (34)

Then, since r = P6r = σW6θ,

y>MXPZy = u>
(
P4u + σW6(v5 + θ)

)
= σ2

(‖v4‖2 + v6
>(v5 + θ)

)
. (35)

Note that r>r = σ2‖θ‖2. From (32) and (33), we have

r>r = β>X>P5P6P5Xβ = β>X>PZMXPZXβ,

from which (8) follows at once. Similarly,

y>PZMXPZy =
(
u>P4 + σ(v5

>+ θ>)W6
>)(P4u + σW6(v5 + θ)

)

= σ2
(‖v4‖2 + ‖θ‖2 + 2θ>v5 + ‖v5‖2

)
.

(36)

Finally, then, we can substitute (31), (35), and (36) in (3) to obtain (6).

Proof of (11):

Since θ is as given in (34), with r given by (33), the estimate θ̂ is obtained by
replacing σ in (34) and β in (33) by estimates obtained by OLS estimation of H1.
We have

σ̂2 =
y>MXy

n− k
=

u>MXu

N − s5
=

σ2(V 2 + ‖v4‖2 + ‖v6‖2)
N − s5

where the last equality follows from (31). Further,

Xβ̂ = Xβ + PXu = Xβ + (P1 + P2 + P3)u.
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Thus, from (34),

θ̂ = σ̂−1W6
>P5

(
Xβ + (P1 + P2 + P3)u

)

=
(

V 2 + ‖v4‖2 + ‖v6‖2
N − s5

)−1/2

(θ + σ−1W6
>P5P3u). (37)

Now

σ−1W6
>P5P3u = σ−1W6

>W5W5
>W3W3

>u

= σ−1∆DW3
>u

= ∆Dv3, (38)

where we used (25), (27), and (29). Substituting (38) into (37) gives (11).

Proof of (19):

The density of the χ2(m) distribution is

fm(x) =
1

2m/2Γ(m/2)
xm/2−1e−x/2.

The expectation of 1 over the square root of a χ2(m) variable is therefore

∫ ∞

0

x−1/2 fm(x) dx =
1

2m/2Γ(m/2)

∫ ∞

0

x−1/2xm/2−1e−x/2 dx. (39)

The definition of the Gamma function is

Γ(z) =
∫ ∞

0

yz−1e−y dy,

and so the expectation (39) becomes

2(m−1)/2

2m/2Γ(m/2)
Γ
(
(m− 1)/2

)
=

Γ
(
(m− 1)/2

)

21/2Γ(m/2)
.

The expectation of the reciprocal of a χ2(m) variable is

∫ ∞

0

x−1 fm(x) dx =
1

2m/2Γ(m/2)

∫ ∞

0

xm/2−2e−x/2 dx =
Γ
(
(m− 2)/2

)

2Γ(m/2)
. (40)

Since for any argument z, Γ(z+1) = zΓ(z), the expectation (40) reduces to 1/(m−2).
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Figure 1. Rejection Frequencies at Nominal Level .05, θ1 = θ2
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– 30 –


