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Abstract

Most confidence intervals, whether based on asymptotic theory or the bootstrap,
are implicitly based on inverting a Wald test. Since Wald test statistics are not
invariant under nonlinear reparametrizations of the restrictions they test, confi-
dence intervals based on them are not invariant either. This fact explains the
well-known non invariance of bootstrap confidence intervals obtained by Hall’s
percentile-t method. Davidson and MacKinnon (1999) show that bootstrap infer-
ence can be improved if the bootstrapped test statistic is asymptotically indepen-
dent of the bootstrap data-generating process. In this note, it is shown for a simple
AR(1) model that greatly improved coverage accuracy of confidence intervals can
be obtained by explicitly inverting a set of bootstrap hypothesis tests for each of
which the bootstrap data-generating process is asymptotically independent of the
bootstrapped statistic.

This research was supported, in part, by grants from the Social Sciences and Humanities
Research Council of Canada. This note is based on a comment on a paper, Recent
Developments on Bootstrapping Time Series, by Berkowitz and Kilian. The paper and
the comment were published in 2000 in Econometric Reviews.
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It bears witness to the enormous interest in bootstrap methods in econometrics,
and the rate of progress in their application, that Berkowitz’ and Kilian’s paper
should appear such a short time after the paper by Li and Maddala (1996) on boot-
strapping time series models in Econometric Reviews, with new and interesting
material not covered in the previous, very widely cited, and influential piece.

In this comment, I would like to explore what at first sight seems to be a point
of disagreement between Li and Maddala on the one hand, and Berkowitz and
Kilian on the other, namely the importance of using pivotal quantities for effec-
tive bootstrapping. My own position has always been that of Li and Maddala:
One wastes the potential of the bootstrap for accurate inference if one bootstraps
quantities, like parameter estimates, that are not asymptotically pivotal. However,
Berkowitz and Kilian present some pretty convincing evidence that this position
is not universally justifiable.

I suppose that no one would dispute that bootstrap inference is better when the
quantity bootstrapped is closer to being pivotal. But Berkowitz and Kilian argue
that, if one wishes to perform inference on things like impulse response coefficients,
it seems to be the case that, for realistic sample sizes, the estimates of the vari-
ances of these coefficients are so noisy that studentizing leads to quantities that
are farther from being pivotal than the estimated response coefficients themselves.
In that case, it follows that we will do better by bootstrapping the raw response
coefficients rather than studentized versions of them. Of course, this is not an
argument against bootstrapping pivotal or nearly pivotal quantities. It is an ar-
gument against studentizing when the result of studentizing is no closer to pivotal
than the quantity studentized.

I think it is profitable in the analysis of this phenomenon to think of confidence
intervals as based on a set of hypothesis tests. A value belongs to a confidence
interval of nominal coverage 1 — « if a test of the hypothesis that this value is the
true one is not rejected by a test of nominal significance level a. Thus a confidence
interval can be thought of as the result of “inverting” the set of hypothesis tests.
Conversely, any rule for constructing confidence intervals implicitly defines a set of
tests. Formally, if we wish to test the hypothesis that a scalar parameter 6 equals
some specific value 6y, the P value based on a set of confidence intervals is one
minus the nominal coverage of the confidence interval for which 6y is a boundary
point.

Although the duality described above between confidence intervals and hypoth-
esis tests is perfectly general in theory, in practice most confidence intervals are
obtained by inverting Wald tests. The most common sort of confidence interval
is obtained by computing a parameter estimate 6 and its corresponding stan-
dard error o(f), and then forming an interval of the form [0 — co(6),0 + co(8)],
where c is a critical value for the assumed distribution of the studentized statistic
W = (0 — 0)/0(f). Often the assumed distribution is just standard normal, or
perhaps the Student’s ¢ distribution when there are few degrees of freedom. If
bootstrap percentile-t confidence intervals are used, the distribution of which c¢ is
a critical value is obtained by bootstrapping W, and, commonly, different values
of ¢ are used for the lower and upper limits.
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If the above confidence interval has nominal coverage 1 — «, then the hypothesis

that the true parameter is equal to any given ¢ will be rejected at nominal level o
if and only if 8 ¢ [0 — co(0),0 + co(8)], that is,

(6 —6)/0(d)

This rejection rule is thus based on the Wald statistic W, which is supposed to
follow a standard normal or ¢ distribution under the null for asymptotic tests, or
a distribution found by simulation for a bootstrap test.

It is well known — see Gregory and Veall (1985) and Phillips and Park (1988)
— that Wald tests are not invariant under nonlinear reparametrizations. In fact,
as shown by Lafontaine and White (1986), any prespecified value at all can be
obtained as the Wald statistic for a given hypothesis with a suitable nonlinear
reparametrization. It follows from this that bootstrap percentile-t confidence in-
tervals, for which the Wald statistic W is bootstrapped, are not invariant under
nonlinear reparametrizations any more than the underlying statistic. The non-
invariance of percentile-t intervals is well known, but it does not seem to be widely
appreciated that it is just a consequence of the non-invariance of the Wald test.

=|W|>ec

In the sort of dynamic models considered by Berkowitz and Kilian, the impulse
responses are just nonlinear functions of the parameters of the underlying ARMA
process that generates the data. Confidence intervals based on estimates of the
impulse responses, with or without studentizing, are therefore based on nonlinear
reparametrizations of the ARMA process, and can, as is seen very clearly in the
simulation experiments of Berkowitz and Kilian, lead to very erratic behavior. The
moral of this tale is presumably that it would be better to construct confidence
intervals for the impulse responses by first constructing confidence regions for the
ARMA parameters, and then projecting these on to the impulse responses by
means of the appropriate nonlinear transformation.

Beran (1988) showed that bootstrap inference is refined when the quantity boot-
strapped is nearly pivotal. Davidson and MacKinnon (1999) show that a further
refinement, known to exist in a variety of seemingly unrelated circumstances, is
more generally available if the quantity bootstrapped is nearly independent of the
random quantities involved in setting up the bootstrap data-generating process
(DGP). Such near independence is often easy to obtain by basing the bootstrap
DGP on estimates obtained under the null hypothesis. Berkowitz and Kilian have
shown here that studentizing is not necessarily enough to make quantities that
are bootstrapped close to pivotal, although I suspect that this is a much less se-
vere problem if only the underlying ARMA parameters, or studentized versions of
them, are bootstrapped. Be that as it may, it is interesting to see if inference on
ARMA parameters can be improved over that given by percentile-¢ intervals by
using bootstrap DGPs which, being based on estimates under the null, are nearly
independent of the parameter estimates.

An obstacle to this is that a confidence interval for a parameter 6 is obtained
by inverting a whole set of tests, since each possible value of 6 corresponds to a
different null hypothesis, with its own value for the test statistic. In constructing
a percentile-t interval, this issue is finessed by bootstrapping only under the DGP
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characterized by the estimate 6. Since W = (6 — 0)/o(f) is in favorable circum-
stances nearly pivotal, its distribution is not much affected by the particular value
of 6 used for simulations. Clearly § itself is the most convenient value. But the
bootstrapped statistic W and the bootstrap DGP based on 6 are in no way nearly
independent, and so we cannot expect to benefit from the second refinement of
Davidson and MacKinnon when we construct percentile-t intervals.

It is quite possible to construct a bootstrap confidence interval for which the
simulations are performed using bootstrap DGPs that are nearly independent of
the test statistic being bootstrapped. The procedure is more computationally
intensive than for a percentile-t interval, but much less so than for a procedure
using a double layer of bootstrapping. I illustrate the procedure for the very simple
problem of finding a confidence interval for the autoregressive parameter p in the
model

Yt = PYt—1 + Uy, (1)

where, for simplicity, the error terms u; are assumed to be independently dis-
tributed as N(0,1). Since the model is scale invariant, there is no loss of gener-
ality in setting the error variance to 1. The first step is to estimate (1) by OLS,
thus obtaining p and its standard error o(p). For nominal coverage of 95%, we
set the critical value ¢ equal to 1.96, and thus obtain the limits of the asymptotic
confidence interval, p+ = p £+ 1.960(p). Next, bootstrap P values are computed
for each of p; and p_ as follows. For the null that p = p,, the test statistic is
T+ = (p — py)/o(p), and the bootstrap DGP that satisfies this null and is in-
dependent of 71 is y; = pt+y;_; + u;, where the u; can be generated directly
from N(0,1) or by resampling from the OLS residuals from running (1). For each
bootstrap replication j = 1,..., B, we run (1) using the simulated data y; so as to
obtain p7 and o(pj). The bootstrap statistic 7} is computed as (9] — p+)/0(p}).
Finally, the bootstrap P value is

B
1
P, = EZ[(’T;’ >[4 ),
=1

where I(-) is an indicator function, so that P, is the proportion of bootstrap
replications for which the bootstrap statistic 77 is more extreme than the statistic
T4+ computed with the original data. P_ is computed in just the same way with

p— and 7 = (p — p_)/o(p) in place of p; and 74 respectively.

A suitable root-finding algorithm can now be invoked to adjust the values of p_
and p; until the bootstrap P values are exactly equal to 0.05. I used a version
of the RTSAFE algorithm of Press et al (1992), for which I simply assumed that
the derivative of the P value with respect to p+ was the standard normal density
evaluated at 1.96. Despite the crudeness of this approximation, the algorithm
converged reliably. A practical point here is that the same random numbers
should be used for the bootstrap DGPs with different values of pi. Otherwise,
bootstrap randomness is enough to rule out convergence with reasonable values
of B. The final bootstrap confidence interval is [p_, p4| after convergence.

In order to test this procedure, I performed 200,000 replications with p = 0.95 and
a sample size of 10. On each replication, I computed the asymptotic confidence
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interval, Hall’s bootstrap percentile and percentile-t intervals, and the interval
described above, using B = 399 bootstrap replications. Although 399 is rather a
small number, the averaging over 200,000 replications makes it entirely adequate
for present purposes. It was necessary to choose a value of p close to unity and
a very small sample size in order to produce significant coverage errors even for
the asymptotic confidence interval. The results were as follows. The asymptotic
interval covered the true value of 0.95 in 182,856 replications, the percentile interval
in 186,455, the percentile-¢ in 188,802, and the new interval in 189,866 replications.
If coverage were equal to nominal, the true value would be covered 190,000 times.
The standard error associated with these numbers is roughly the square root of
0.05 x 0.95 x 200, 000, or nearly 100. Thus the coverage error of the new interval
is not significant at conventional levels even with 200,000 replications.

It is probably unrealistic to expect such reliability with more complicated ARMA
models, but it seems reasonable to conclude that this technique yields better infer-
ence than percentile or percentile-t intervals on account of the near independence
of the statistic and the bootstrap DGP. In terms of computing cost, on average
14 iterations were needed for p_ and p4, 6.5 for p_, and 7.5 for p,. Computing
time is not as much as 15 times that for the percentile-t interval, since the ran-
dom numbers for the bootstrap are computed only once, and there are other small
economies of scale in the computation. This is a very reasonable price to pay for
such greatly improved inference. It will be interesting to see if the improvement
is as great in models more complicated than the toy model considered here.
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