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1. Introduction

When we perform a hypothesis test in econometrics, we reject the null hypothesis if
the test statistic is unlikely to have occurred by chance for the distribution that it
should follow under the null. Traditionally, this distribution is obtained by theoretical
methods. In many cases, we use asymptotic distributions that are strictly valid
only if the sample size is infinitely large. In others, such as the classical normal
linear regression model with its associated t and F statistics, we use finite-sample
distributions that depend on very strong distributional assumptions.

Bootstrap methods, which have become increasingly popular in econometrics during
the last decade as the cost of computation has fallen dramatically, provide an alter-
native way of obtaining the distributions to which test statistics are to be compared.
The idea is to generate a large number of simulated bootstrap samples, use each of
them to calculate a bootstrap test statistic, and then compare the actual test statistic
with the empirical distribution of the bootstrap statistics. When the latter provides
a good approximation to the unknown true distribution of the test statistic under the
null hypothesis, bootstrap tests should lead to accurate inferences. In some cases,
they lead to very much more accurate inferences than using asymptotic distributions
in the traditional way.

Because of the close connection between hypothesis tests and confidence intervals,
we can also obtain bootstrap confidence intervals. The ends of a confidence inter-
val generally depend on the quantiles of the distribution that some test statistic is
supposed to follow. We “invert” the test to find the interval that contains all the
parameter values that would not be rejected by the test. One way to construct a
bootstrap confidence interval is to use the quantiles of the empirical distribution of
a set of bootstrap test statistics instead of the quantiles of a theoretical distribution.

In the next section, we discuss the basic ideas of bootstrap testing for the special
case in which the bootstrap statistics follow exactly the same distribution as the
actual test statistic under the null hypothesis. We show that, in this special case, it
is possible to perform a Monte Carlo test that is exact, in the sense that the actual
probability of Type I error is equal to the nominal significance level of the test.
This is an important result, in part because there are valuable applications of Monte
Carlo tests in econometrics, and in part because this case serves as a benchmark for
bootstrap tests more generally.

In most cases, it is impossible to find a bootstrap data generating process, or boot-
strap DGP, such that the bootstrap statistics follow exactly the same distribution
as the actual test statistic under the null hypothesis. In Section 3, we discuss the
parametric bootstrap, for which the bootstrap DGP is completely characterized by
a set of parameters that can be consistently estimated. We show that, under mild
regularity conditions likely to be satisfied in many cases of interest in econometrics,
the error in rejection probability (ERP) of a parametric bootstrap test, that is, the
difference between the true probability of rejecting a true null hypothesis and the
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nominal level, tends to zero as the sample size tends to infinity faster than does the
ERP of conventional asymptotic tests.

In Sections 4-8, we discuss various methods for the construction of bootstrap DGPs
that are applicable to a variety of problems in econometrics. In our view, this is
where the principal impediments to the widespread adoption of bootstrap methods
lie. Methods that work well for some problems may be invalid or may perform
poorly for others. Econometricians face a great many challenges in devising bootstrap
DGPs that will lead to accurate inferences for many of the models that we commonly
estimate.

In Section 9, we extend the methods of bootstrap testing discussed earlier in the paper
to the construction of confidence intervals. Finally, Section 10 contains a general
discussion of the accuracy of bootstrap methods and some concluding remarks.

2. Monte Carlo Tests

The simplest type of bootstrap test, and the only type that can be exact in finite
samples, is called a Monte Carlo test. This type of test was first proposed by Dwass
(1957). Monte Carlo tests are available whenever a test statistic is pivotal. Let
τ denote a statistic intended to test a given null hypothesis. By hypothesis we mean
a set of DGPs that satisfy some condition or conditions that we wish to test. Then
the statistic τ is pivotal for this null hypothesis if and only if, for each possible fixed
sample size, the distribution of τ is the same for all of the DGPs that satisfy the
hypothesis. Such a test statistic is said to be a pivot.

Suppose we compute a realization τ̂ of a pivotal test statistic using real data, and
then compute B independent bootstrap test statistics τ∗j , j = 1, . . . , B, using data
simulated using any DGP that satisfies the null hypothesis. Since τ is a pivot, it
follows that the τ∗j and τ̂ are independent drawings from one and the same distri-
bution, provided that the true DGP, the one that generated τ̂ , also satisfies the null
hypothesis.

Imagine that we wish to perform a test at significance level α, where α might, for
example, be .05 or .01, and reject the null hypothesis when the value of τ̂ is unusually
large. Given the actual and simulated test statistics, we can compute a bootstrap
P value as

p̂∗(τ̂) =
1
B

B∑

j=1

I(τ∗j > τ̂), (1)

where I(·) is the indicator function, with value 1 when its argument is true and 0
otherwise. Evidently, p̂∗(τ̂) is just the fraction of the bootstrap samples for which
τ∗j is larger than τ̂ . If this fraction is smaller than α, we reject the null hypothesis.
This makes sense, since τ̂ is extreme relative to the empirical distribution of the τ∗j
when p̂∗(τ̂) is small.

Now suppose that we sort the original test statistic τ̂ and the B bootstrap statistics τ∗j
in decreasing order. Define the rank r of τ̂ in the sorted set in such a way that there
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are exactly r simulations for which τ∗j > τ̂ . Then r can have B + 1 possible values,
r = 0, 1, . . . , B, all of them equally likely under the null. The estimated P value p̂∗(τ̂)
is then just r/B.

The Monte Carlo test rejects if r/B < α, that is, if r < αB. Under the null, the
probability that this inequality is satisfied is the proportion of the B + 1 possible
values of r that satisfy it. If we denote by [αB] the largest integer that is smaller
than αB, there are exactly [αB]+1 such values of r, namely, 0, 1, . . . , [αB]. Thus the
probability of rejection is ([αB] + 1)/(B +1). We want this probability to be exactly
equal to α. For that to be true, we require that

α(B + 1) = [αB] + 1.

Since the right-hand side above is the sum of two integers, this equality can hold only
if α(B+1) is also an integer. In fact, it is easy to see that the equation holds whenever
α(B + 1) is an integer. In that case, therefore, the rejection probability under the
null, that is, the Type I error of the test, is precisely α, the desired significance level.

Of course, using simulation injects randomness into this test procedure, and the cost
of this randomness is a loss of power. A test based on B = 99 simulations will be
less powerful than a test based on B = 199, which in turn will be less powerful than
one based on B = 299, and so on; see Jöckel (1986) and Davidson and MacKinnon
(2000). Notice that all of these values of B have the property that α(B + 1) is an
integer whenever α is an integer percentage like .01, .05, or .10.

For an example of a Monte Carlo test, consider the classical normal linear regression
model

yt = Xtβ + ut, ut ∼ NID(0, σ2), (2)

where there are n observations, β is a k--vector, and the 1 × k vector of regressors
Xt, which is the tth row of the n × k matrix X, is treated as fixed. Every DGP
belonging to this model is completely characterized by the values of the parameter
vector β and the variance σ2. Thus any test statistic the distribution of which
does not depend on these values is a pivot for the hypothesis that (2) is correctly
specified. In particular, a statistic that depends on y only through the OLS residuals
and is invariant to the scale of y is pivotal. To see this, note that the vector of
OLS residuals is û = MXy = MXu, where MX is the orthogonal projection matrix
I−X(X>X)−1X>. Thus û is unchanged if the value of β changes, and a change in
the variance σ2 changes û only by a scale factor of σ.

One such pivotal test statistic is the estimated autoregressive parameter ρ̂ that is
obtained by regressing the tth residual ût on its predecessor ût−1. The estimate ρ̂
can be used as a test for serial correlation of the error terms in (2). Evidently,

ρ̂ =

∑n
t=2 ût−1ût∑n
t=2 û2

t−1

. (3)
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Since ût is proportional to σ, there are implicitly two factors of σ in the numerator
and two in the denominator of (3). Thus ρ̂ is independent of the scale factor σ.

Of course, the distribution of ρ̂ does depend on the regressor matrix X. But recall
that we assumed that X is fixed in the definition of the model (2). This means that
it is the same for every DGP in the model. With this definition, then, ρ̂ is indeed
pivotal. If we are unwilling to assume that X is a fixed matrix, then we can interpret
(2) as a model defined conditional on X, in which case ρ̂ is pivotal conditional on X.

The fact that ρ̂ is a pivot means that we can perform an exact Monte Carlo test of
the hypothesis that ρ = 0 without knowing the distribution of ρ̂. The bootstrap DGP
used to generate simulated samples can be any DGP in the model (2), and so we
may choose the simplest such model, which has β = 0 and σ2 = 1. This bootstrap
DGP can be written as

y∗t = ε∗t , ε∗t ∼ NID(0, 1).

For each of B bootstrap samples, we then proceed as follows:

1. Generate the vector y∗ as an n--vector of IID standard normal variables.

2. Regress y∗ on X and save the vector of residuals û∗.

3. Compute ρ∗ by regressing û∗t on û∗t−1 for observations 2 through n.

Denote by ρ∗j , j = 1, . . . , B, the bootstrap statistics obtained by performing the above
three steps B times. We now have to choose the alternative to our null hypothesis of
no serial correlation. If the alternative is positive serial correlation, then, analogously
to (1), we perform a one-tailed test by computing the bootstrap P value as

p̂∗(ρ̂) =
1
B

B∑

j=1

I(ρ∗j > ρ̂).

This P value is small when ρ̂ is positive and sufficiently large, thereby indicating
positive serial correlation. However, we may wish to test against both positive and
negative serial correlation. In that case, there are two possible ways to compute a
P value corresponding to a two-tailed test. The first is to assume that the distribution
of ρ̂ is symmetric, in which case we can use the bootstrap P value

p̂∗(ρ̂) =
1
B

B∑

j=1

I
(|ρ∗j | > |ρ̂|). (4)

This is implicitly a symmetric two-tailed test, since we reject when the fraction of
the ρ∗j that exceed ρ̂ in absolute value is small. Alternatively, if we do not assume
symmetry, we can use

p̂∗(ρ̂) = 2 min
(

1
B

B∑

j=1

I(ρ∗j ≤ ρ̂),
1
B

B∑

j=1

I(ρ∗j > ρ̂)
)

. (5)
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In this case, for level α, we reject whenever ρ̂ is either below the α/2 quantile or
above the 1 − α/2 quantile of the empirical distribution of the ρ∗j . Although tests
based on these two P values are both exact, they may yield conflicting results, and
their power against various alternatives will differ.

Many common test statistics for serial correlation, heteroskedasticity, skewness, and
excess kurtosis in the classical normal linear regression model (2) are pivotal, since
they depend on the regressand only through the least squares residuals û in a way
that is invariant to the scale factor σ. The Durbin-Watson d statistic is a particularly
well-known example. We can perform a Monte Carlo test based on d just as easily
as a Monte Carlo test based on ρ̂, and the two tests should give very similar results.
Since we condition on X, the infamous upper and lower bounds from the classic
tables of the d statistic are quite unnecessary.

With modern computers and appropriate software, it is extremely easy to perform a
variety of exact tests in the context of the classical normal linear regression model.
These procedures also work when the error terms follow a nonnormal distribution
that is known up to a scale factor; we just have to use the appropriate distribution
in step 1 above. For further references and a detailed treatment of Monte Carlo tests
for heteroskedasticity, see Dufour, Khalaf, Bernard, and Genest (2004).

3. The Parametric Bootstrap

When a hypothesis is tested using a statistic that is not pivotal for that hypothesis,
the bootstrap procedure described in the previous section does not lead to an exact
Monte Carlo test. However, with a suitable choice of bootstrap DGP, inference
that is often more accurate than that provided by conventional asymptotic tests
can be performed by use of bootstrap P values. In this section, we focus on the
parametric bootstrap, in which the bootstrap DGP is completely specified by one or
more parameters, some of which have to be estimated.

Examples of the parametric bootstrap are encountered frequently when models are
estimated by maximum likelihood. For fixed parameter values, a likelihood function
is a probability density which fully characterizes a DGP. The aim of all bootstrap
tests is to estimate the distribution of a test statistic under the DGP that generated it,
provided that the DGP satisfies the null hypothesis. When a statistic is not pivotal,
it is no longer a matter of indifference what DGP is used to generate simulated
statistics. Instead, it is desirable to get as good an estimate as possible of the true
DGP for the bootstrap DGP. In the context of the parametric bootstrap, this means
that we want to estimate the unknown parameters of the true DGP as accurately as
possible, since those estimates are used to define the bootstrap DGP.

Consider as an example the probit model, a binary choice model for which each
observation yt on the dependent variable is either 0 or 1. For this model,

Pr(yt = 1) = Φ(Xtβ), t = 1, . . . , n, (6)
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where Φ(·) is the cumulative distribution function (CDF) of the standard normal
distribution, and Xt is a 1×k vector of explanatory variables, again treated as fixed.
The parameter vector β is usually estimated by maximum likelihood (ML).

Suppose that β is partitioned into two subvectors, β1 and β2, and that we wish to
test the hypothesis that β2 = 0. The first step in computing a parametric bootstrap
P value is to estimate a restricted probit model in which β2 = 0, again by ML,
so as to obtain restricted estimates β̃1. Next, we compute a suitable test statistic,
which would usually be a Lagrange multiplier statistic, a likelihood ratio statistic, or
a Wald statistic, although there are other possible choices.

The bootstrap DGP is defined by (6) with β1 = β̃1 and β2 = 0. Bootstrap samples
can be generated easily as follows.

1. Compute the vector of values Xt1β̃1, where Xt1 is the subvector of Xt that
corresponds to the nonzero parameters β1.

2. For each bootstrap sample, generate a vector of random numbers u∗t , t = 1, . . . , n,
drawn from the standard normal distribution.

3. Set the simulated y∗t equal to 1 if Xt1β̃1 + u∗t > 0, and to 0 otherwise. By
construction, (6) is satisfied for the y∗t .

For each bootstrap sample, a bootstrap statistic is then computed using exactly the
same procedure as the one used to compute the test statistic with the real data. The
bootstrap P value is the proportion of bootstrap statistics that are more extreme
than the one from the real data. If β2 has only one component, the test could be
performed using an asymptotic t statistic, and then it would be possible, as we saw
in the previous section, to perform one-tailed tests.

Bootstrap DGPs similar to the one described above can be constructed whenever
a set of parameter estimates is sufficient to characterize a DGP completely. This
is the case for a wide variety of limited dependent variable models, including more
complicated discrete choice models, count data models, and models with censoring,
truncation, or sample selection. Hypotheses that can be tested are not restricted to
hypotheses about the model parameters. Various specification tests, such as tests for
heteroskedasticity or information matrix tests, can be carried out in just the same
way.

Why should we expect that a parametric bootstrap test will lead to inference that is
more reliable than conventional asymptotic inference? In fact, it does so only if the
test statistic τ on which the test is based is asymptotically pivotal, which means that
its asymptotic distribution, as the sample size n →∞, is the same for all DGPs that
satisfy the null hypothesis. This is not a very strong condition. All statistics that are
asymptotically standard normal, or asymptotically chi-squared with known degrees
of freedom, or even distributed asymptotically as a Dickey-Fuller distribution, are
asymptotically pivotal, since these asymptotic distributions depend on nothing that
is specific to a particular DGP in the null hypothesis.

– 6 –



Let us define what in Davidson and MacKinnon (1999a) is called the rejection prob-
ability function, or RPF. The value of this function is the probability that a true null
hypothesis is rejected by a test based on the asymptotic distribution of the statistic τ ,
as a function of the nominal level α and the parameter vector θ that characterizes
the true DGP. Thus the RPF R(α, θ) satisfies the relation

R(α, θ) = Prθ

(
τ ∈ Rej(α)

)
, (7)

where Rej(α) is the rejection region for an asymptotic test at level α. We use this
notation so as to be able to handle one-tailed and two-tailed tests simultaneously.
The notation “Prθ” indicates that we are evaluating the probability under the DGP
characterized by θ. If τ were pivotal, R would not depend on θ.

Suppose now that we carry out a parametric bootstrap test using a realized test
statistic τ̂ and a bootstrap DGP characterized by a parameter vector θ∗ that satisfies
the null hypothesis. Let p̂ be the asymptotic P value associated with τ̂ ; p̂ is defined
so that τ̂ is on the boundary of the rejection region Rej(p̂). If we let the number B
of bootstrap samples tend to infinity, then the bootstrap P value is R(p̂,θ∗). To
see this, observe that this quantity is the probability, according to the bootstrap
DGP associated with θ∗, that τ ∈ Rej(p̂). For large B, the proportion of bootstrap
statistics more extreme than τ̂ tends to this probability.

By a first-order Taylor series approximation around the true parameter vector θ0,

R(p̂, θ∗)−R(p̂, θ0) ∼= R>(p̂, θ0)(θ∗ − θ0), (8)

where R(p̂, θ) denotes a vector of derivatives of R(p̂, θ) with respect to the elements
of θ. The quantity R(p̂, θ0) can be interpreted as the ideal P value that we would
like to compute if it were possible to do so. Under the DGP associated with θ0, the
probability that R(p̂, θ0) is less than α is exactly α. To see this, notice from (7) that

R(α, θ) = Prθ

(
τ ∈ Rej(α)

)
= Prθ(p < α),

where p is the asymptotic P value associated with τ . Thus, under the DGP charac-
terized by θ0, R(α, θ0) is the CDF of p evaluated at α. The random variable R(p, θ0),
of which R(p̂, θ0) is a realization, is therefore distributed as U(0, 1).

Equation (8) tells us that the difference between the parametric bootstrap P value
and the ideal P value is given approximately by the expression R>(p̂, θ0)(θ∗ − θ0).
Since τ is asymptotically pivotal, the limit of the function R(α, θ) as n → ∞ does
not depend on θ. Thus the derivatives in the vector R(α, θ) tend to zero as n →∞,
in regular cases with the same rate of convergence as that of R(α, θ) to its limiting
value. This latter rate of convergence is easily seen to be the rate at which the ERP
of the asymptotic test tends to zero. The parameter estimates in the vector θ∗ are
root-n consistent whenever they are obtained by ML or by any ordinary estimation
method. Thus R>(p̂, θ0)(θ∗ − θ0), the expectation of which is approximately the
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ERP of the bootstrap test, tends to zero faster than the ERP of the asymptotic test
by a factor of n−1/2.

This heuristic argument provides some intuition as to why the parametric bootstrap,
when used in conjunction with an asymptotically pivotal statistic, generally yields
more reliable inferences than an asymptotic test based on the same statistic. See
Beran (1988) for a more rigorous treatment. Whenever the ERP of a bootstrap test
declines more rapidly as n increases than that of the asymptotic test on which it is
based, the bootstrap test is said to offer higher-order accuracy than the asymptotic
one, or to benefit from asymptotic refinements.

It is important to note that the left-hand side of (8), which is a random variable
through the asymptotic P value p̂, is not the ERP of the bootstrap test. The boot-
strap ERP is rather the expectation of that random variable, which can be seen to
depend on the joint distribution of the statistic τ and the estimates θ∗. In some cases,
this expectation converges to zero as n →∞ at a rate even faster than the left-hand
side of (8); see Davidson and MacKinnon (1999a) and Davidson and MacKinnon
(2005) for more details.

Although the result just given is a very powerful one, it does not imply that a
parametric bootstrap test will always be more accurate than the asymptotic test on
which it is based. In some cases, an asymptotic test may just happen to perform
extremely well even when n is quite small, and the corresponding bootstrap test may
perform a little less well. In other cases, neither test may perform at all well in small
samples, and the sample size may have to be quite large before the bootstrap test
establishes its superiority.

4. Bootstrap DGPs Based on Resampling

The bootstrap, when it was first proposed by Efron (1979, 1982), was an entirely non-
parametric procedure. The idea was to draw bootstrap samples from the empirical
distribution function (EDF) of the data, a procedure that Efron called resampling.
Since the EDF assigns probability 1/n to each point in the sample, this procedure
amounts to drawing each observation of a bootstrap sample randomly, with replace-
ment, from the original sample. Each bootstrap sample thus contains some of the
original data points once, some of them more than once, and some of them not at
all. Resampling evidently requires the assumption that the data are IID.

In regression models, it is unusual to suppose that the observations are IID. On the
other hand, we often suppose that the error terms of a regression model are IID.
We do not observe error terms, and so cannot resample them, but we can resample
residuals, which are then interpreted as estimates of the error terms. As an example
of a bootstrap DGP based on resampling, consider the dynamic linear regression
model

yt = Xtβ + γyt−1 + ut, ut ∼ IID(0, σ2), (9)
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in which we suppose that y0 is observed, so that the regression can be run for ob-
servations 1 through n. Statistics used to test hypotheses about the parameters β
and γ are not pivotal for this model. If we assume that the errors are normal, we
can use a parametric bootstrap, as described below, but for the moment we are not
willing to make that assumption.

We begin by estimating (9), subject to the restrictions we wish to test, by ordinary
or nonlinear least squares, according to the nature of the restrictions. This gives us
restricted estimates β̃ and γ̃ and a vector of residuals, say ũ. If there is a constant
or its equivalent in the regression, then the mean of the elements of ũ is zero. If not,
then it is necessary to center these elements by subtracting their mean, since one of
the key assumptions of any regression model is that the errors have an expectation
of 0. If we were to resample a set of uncentered residuals, the bootstrap DGP would
not belong to the null hypothesis and would give erroneous results.

After recentering, if needed, we can set up a bootstrap DGP as follows. Bootstrap
samples are generated recursively from the equation

y∗t = Xtβ̃ + γ̃ y∗t−1 + u∗t , (10)

where y∗0 = y0, and the u∗t are resampled from the vector ũ centered. This is an exam-
ple of a semiparametric bootstrap DGP. The error terms are obtained by resampling,
but equation (10) also depends on the parameter estimates β̃ and γ̃.

A parametric bootstrap DGP would look just like (10) as regards its recursive nature,
but the u∗t would be generated from the N(0, s2) distribution, where s2 is the least
squares variance estimate from the restricted version of (9), that is, 1/(n− k) times
the sum of squared residuals, where k is the number of regression parameters to be
estimated under the null hypothesis.

The variance of the resampled bootstrap error terms is the sum of the squared (cen-
tered) residuals divided by the sample size n. But this is not the least squares
estimate s2, for which one divides by n− k. Unless the statistic being bootstrapped
is scale invariant, we can get a bootstrap DGP that is a better estimate of the true
DGP by rescaling the residuals so as to make their variance equal to s2. The simplest
rescaled residuals are the elements of the vector

u̇ ≡
(

n

n− k

)1/2

ũ, (11)

which do indeed have variance s2. A more sophisticated rescaling method, which
takes into account the leverage of each observation, uses the vector with typical
element

üt = λ

(
ũt

(1− ht)1/2
− 1−

n

n∑
s=1

ũs

(1− hs)1/2

)
, (12)

where ht denotes the tth diagonal element of the matrix PX ≡ X(X>X)−1X>. This
is the matrix that projects orthogonally on to the subspace spanned by the regressors
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of the model used to obtain the residual vector ũ. The second term inside the large
parentheses in (12) ensures that the rescaled residuals have mean zero, and the factor
λ is chosen so that the sample variance of the üt is equal to s2. In our experience,
methods based on (11) and (12) generally yield very similar results. However, it may
be worth using (12) when a few observations have very high leverage.

The recursive relation (10) that defines the bootstrap DGP must be initialized, and
above we chose to do so with the observed value of y0. This is usually a good choice,
and in some cases it is the only reasonable choice. In other cases, the process yt

defined by (10) may have a stationary distribution, and we may be prepared to
assume that the observed series yt is drawn from that stationary distribution. If so,
it may be preferable to take for y∗0 a drawing from an estimate of that stationary
distribution.

5. Heteroskedasticity

Resampling residuals is reasonable if the error terms are homoskedastic or nearly so.
If instead they are heteroskedastic, bootstrap DGPs based on resampled residuals are
generally not valid. In this section, we discuss three other methods of constructing
bootstrap DGPs, all based on some sort of resampling, which can be used when the
error terms of a regression model are heteroskedastic.

To begin with, consider the static linear regression model

y = Xβ + u, E(u) = 0, E(uu>) = Ω, (13)

where Ω is an unknown, diagonal n × n covariance matrix. For any model with
heteroskedasticity of unknown form, the test statistics which are bootstrapped should
always be computed using a heteroskedasticity-consistent covariance matrix estimate,
or HCCME. The best-known of these is the one proposed by White (1980) for the
model (13), namely,

V̂ar(β̂) = (X>X)−1X>Ω̂X(X>X)−1, (14)

where Ω̂ is an n × n diagonal matrix with squared residuals, possibly rescaled, on
the principal diagonal.

The first type of bootstrap DGP that we will discuss is the so-called pairs bootstrap,
which was originally proposed by Freedman (1981). This is a fully nonparametric
procedure that is applicable to a wide variety of models. Unlike resampling residuals,
the pairs bootstrap is not limited to regression models. The idea is to resample entire
observations from the original data in the form of [yt, Xt] pairs. Each bootstrap
sample consists of some of the original pairs once, some of them more than once,
and some of them not at all. This procedure does not condition on X and does not
assume that the error terms are IID. Instead, it assumes that all the data are IID
drawings from a multivariate distribution, which may permit heteroskedasticity of
the yt conditional on Xt.
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Although it does not appear to be directly applicable to a dynamic model like (9),
the pairs bootstrap can be used with dynamic models that have serially independent
error terms. The idea is simply to treat lagged values of the dependent variable in
the same way as other regressors when Xt includes lagged values of yt. See Gonçalves
and Kilian (2004) and the discussion of the block-of-blocks bootstrap in Section 8.

When we use a semiparametric bootstrap DGP like (10), it is generally easy to ensure
that the parameter estimates used to define that DGP satisfy the requirements of the
null hypothesis. However, when we use the pairs bootstrap, we cannot impose any
restrictions on β. Therefore, we may have to modify the null hypothesis when we
calculate the bootstrap test statistics. If the actual null hypothesis is that β2 = 0,
where β2 is a subvector of the regression parameters, we must instead calculate boot-
strap test statistics for the null hypothesis that β2 = β̂2, where β̂2 is the unrestricted
estimate. For some specification tests, such as tests for serial correlation, the null
imposes no restrictions on β, and, in such cases, this device is unnecessary.

The trick of changing the null hypothesis so that the bootstrap data automatically
satisfy it can be used whenever it is not possible to impose the null hypothesis
on the bootstrap DGP. It is also widely used in constructing bootstrap confidence
intervals, as we will see in Section 9. However, we recommend imposing the null
hypothesis whenever possible, because it generally results in better finite-sample
performance. The improvement occurs because restricted estimates are more efficient
than unrestricted ones. This improvement is often modest, but it can be substantial
in some cases; see Davidson and MacKinnon (1999a).

Flachaire (1999) proposed an alternative version of the pairs bootstrap which makes
it possible to impose parametric restrictions. First, the regression model is estimated
under the restrictions imposed by the null hypothesis. This yields restricted esti-
mates β̃. Estimating the unrestricted model provides residuals ût, which are then
transformed using (12) to yield rescaled residuals üt. The bootstrap DGP then re-
samples the pairs [üt, Xt] and reconstructs the bootstrap dependent variable y∗t by
the formula

y∗t = X∗
t β̃ + u∗t ,

where each pair [u∗t , X
∗
t ] is randomly resampled from the set of pairs [üt, Xt]. This

bootstrap DGP accounts for heteroskedasticity conditional on the regressors and
imposes the parametric restrictions of the null hypothesis. Flachaire gives some
limited simulation results in which tests based on his modified pairs bootstrap have
a smaller ERP than ones based on the conventional pairs bootstrap.

The pairs bootstrap is not the only type of bootstrap DGP that allows for het-
eroskedasticity of unknown form in a regression model. A very different technique
called the wild bootstrap is also available. It very often seems to work better than
the pairs bootstrap when it is applicable; see MacKinnon (2002) and Flachaire (2005)
for some simulation evidence. The wild bootstrap is a semiparametric procedure, in
some ways quite similar to the one discussed in Section 4, but the IID assumption
is not imposed by the method used to simulate the bootstrap errors. Key early
references are Wu (1986), Liu (1988), and Mammen (1993).
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For testing restrictions on the model (13), the wild bootstrap DGP would be

y∗t = Xtβ̃ + f(ũt)v∗t , (15)

where β̃ denotes the least-squares estimates subject to the restrictions being tested,
f(ũt) is a transformation of the tth restricted residual ũt, and v∗t is a random variable
with mean 0 and variance 1. The simplest choice for f(·) is just f(ũt) = ũt, but
another natural choice is

f(ũt) =
ũt

(1− ht)1/2
,

which ensures that the f(ũt) would have constant variance if the error terms were
homoskedastic.

There are, in principle, many ways to specify v∗t . The most popular approach is to
use the two-point distribution

F1 : v∗t =

{
−(
√

5− 1)/2 with prob. (
√

5 + 1)/(2
√

5),

(
√

5 + 1)/2 with prob. (
√

5− 1)/(2
√

5),

which was suggested by Mammen (1993). However, a much simpler two-point distri-
bution is the Rademacher distribution

F2 : v∗t =

{−1 with probability 1
2 ,

1 with probability 1
2 .

Davidson and Flachaire (2001) have shown, on the basis of both theoretical analysis
and simulation experiments, that wild bootstrap tests based on F2 usually perform
better than ones based on F1, especially when the conditional distribution of the
error terms is approximately symmetric.

The error terms for the wild bootstrap DGP (15) do not look very much like those
for the true DGP (13). When a two-point distribution is used, the bootstrap error
term can take on only two possible values for each observation. With F2, these are
just plus and minus f(ũt). Nevertheless, the wild bootstrap apparently mimics the
essential features of many actual DGPs well enough for it to be useful in many cases.

It is possible to use the wild bootstrap with dynamic models. What Gonçalves and
Kilian (2004) call the recursive-design wild bootstrap is simply a bootstrap DGP
that combines recursive calculation of the regression function, as in (10), with wild
bootstrap error terms, as in (15). They provide theoretical results to justify the use
of the F1 form of the recursive-design wild bootstrap for pure autoregressive models
with ARCH errors, and they provide simulation evidence that symmetric confidence
intervals work well for AR(1) models with ARCH errors.

In a related paper, Godfrey and Tremayne (2005) have provided evidence that
heteroskedasticity-robust tests for serial correlation in dynamic linear regression mod-
els like (9) perform markedly better when they are bootstrapped using either the F1
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or F2 form of the recursive-design wild bootstrap than when asymptotic critical values
are used.

Although the wild bootstrap often works well, it is possible to find combinations of X
matrix and pattern of heteroskedasticity for which tests and/or confidence intervals
based on it are not particularly reliable in finite samples; see, for example, MacKinnon
(2002). Problems are most likely to arise when there is severe heteroskedasticity and
a few observations have exceptionally high leverage.

The pairs bootstrap and the wild bootstrap are primarily used when it is thought that
the heteroskedasticity is conditional on the regressors. For conditional heteroskedas-
ticity of the ARCH/GARCH variety, a parametric or semiparametric bootstrap DGP
can be used instead. The GARCH(p, q) process is defined by p+ q +1 parameters, of
which one is a scale factor. All these parameters can be estimated consistently. As
an example, consider the GARCH(1,1) process, defined by the recurrence

ut = σtεt, εt ∼ IID(0, 1), σ2
t = α + γu2

t−1 + δσ2
t−1. (16)

For a bootstrap DGP, we may use estimates of the GARCH parameters α, γ, and δ,
and, for the ε∗t , we may use either independent standard normal random numbers,
if we prefer a parametric bootstrap, or resampled residuals, recentered if necessary,
and rescaled so as to have variance 1.

As with all recursive relationships, (16) must be initialized. In fact, we need values
for both u2

1 and σ2
1 in order to use it to generate a GARCH(1,1) process. If u1

is observed, or if a residual û1 can be computed, then it makes sense to use it to
initialize (16). For σ2

1 , a good choice in most circumstances is to use an estimate of
the stationary variance of the process, here α/(1− γ − δ).

6. Covariance Matrices and Bias Correction

If we generate a number of bootstrap samples and use each of them to estimate
a parameter vector, it seems natural to use the sample covariance matrix of the
bootstrap parameter estimates as an estimator of the covariance matrix of the original
parameter estimates. In fact, early work such as Efron (1982) emphasized the use of
the bootstrap primarily for this purpose.

Although there are cases in which bootstrap covariance matrices, or bootstrap stan-
dard errors, are useful, that is not true for regression models. Consider the semipara-
metric bootstrap DGP (10) that we discussed in Section 4, in which the bootstrap
error terms are obtained by resampling rescaled residuals. Suppose we use this boot-
strap DGP with the static linear regression model (13). If β̄∗ denotes the sample
mean of the bootstrap parameter estimates β̂∗j , then the sample covariance matrix
of the β̂∗j is

V̂ar(β̂∗j ) =
1
B

B∑

j=1

(β̂∗j − β̄∗)(β̂∗j − β̄∗)>. (17)
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The probability limit of this bootstrap covariance matrix, as B →∞, is

plim
B→∞

(
1
B

B∑

j=1

(X>X)−1X>u∗ju
∗
j
>X(X>X)−1

)
= σ2

∗(X
>X)−1, (18)

where σ2
∗ is the variance of the bootstrap errors, which should be equal to s2 if the

error terms have been rescaled properly before resampling.

This example makes two things clear. First, it is just as necessary to make an appro-
priate choice of bootstrap DGP for covariance matrix estimation as for hypothesis
testing. In the presence of heteroskedasticity, the semiparametric bootstrap DGP
(10) is not appropriate, because (18) is not a valid estimator of the covariance matrix
of β̂. Second, when the errors are homoskedastic, so that (18) is valid, it is neither
necessary nor desirable to use the bootstrap to calculate a covariance matrix. Every
OLS regression package can calculate the matrix s2(X>X)−1. The semiparametric
bootstrap simply replaces s2 by an estimate that converges to it as B →∞.

The pairs bootstrap does lead to a valid covariance matrix estimator for the model
(13). In fact, it can readily be shown that, as B → ∞, the bootstrap estimate (17)
tends to the White estimator (14); see Flachaire (2002) for details. It therefore makes
little sense to use the pairs bootstrap when it is so easy to calculate the HCCME (14)
without doing any simulation at all. In general, it makes sense to calculate covariance
matrices via the bootstrap only when it is very difficult to calculate reliable ones in
any other way. The linear regression model is not such a case.

This raises an important theoretical point. Even when it does make sense to compute
a bootstrap standard error, a test based on it does not benefit from the asymptotic
refinements that accrue to a bootstrap test based on an asymptotically pivotal test
statistic. Consider a test statistic of the form

θ̂ − θ0

s∗θ
, (19)

where θ̂ is a parameter estimate, θ0 is the true value, and s∗θ is a bootstrap standard
error. When n1/2(θ̂ − θ0) is asymptotically normal, and the bootstrap DGP yields
a valid standard error estimate, the statistic (19) is asymptotically distributed as
N(0, 1). However, there is, in general, no reason to suppose that it yields more
accurate inferences in finite samples than a similar statistic that uses some other
standard error estimate.

It might seem natural to modify (19) by using a bias-corrected estimate of θ instead
of θ̂. Suppose that θ̄∗ is the mean of a set of bootstrap estimates θ∗j obtained by using
a parametric or semiparametric bootstrap DGP characterized by the parameter θ̂.
Then a natural estimate of bias is just θ̄∗ − θ̂. This implies that a bias-corrected
estimate is

θ̂∗ ≡ θ̂ − (θ̄∗ − θ̂) = 2θ̂ − θ̄∗. (20)
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In most cases, θ̂∗ is less biased than θ̂. However, the variance of θ̂∗ is

Var(θ̂∗) = 4 Var(θ̂) + Var(θ̄∗)− 4Cov(θ̂, θ̂∗),

which is greater than Var(θ̂) except in the extreme case in which

Var(θ̂) = Var(θ̂∗) = Cov(θ̂, θ̂∗).

In general, using the bootstrap to correct bias results in increased variance. MacKin-
non and Smith (1998) propose some alternative methods of simulation-based bias
correction, which sometimes work better than (20). Davison and Hinkley (1997)
discuss a number of other bias-correction methods.

7. More than one Dependent Variable

Although there is little difficulty in adapting the methods described so far to systems
of equations that define more than one dependent variable, it is not so simple to set
up adequate bootstrap DGPs when we are interested in only one equation of such a
system. Econometricians very frequently estimate a regression model using instru-
mental variables in order to take account of possible endogeneity of the explanatory
variables. If some or all of the explanatory variables are indeed endogenous, then
they, as well as the dependent variable of the regression being estimated, must be
explicitly generated by a bootstrap DGP. The question that arises is just how this
should be done.

Consider the linear regression model

yt = Xtβ + ut ≡ Ztβ + Ytγ + ut, (21)

where the variables in Zt are treated as exogenous and those in Yt as endogenous, that
is, correlated with the error term ut. If we form a set of instrumental variables Wt

where Wt contains Zt as a subvector and has at least as many additional exogenous
elements as there are endogenous variables in Yt, then the IV estimator

β̂IV ≡ (X>PWX)−1X>PW y (22)

is root-n consistent under standard regularity conditions, with asymptotic covariance
matrix

lim
n→∞

Var
(
n1/2(β̂IV − β0)

)
= σ2

0 plim
n→∞

(n−1X>PW X)−1,

where β0 is the true parameter vector and σ2
0 the true error variance. The estima-

tor (22) is asymptotically efficient in the class of IV estimators if the endogenous
variables Yt are related to the instruments by the set of linear relations

Yt = WtΠ + Vt, (23)
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where the error terms Vt are of mean zero and are, in general, correlated with ut.

If we are willing to assume that both (21) and (23) are correctly specified, then we
can treat them jointly as a system of equations simultaneously determining yt and Yt.
The parameters of the system can all be estimated, β by either (22) or a restricted
version of it if we wish to test a set of restrictions, and Π by least squares applied
to the reduced-form equations (23). The covariance matrix of ut and Vt, under the
assumption that the pairs [ut, Vt] are IID, can be estimated using the squares and
cross-products of the residuals given by estimating (21) and (23).

If we let the estimated covariance matrix be Σ̂, then a possible parametric bootstrap
DGP is

y∗t = Ztβ̂ + Y ∗
t γ̂ + u∗t , Y ∗

t = WtΠ̂ + V ∗
t ,

[
u∗t
V ∗

t

]
∼ NID(0, Σ̂). (24)

Similarly, a possible semiparametric bootstrap DGP looks just like (24) except that
the bootstrap errors [u∗t , V ∗

t ] are obtained by resampling from the pairs [ût, V̂t] of
residuals from the estimation of (21) and (23). If there is no constant in the set of
instruments, then it is necessary to recenter these residuals before resampling. Some
sort of rescaling procedure could also be used, but it is not at all clear whether doing
so would have any beneficial effect.

Another nonparametric approach to bootstrapping a model like (21) is to extend the
idea of the pairs bootstrap and construct bootstrap samples by resampling from the
tuples [yt, Xt, Wt]. This method makes very weak assumptions about the joint dis-
tribution of these variables, but it does assume that they are IID across observations.
As we saw in Section 5, the IID assumption allows for heteroskedasticity conditional
on the exogenous variables Wt.

The parametric and semiparametric bootstrap procedures described above for the
model specified by equations (21) and (23) can easily be extended to deal with any
fully specified set of seemingly unrelated equations or simultaneous equation system.
As long as the model provides a mechanism for generating all of its endogenous
variables, and the parameters can be consistently estimated, a bootstrap DGP for
such a model is conceptually no harder to set up than for a single-equation model.
However, not much is yet known about the finite-sample properties of bootstrap
procedures in multivariate models. See Rilstone and Veall (1996), Inoue and Kilian
(2002), and MacKinnon (2002) for limited evidence about a few particular cases.

8. Bootstrap DGPs for Dependent Data

The bootstrap DGPs that we have discussed so far are not valid when applied to
models with dependent errors having an unknown pattern of dependence. For such
models, we wish to specify a bootstrap DGP which generates correlated error terms
that exhibit approximately the same pattern of dependence as the real errors, even
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though we do not know the process that actually generated the errors. There are
two main approaches, neither of which is entirely satisfactory in all cases.

The first approach is a semiparametric one called the sieve bootstrap. It is based
on the fact that any linear, invertible time-series process can be approximated by
an AR(∞) process. The idea is to estimate a stationary AR(p) process and use this
estimated process, perhaps together with resampled residuals from the estimation
of the AR(p) process, to generate bootstrap samples. For example, suppose we are
concerned with the static linear regression model (13), but the covariance matrix
Ω is no longer assumed to be diagonal. Instead, it is assumed that Ω can be well
approximated by the covariance matrix of a stationary AR(p) process, which implies
that the diagonal elements are all the same.

In this case, the first step is to estimate the regression model, possibly after imposing
restrictions on it, so as to generate a parameter vector β̂ and a vector of residuals û
with typical element ût. The next step is to estimate the AR(p) model

ût =
p∑

i=1

ρi ût−i + εt (25)

for t = p + 1, . . . , n. In theory, the order p of this model should increase at a certain
rate as the sample size increases. In practice, p is most likely to be determined either
by using an information criterion like the AIC or by sequential testing. Care should
be taken to ensure that the estimated model is stationary. This may require the use
of full maximum likelihood to estimate (25), rather than least squares.

Estimation of (25) yields residuals and an estimate σ̂2
ε of the variance of the εt, as

well as the estimates ρ̂i. We may use these to set up a variety of possible bootstrap
DGPs, all of which take the form

y∗t = Xtβ̂ + u∗t .

There are two choices to be made, namely, the choice of parameter estimates β̂
and the generating process for the bootstrap errors u∗t . One choice for β̂ is just
the OLS estimates from running (13). But these estimates, although consistent, are
not efficient if Ω is not a scalar matrix. We might therefore prefer to use feasible
GLS estimates. An estimate Ω̂ of the covariance matrix can be obtained by solving
the Yule-Walker equations, using the ρ̂i in order to obtain estimates of the auto-
covariances of the AR(p) process. Then a Cholesky decomposition of Ω̂−1 provides
the feasible GLS transformation to be applied to the dependent variable y and the
explanatory variables X in order to compute feasible GLS estimates of β, restricted
as required by the null hypothesis under test.

For observations after the first p, the bootstrap errors are generated as follows:

u∗t =
p∑

i=1

ρ̂iu
∗
t−i + ε∗t , t = p + 1, . . . , n, (26)
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where the ε∗t can either be drawn from the N(0, σ̂2
ε ) distribution for a parametric

bootstrap or resampled from the residuals ε̂t from the estimation of (25), preferably
rescaled by the factor

√
n/(n− p). Before we can use (26), of course, we must

generate the first p bootstrap errors, the u∗t , for t = 1, . . . , p.

One way to do so is just to set u∗t = ût for the first p observations of each bootstrap
sample. This is analogous to what we proposed for the bootstrap DGP (10) used
in conjunction with the dynamic model (9): We initialize (26) with fixed starting
values given by the real data. Unless we are sure that the AR(p) process is really
stationary, rather than just being characterized by values of the ρi that correspond
to a stationary covariance matrix, this is the only appropriate procedure.

If we are happy to impose full stationarity on the bootstrap DGP, then we may draw
the first p values of the u∗t from the p--variate stationary distribution. This is easy to
do if we have solved the Yule-Walker equations for the first p autocovariances, pro-
vided that we assume normality. If normality is an uncomfortably strong assumption,
then we can initialize (26) in any way we please and then generate a reasonably large
number (say 200) of bootstrap errors recursively, using resampled rescaled values of
the ε̂t for the ε∗t . We then throw away all but the last p of these errors and use those
to initialize (26). In this way, we approximate a stationary process with the correct
estimated stationary covariance matrix, but with no assumption of normality.

The sieve bootstrap method has been used to improve the finite-sample properties of
unit root tests by Park (2003) and Chang and Park (2003), but it has not yet been
widely used in econometrics. The fact that it does not allow for heteroskedasticity
is a limitation. Moreover, AR(p) processes do not provide good approximations
to every time-series process that might arise in practice. An example for which the
approximation is exceedingly poor is an MA(1) process with a parameter close to −1.
The sieve bootstrap cannot be expected to work well in such cases. For more detailed
treatments, see Bühlmann (1997, 2002), Choi and Hall (2000), and Park (2002).

The second principal method of dealing with dependent data is the block bootstrap,
which was originally proposed by Künsch (1989). This method is much more widely
used than the sieve bootstrap. The idea is to divide the quantities that are being
resampled, which might be either rescaled residuals or [y, X] pairs, into blocks of
b consecutive observations, and then resample the blocks. The blocks may be either
overlapping or nonoverlapping. In either case, the choice of block length, b, is evi-
dently very important. If b is small, the bootstrap samples cannot possibly mimic
the patterns of dependence in the original data, because these patterns are broken
whenever one block ends and the next begins. However, if b is large, the bootstrap
samples will tend to be excessively influenced by the random characteristics of the
actual sample.

For the block bootstrap to work asymptotically, the block length must increase as
the sample size n increases, but at a slower rate, which varies depending on what the
bootstrap samples are to be used for. In some common cases, b should be proportional
to n1/3, but with a factor of proportionality that is, in practice, unknown. Unless
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the sample size is very large, it is generally impossible to find a value of b for which
the bootstrap DGP provides a really good approximation to the unknown true DGP.

A variation of the block bootstrap is the stationary bootstrap proposed by Politis
and Romano (1994), in which the block length is random rather than fixed. This
procedure is commonly used in practice. However, Lahiri (1999) provides both the-
oretical arguments and limited simulation evidence which suggest that fixed block
lengths are better than variable ones and that overlapping blocks are better than
nonoverlapping ones. Thus, at the present time, the procedure of choice appears to
be the moving-block bootstrap, in which there are n−b+1 blocks, the first containing
observations 1 through b, the second containing observations 2 through b + 1, and
the last containing observations n− b + 1 through n.

It is possible to use block bootstrap methods with dynamic models. For example,
consider the dynamic linear regression model (9). Let

Zt ≡ [yt, yt−1,Xt].

For this model, we could construct n− b + 1 overlapping blocks

Z1 . . . Zb, Z2 . . . Zb+1, . . . . . . , Zn−b+1 . . . Zn

and resample from them. This is the moving-block analog of the pairs bootstrap.
When there are no exogenous variables and several lagged values of the dependent
variable, the Zt are themselves blocks of observations. Therefore, this method is
sometimes referred to as the block-of-blocks bootstrap. Notice that, when the block
size is 1, the block-of-blocks bootstrap is simply the pairs bootstrap adapted to
dynamic models, as in Gonçalves and Kilian (2004).

Block bootstrap methods are conceptually simple. However, there are many differ-
ent versions, most of which we have not discussed, and theoretical analysis of their
properties tends to require advanced techniques. The biggest problem with block
bootstrap methods is that they often do not work very well. We have already pro-
vided an intuitive explanation of why this is the case. From a theoretical perspective,
the problem is that, even when the block bootstrap offers higher-order accuracy than
asymptotic methods, it often does so to only a modest extent. The improvement is
always of higher order in the independent case, where blocks should be of length 1,
than in the dependent case, where the block size must be greater than 1 and must
increase at an optimal rate with the sample size. See Hall, Horowitz, and Jing (1995)
and Andrews (2002, 2004), among others.

There are several valuable, recent surveys of bootstrap methods for time-series data.
These include Bühlmann (2002), Politis (2003), and Härdle, Horowitz, and Kreiss
(2003). Surveys that are older or deal with methods for time-series data in less depth
include Li and Maddala (1996), Davison and Hinkley (1997, Chapter 8), Berkowitz
and Kilian (2000), Horowitz (2001), and Horowitz (2003).
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9. Confidence Intervals

A confidence interval at level 1− α for some parameter θ can be constructed as the
set of values of θ0 such that the hypothesis θ = θ0 is not rejected by a test at level α.
This suggests that confidence intervals can be constructed using bootstrap methods,
and that is indeed the case. Suppose that θ̂ is an estimate of θ, and ŝθ is its estimated
standard error. Then, in many cases, the asymptotic t statistic

τ =
θ̂ − θ0

ŝθ
(27)

is pivotal or asymptotically pivotal when θ0 is the true value of θ. As an example, θ
might be one of the regression parameters of a classical normal linear regression model
like (2). In this case, if θ̂ is the OLS estimator of θ, and ŝθ is the usual OLS standard
error, we know that τ follows the Student’s t distribution with a degrees-of-freedom
parameter that depends only on the sample size.

When the distribution of τ is known, we can find the α/2 and 1 − α/2 quantiles
of that distribution, say tα/2 and t1−α/2, and use them to construct the confidence
interval [

θ̂ − ŝθt1−α/2, θ̂ − ŝθtα/2

]
. (28)

This interval contains all the values of θ0 that satisfy the inequalities

tα/2 ≤
θ̂ − θ0

ŝθ
≤ t1−α/2. (29)

If θ0 is the true parameter value, then the probability that θ̂ satisfies (29) is exactly
1 − α, by construction, and so the coverage probability of the interval (28) is also
1 − α. At first glance, the confidence interval (28) may seem odd, because the
lower limit depends on an upper-tail quantile and the upper limit depends on a
lower-tail quantile. This seeming inversion is not necessary when τ has a symmetric
distribution, and is sometimes hidden when (28) is written in other ways which may
be more familiar, but it is essential with an asymmetric distribution.

Whether or not the distribution of τ is known, we can replace tα/2 and t1−α/2 by the
corresponding quantiles of the empirical distribution of B bootstrap statistics t∗j . It
is important to note that the bootstrap statistics must test a hypothesis that is true
of the bootstrap DGP. This point was discussed in connection with the conventional
(Freedman, 1981) version of the pairs bootstrap, in which the hypothesis tested is
that θ = θ̂, not θ = θ0.

If 1
2α(B + 1) is an integer, and if τ is an exact pivot, using the quantiles of a bootstrap

distribution leads to a confidence interval with coverage probability of exactly 1−α,
just as a P value based on an exact pivot gives a rejection probability equal to
a desired significance level α if α(B + 1) is an integer. In all cases, the bootstrap
quantiles are calculated as the order statistics of rank (α/2)(B+1) and (1−α/2)(B+1)
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in the set of the t∗j sorted from smallest to largest. If B = 199 and α = .05,
for example, the empirical quantiles are t∗5 and t∗195. Thus a confidence interval
comparable to (28) has the form

[
θ̂ − ŝθ t∗(1−α/2)(B+1), θ̂ − ŝθ t∗α/2(B+1)

]
. (30)

Such an interval is called a Monte Carlo confidence interval if τ is an exact pivot,
and a bootstrap confidence interval otherwise. The cost of using quantiles estimated
with a finite number of bootstrap statistics rather than the true quantiles of the
distribution of τ is that, on average, confidence intervals constructed using the former
are longer than ones constructed using the latter.

If the distribution of τ is believed to be symmetric around the origin, we can use the
bootstrap confidence interval

[
θ̂ − ŝθ|t∗|(1−α)(B+1), θ̂ + ŝθ|t∗|(1−α)(B+1)

]
. (31)

instead of (30). Here |t∗|(1−α)(B+1) denotes number (1−α)(B+1) in the sorted list of
the absolute values of the t∗j . This symmetric confidence interval is related to a test
based on the bootstrap P value (4) in the same way that the equal-tailed confidence
interval (30) is related to a test based on (5).

The method of constructing bootstrap confidence intervals described above is often
called the bootstrap t method or percentile t method, because it involves percentiles
(that is, quantiles) of the distribution of bootstrap t statistics. If τ is merely asymp-
totically pivotal, bootstrap t confidence intervals are subject to coverage error. But
just as bootstrap P values based on an asymptotic pivot have an ERP that bene-
fits from asymptotic refinements, so do the coverage errors of bootstrap t confidence
intervals decline more rapidly as the sample size increases than those of confidence
intervals based on the nominal asymptotic distribution of τ ; see Hall (1992).

The confidence interval (28) is obtained by “inverting” the test for which the t statistic
(27) is the test statistic, in the sense that the interval contains exactly those values
of θ0 for which a two-tailed test of the hypothesis θ = θ0 based on (27) is not rejected
at level α. If instead we chose to invert a one-tailed test, we would obtain a confidence
interval open to infinity in one direction. In this case, we would base the interval on
the α or 1− α quantile of the bootstrap distribution.

The inversion of the test based on (27) is particularly easy to carry out because (27)
depends linearly on θ0. This is generally true if one uses an asymptotic t statistic. But
such statistics are associated with Wald tests, and they may therefore suffer from the
well-known disadvantages of Wald tests. It is not necessary to limit oneself to Wald
tests when constructing confidence intervals. Davison, Hinkley, and Young (2003),
for example, discuss the construction of confidence intervals based on inverting the
signed square root of a likelihood ratio statistic. In general, let τ(y, θ0) denote a test
statistic that depends on data y and tests the hypothesis that θ = θ0. For any given
distribution of τ(y, θ0) under the null hypothesis, exact, asymptotic, or bootstrap,
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the (two-tailed) confidence interval obtained by inverting the test based on τ(y, θ0)
is the set of values of θ0 that satisfy the inequalities

tα/2 ≤ τ(y, θ0) ≤ t1−α/2,

where, as before, tα/2 and t1−α/2 are quantiles of the given distribution. It is clear
that, when τ(y, θ) is a nonlinear function of θ, solving the equations

τ(y, θ+) = tα/2 and τ(y, θ−) = t1−α/2

that implicitly define the upper and lower limits θ± of the confidence interval may be
more computationally demanding than solving the equations that result from (29) in
order to obtain the interval (28).

A great many other procedures have been proposed for constructing bootstrap confi-
dence intervals. These include two very different procedures that are both confusingly
called the percentile method by different authors. Neither of these is to be recom-
mended in most cases, because they both involve inverting quantities that are not
even asymptotically pivotal; see Hall (1992). They also include a number of more
complicated techniques, such as the grid bootstrap of Hansen (1999). References that
discuss a variety of methods for constructing confidence intervals include DiCiccio
and Efron (1996) and Davison and Hinkley (1997). For reasons of space, however,
we will not discuss any of them.

A bootstrap t confidence interval may be unreliable if τ is too far from being pivotal
in finite samples. If so, a natural way to obtain a more reliable interval is to invert
a test statistic that is closer to being pivotal. An approach that avoids the compu-
tational cost of inverting something other than a Wald test is to apply a nonlinear
transformation to the parameter of interest, form a confidence interval for the trans-
formed parameter, and then map from that interval to one for the original parameter.
This can work well if the t statistic for the transformed parameter is closer to being
pivotal than the one for the original parameter.

10. The Performance of Bootstrap Methods

The bootstrap, whether used for hypothesis testing or the construction of confidence
intervals, relies on the choice of a suitable bootstrap DGP for generating simulated
data. We want the simulated data to have statistical properties as close as possible
to those of the actual data, under the assumption that the latter were generated by a
DGP that satisfies the requirements of the hypothesis under test or of the model for
the parameters of which confidence intervals are sought. Consequently, we have tried
to emphasize the importance of choosing a bootstrap DGP adapted to the problem
at hand. Problems can and do arise if it is difficult or impossible to find a suitable
bootstrap DGP. However, for many commonly used econometric models, it is not
hard to do so if one takes a modest amount of care.
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In this chapter, we have largely confined our discussion to linear models. This has
been purely in the interests of clarity. Nonlinear regression models, with or without
heteroskedasticity or serial correlation, can be handled using the sorts of bootstrap
DGPs we have described. The same is true of multivariate nonlinear systems. The
only disadvantage is that computing times are longer when nonlinear estimation is
involved, and even this disadvantage can be minimized by use of techniques that we
describe in Davidson and MacKinnon (1999b).

For a Monte Carlo test based on an exactly pivotal quantity, any DGP belonging
to the model for which that quantity is pivotal can serve as the bootstrap DGP.
We have seen that Monte Carlo tests are exact, and that Monte Carlo confidence
intervals have exact coverage, if B is chosen properly. Intuitively, then, we expect
bootstrapping to perform better the closer it is to a Monte Carlo procedure. This
means that the quantity that is bootstrapped should be as close as possible to being
pivotal, and that the bootstrap DGP should be as good an estimate as possible of
the true DGP. As we saw in Section 3, asymptotic refinements are available for the
bootstrap when both these requirements are met. This is the case for the parametric
bootstrap, which can be used with almost any fully parametric model. It is a natural
choice if estimation is by maximum likelihood, but it makes sense only if one is
confident of the specification of the model.

Once we get over the hurdle of finding a suitable bootstrap DGP, the delicate part of
bootstrapping is over, since we can use the general techniques laid out in this chapter
for using bootstrap samples to generate P values or confidence intervals.

In Section 2, we saw that exact Monte Carlo procedures are available for univariate
linear regression models with fixed regressors and IID normal errors, but that boot-
strap methods which allow for lagged dependent variables and/or nonnormal errors
are no longer exact. If we can use a parametric bootstrap, using reasonably precise
estimates of the nuisance parameters on which the distribution of the test statistic
depends, bootstrap tests and confidence intervals can be remarkably accurate. In
fact, numerous simulation experiments suggest that, for univariate regression models
with IID errors, bootstrap methods generally work extremely well. In particular, this
seems to be true for serial correlation tests (MacKinnon, 2002), tests of common fac-
tor restrictions (Davidson and MacKinnon, 1999b), and nonnested hypothesis tests
(Godfrey, 1998; Davidson and MacKinnon, 2002). It would be surprising if it were
not true for any sort of test on the parameters of a linear or nonlinear regression func-
tion, except perhaps in extreme cases like some of the ones considered by Davidson
and MacKinnon (2002).

Once we move out of the realm of IID errors, the performance of bootstrap methods
becomes harder to predict. The pairs bootstrap is very generally applicable when the
data are independent, but its finite-sample performance can leave a lot to be desired;
see, for example, MacKinnon (2002). The wild bootstrap is less widely applicable
than the pairs bootstrap, but it generally outperforms the latter, especially when the
F2 variant is used. However, it is generally not as reliable as resampling rescaled
residuals in the IID case.
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With dependent data, bootstrap methods often do not perform well at all. Neither
the sieve bootstrap nor the best available block bootstrap methods can be relied
upon to yield accurate inferences in samples of moderate size. Even for quite large
samples, they may perform little better than asymptotic tests, although there are
cases in which they do perform well. At this stage, all we can recommend is that
practitioners should, if possible, conduct their own simulation experiments, for the
specific model and test(s) they are interested in, to see directly whether the available
bootstrap procedures seem to yield reliable inferences.

Much modern bootstrap research deals with bootstrap failure, by which we mean that
a bootstrap DGP gives such a poor approximation to the true DGP that bootstrap
inference is severely misleading. It should be noted that a failure of one type of
bootstrap DGP does not imply that all bootstrap methods are bound to fail; in many
cases, a bootstrap failure has led to the development of more powerful methods. One
case in which bootstrap failure can be a serious problem in applied work is when the
true DGP generates random variables with fat tails. For instance, as long ago as 1987,
Athreya (1987) showed that resampling from data generated by a distribution with
an infinite variance does not allow asymptotically valid inference about the mean of
that distribution. Although better methods have been developed since then, fat tails
still constitute a serious challenge for conventional bootstrap techniques.

There is an enormous variety of methods for constructing bootstrap DGPs that we
have not been able to discuss here. Some interesting ones that potentially have
econometric applications are discussed in Davison, Hinkley, and Young (2003), Hu
and Kalbfleisch (2000), Lahiri (2003), Lele (2003), and Shao (2003). Nevertheless,
for some models, few or even none of the currently available methods may lead to
asymptotically valid inferences. Fewer still may lead to reasonably accurate inferences
in finite samples. Consequently, the bootstrap is an active research topic, and the
class of models for which the bootstrap can be effectively used is continually growing.
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