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Abstract

This paper investigates the relation between hypothesis testing and the construc-
tion of confidence intervals, with particular regard to bootstrap tests. In practice,
confidence intervals are almost always based on Wald tests, and consequently are
not invariant under nonlinear reparametrisations. Bootstrap percentile-t confidence
intervals are an instance of this. However, the (asymptotically) pivotal functions of
data and parameters on which likelihood ratio (LR) and Lagrange multiplier (LM)
tests depend can be used to construct parametrisation-invariant confidence intervals.
We show that, whenever an artificial regression can be used to find the restricted
estimates needed for LR and LM tests, the nonlinear equations that define the limits
of a confidence interval can be solved by an algorithm based on the same artificial
regression. The algorithm involves roughly as much computation for each interval
limit as is needed to find the restricted estimates.
Bootstrap tests are often more reliable when the bootstrap DGP is based on restricted
estimates. Inverting such tests to find a confidence interval is computationally in-
tensive, since many bootstrap samples must be generated for every set of restricted
estimates considered. We show how to combine artificial regression based bootstrap
testing with the algorithm for finding limits of confidence intervals.
This research was supported, in part, by grants from the Social Sciences and Humanities
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1. Introduction

It is commonly asserted that there is a duality between hypothesis testing and con-
fidence intervals, and that, for every result applying to one of these, there is an
analogous one applying to the other. This is true, of course, but it takes a certain
amount of interpretation to be made operational. It is more useful to say that a
confidence interval corresponds to a family of hypothesis tests, and that the P value
of a hypothesis test corresponds to a family of confidence intervals. We are concerned
here with the first part of this duality.

It is rare that, in practice, a confidence interval is constructed so as to correspond
to anything other than a family of Wald tests. This is true not only of conven-
tional asymptotic confidence intervals but also of conventional bootstrap confidence
intervals. There are some exceptions: Dufour (1997) promotes the use of confidence
sets based on Likelihood Ratio tests, and points out that similar procedures were
suggested more than half a century ago by Anderson and Rubin (1949). Most of-
ten, though, the computational simplicity of confidence intervals based on families of
Wald tests wins the day. This simplicity is bought at the price of non-invariance of
the confidence intervals under reparametrisation.

In this paper, we consider, from an algorithmic point of view, how to construct
confidence intervals based on other families of tests, especially Lagrange Multiplier
tests, and, for contexts other than maximum likelihood, generalised score tests. These
tests, like the Likelihood Ratio test, are invariant under reparametrisation, and so,
therefore, are confidence intervals based on them. The key to our approach is the
use of artificial regressions. It is very frequently possible to compute test statistics
by use of these, and we have shown in Davidson and MacKinnon (1999b) that the
time needed to compute bootstrap P values can be substantially reduced by their
use. The main contribution of this paper is to extend existing artificial regression
methods to the construction of confidence intervals.

In the following section, we look more closely at the connections between hypothesis
tests and confidence intervals. Then, in Section 3, we define what we mean by an
artificial regression, and construct algorithms that use them to compute confidence
intervals corresponding to families of Lagrange Multiplier and Likelihood Ratio tests.
The computational burden of these algorithms is comparable to that of the other
algorithms that use artificial regressions, such as obtaining nonlinear estimates or
computing Lagrange Multiplier test statistics. Section 4 moves on to bootstrap tests
and confidence intervals, and discusses the use of the estimating function bootstrap
(Hu and Kalbfleisch (2000)) for constructing them. This method generates bootstrap
statistics in a way that does not depend on restricted parameter estimates, and so
another method is developed, in which each test of the family used to construct the
confidence interval is based on bootstrapping with restricted estimates. Artificial
regression based algorithms are presented for both sorts of interval, and it is seen
that the estimating function bootstrap is a good deal less computationally costly
than the other method. In Section 6, simulation experiments are presented in which
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different sorts of bootstrap confidence interval are compared for a parameter of a
nonlinear regression model. Section 7 contains a few concluding remarks.

2. Relation between Hypothesis Tests and Confidence Intervals

Denote by θ the parameter for which it is desired to construct a confidence interval
with nominal coverage of 1 − α. Suppose that, for each specific value θ0 of the
parameter, we can conduct a test of the hypothesis that θ = θ0 with nominal level α.
Denote by T (θ0) the (binary) result of the test: T (θ0) = 1 if the test rejects the
hypothesis that θ = θ0, 0 if not. Then the confidence interval that corresponds to
the family of hypothesis tests is the set of those values θ0 for which the hypothesis
that θ = θ0 is not rejected by the appropriate test, that is, the set

{θ | T (θ) = 0}. (1)

The coverage of this confidence interval is exactly 1 − α if each test in the family
rejects with probability exactly α under its own null.

A confidence interval for θ is most commonly constructed by computing an estimate θ̂
of θ and the standard error σ̂θ of the estimate. The confidence interval then takes
the form

[θ̂ − c1−α/2 σ̂θ, θ̂ − cα/2σ̂θ], (2)

where c1−α/2 and cα/2 are respectively the 1−α/2 and α/2 quantiles of the standard
normal, or possibly the Student’s-t distribution with appropriate degrees of freedom.
Implicitly, such a confidence interval corresponds to a family of two-tailed tests where
the test statistic for the null hypothesis that θ = θ0 is

τ(θ0) ≡ θ̂ − θ0

σ̂θ
. (3)

Under the null, this ratio is asymptotically standard normal, although, in some cir-
cumstances, it may be preferable to use a t distribution, if it provides a better ap-
proximation to the finite-sample distribution. A two-tailed test rejects the null if the
statistic τ is in one of the tails of the chosen distribution, where the tails are defined
by the quantiles c1−α/2 and cα/2 in accordance with the chosen nominal level of the
test. It follows immediately that the set (1) becomes the interval (2) for this family
of tests, since the boundary points θ− and θ+ of (2) satisfy the equations

τ(θ+) = cα/2 and τ(θ−) = c1−α/2 (4)

which determine the values for which the test is at the margin between rejection and
non-rejection. Note that the upper limit of the interval is attained when the test
statistic reaches the lower critical value, and vice versa. This feature of the rela-
tion between hypothesis tests and confidence intervals requires special attention with
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asymmetric intervals, and has given rise to confusion in the past with certain imple-
mentations of the bootstrap; witness the so-called other percentile method discussed,
and condemned, by Hall (1992).

The statistic (3) is asymptotically pivotal , by which we mean that it has the property
that the right-hand side of (3), which is a function not only of the data through the
estimates θ̂ and σ̂θ but also directly of the parameter θ0, has the same asymptotic
distribution for all values of θ0. That is, if the data used to compute θ̂ and σ̂θ
are generated by a process for which the true parameter value is θ0, then τ(θ0),
with argument the same θ0, is asymptotically standard normal whatever the value
of θ0. Almost all test statistics commonly used in econometrics are asymptotically
pivotal, although it is rare that they should be exactly pivotal. Use of an at least
asymptotically pivotal statistic is, of course, an important condition for asymptotic
refinements when the bootstrap is used; see Beran (1988).

The family of tests based on the statistics (3) are Wald tests, based on estimates
obtained under the alternative hypothesis. It is well known, see Gregory and Veall
(1985), Lafontaine and White (1986), and Phillips and Park (1988), that Wald tests
have a number of undesirable properties. In particular, they are not invariant under
nonlinear reformulations of the restrictions being tested. The consequence of this for
confidence intervals is that, if a new parameter φ is defined as a nonlinear function
of θ, by the transformation φ = g(θ) say, where g(·) is a nonlinear function, then the
confidence interval based on the estimate φ̂ ≡ g(θ̂) and the standard error

σ̂φ ≡ |g′(θ̂)|σ̂θ,

computed conventionally by the delta method, is not the image under g of the inter-
val (2) found for θ.

A useful way of expressing this failure of invariance is to observe that the asymptotic
pivot implicitly used in the construction of a confidence interval for φ is not the same
as that used for the interval for θ. Indeed, for φ, the asymptotic pivot is

φ̂− φ0

σ̂φ
=
g(θ̂)− g(θ0)

|g′(θ̂)| σ̂θ
. (5)

It is clear that the right-hand side of (5), for given θ0, is not deterministically related
to (3), on account of the dependence of the derivative g′(θ̂) on θ̂, unless g is an affine
function.

Bootstrap confidence intervals constructed using the percentile-t method are known
to suffer from the same failure of invariance under nonlinear reparametrisations,
and the reason for this is precisely that these confidence intervals, like conventional
asymptotic confidence intervals, correspond to a family of Wald tests. Indeed, the
only difference between an asymptotic confidence interval like (2) and a percentile-t
bootstrap confidence interval is that the standard normal or t distribution of the
asymptotic test is replaced by a simulated distribution generated by the bootstrap.
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Specifically, bootstrap data sets are generated, by resampling the original data or
otherwise, and, for each bootstrap data set, the value of the asymptotically piv-
otal statistic (3) is computed, using for θ0 the true value of the parameter for the
bootstrap samples. This true value is normally just the estimate θ̂ obtained from
the original data. The empirical distribution function of the bootstrap statistics is
then used in place of the standard normal distribution in constructing a confidence
interval. In particular, the quantities c1−α/2 and cα/2 are now quantiles of the empir-
ical distribution. Since this distribution is usually asymmetric, the bootstrap opens
the possibility of constructing an asymmetric confidence interval, although this is
by no means either necessary or desirable in all circumstances. Whether or not the
bootstrap confidence interval is asymmetric, it is not invariant under a nonlinear
transformation of θ, for the same reason that the asymptotic interval is not invari-
ant, namely that the underlying asymptotic pivots (3) and (5) are random variables
that are not related deterministically.

A confidence interval of type (1) can be based on any family of tests capable of testing
the hypotheses θ = θ0 for all values of θ0 of interest. Rather than using a family of
Wald tests, it is perfectly possible, at least theoretically, to use a family of Likelihood
Ratio (LR) or Lagrange Multiplier (LM) tests. Since these tests are invariant under
nonlinear reformulations of the restrictions under test, the confidence intervals they
generate will also be invariant. There are reasons other than invariance for which
one might prefer LR or LM tests. Often their finite-sample properties are closer to
nominal than those of Wald tests; LR tests may be Bartlett correctable, etc.

A practical difficulty for the construction of a confidence interval based on, say, a
family of LM tests is that the equations (4) cannot be solved as simply as for a family
of Wald tests, for which the form of the statistic τ(θ) as an affine function of θ leads
to simple linear equations for the limits θ± of the confidence interval. These linear
equations are completely determined by θ̂ and σ̂θ, whereas, more generally, we have
to solve nonlinear equations that depend on more than just a parameter estimate
and its standard error.

3. The Role of Artificial Regressions

In many cases, the restricted estimates needed for the construction of an LM or
an LR test can be obtained by use of an iterative procedure based on an artificial
regression. We use the term “artificial regression” in the sense exposited in Davidson
and MacKinnon (2001), or earlier, but in a more limited context, in Davidson and
MacKinnon (1990). Briefly, an artificial regression that can be written as

r(θ) = R(θ)b + residuals (6)

is said to correspond to a parametrised model, with parameters θ, and an estimator
θ̂ of those parameters, if three conditions are satisfied:

(i) The estimator θ̂ is defined by the equations R(θ̂)>r(θ̂) = 0;

– 4 –



(ii) for any root-n consistent θ́, a consistent estimate of Var(plimn1/2(θ̂ − θ0)) is
given by n−1R(θ́)>R(θ́). Formally,

Var
(

plim
n→∞

n1/2(θ̂ − θ0)
)

= plim
n→∞

(
n−1R>(θ́)R(θ́)

)−1;

(iii) if b́ denotes the vector of estimates from the artificial regression (6) with regres-
sand and regressors evaluated at θ́, then

θ́ + b́ = θ̂ + op(n−1/2).

For more information on artificial regressions, see also Orme (1995). The third con-
dition, often called the one-step property , is what makes artificial regressions useful
for computing estimates, restricted or unrestricted, and a theorem proved in David-
son and MacKinnon (2001) shows their utility in hypothesis testing. Since we make
substantial use of it in this paper, we restate that theorem here. In the theorem
statement, and subsequently, vectors and matrices written with an affix, like ŕ for in-
stance, are to be interpreted as meaning r(θ́), where the vector or matrix is evaluated
at the value of the parameter vector distinguished by the appropriate affix.

Theorem 1: Let the parameter vector θ of a parametrised model be
partitioned as θ = [θ1

.... θ2]. Suppose that the artificial regression (6) corre-
sponds to this model and to some root-n consistent, asymptotically normal,
estimator of θ, and that the partition R = [R1 R2] of the regressor ma-
trix corresponds to the partition of θ. Then, in order to test the hypothesis
that θ2 = 0, one evaluates the variables of (6) at any root-n consistent es-
timate θ́ = [θ́1

.... 0] of the parameters of the null hypothesis, and computes
the statistic

ŕ>Ḿ1Ŕ2(Ŕ2
>Ḿ1Ŕ2)−1Ŕ2

>Ḿ1ŕ, (7)

where Ḿ1 ≡ I − Ŕ1(Ŕ1
>R1)−1Ŕ1

> is the orthogonal projection on to the
orthogonal complement of the space spanned by the columns of Ŕ1. The
statistic (7) is asymptotically distributed as χ2(r) under the null hypothesis,
where r is the dimension of θ2, that is, the number of degrees of freedom of
the test.

For models estimated by maximum likelihood, the statistic (7) is asymptotically
equivalent, under the null and local alternatives, to any of the classical test statistics.
More generally, (7) is asymptotically equivalent to more familiar test statistics com-
monly used in the context of extremum estimators of various sorts, such as GMM es-
timators. If the consistent estimate θ́ is in fact the ML estimate of the parameters
of the restricted model, the statistic (6) is a version of the classical LM statistic. For
other choices of θ́, it is a C(α) test; see Smith (1987) and Davidson and MacKinnon
(1991).
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For concreteness, consider a nonlinear regression model:

y = x(β1,β2) + u; u ∼ IID(0, σ2), (8)

where the parameter vector β is partitioned as β = [β1
.... β2], and we wish to test the

hypothesis that β2 = 0. An artificial regression that corresponds to the nonlinear
least squares estimator of β is the well-known Gauss-Newton regression (GNR), which
can be written as

y − x(β) = X1(β)b1 +X2(β)b2 + residuals, (9)

where the matrices X1(β) and X2(β) are the Jacobians of the vector x(β) of regres-
sion functions with respect to β1 and β2 respectively. Write the restricted NLS esti-
mator of (8) as β̃ ≡ [β̃1

.... 0]. If the GNR (9) is evaluated at β̃, then asymptotically
equivalent versions of the LM statistic for the hypothesis β2 = 0 include n (the sam-
ple size) times the uncentred R2 of (9), and the ratio of the explained sum of squares
to the estimated error variance; see Davidson and MacKinnon (2001) for more details.

For the purposes of a confidence interval , rather than a confidence region in which
more than one parameter is involved, the most straightforward statistic to use is just
the t statistic associated with the column of X(β̃) that corresponds to what we can
now write as the scalar parameter β2. The very simplest case one can consider is that
in which β is the only parameter of the model. In that case, the testing regression
can be written as

y − x(β0) = xβ(β0)b + residuals, (10)

in what should be obvious notation, and the test statistic for testing the hypothesis
that β = β0 is the t statistic from this regression, which we may conveniently denote
by τ(β0). The limits of the confidence interval defined by the family of LM tests
generated as β0 varies are then the solutions to the equations

τ(β−) = c1−α/2 and τ(β+) = cα/2, (11)

where the critical values c1−α/2 and cα/2 are quantiles of the standard normal distri-
bution, or a t distribution, or a bootstrap distribution.

Just this approach to the construction of confidence intervals is proposed in a recent
interesting paper by Hu and Kalbfleisch (2000), on what they call the estimating func-
tion bootstrap. Much of the material in this section is inspired by their approach,
which can be seen to apply more generally than just to the estimating function boot-
strap. Hu and Kalbfleisch (henceforth HK) show that confidence intervals defined
by solving equations like (11) for suitable asymptotically pivotal statistics, and with
critical values defined by a bootstrap distribution, can provide coverage much closer
to nominal than can conventional bootstrap percentile-t confidence intervals.

Since the equations (11) for the artificial regression (10) are in general rather compli-
cated nonlinear equations, some sort of nonlinear algorithm is needed to solve them.
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The Gauss-Newton algorithm can be used to find the unrestricted estimate β̂. With
some suitable starting point β(0), the algorithm uses an iterative procedure with the
following updating rule at step i:

β(i+1) = β(i) + b(i),

where b(i) is the OLS estimate from the GNR (10), evaluated at β(i). Once b(i) is suf-
ficiently close to zero, according to some stopping rule, the algorithm has considered
to have converged. The standard error σ̂β is just the standard error given by (10) at
convergence.

It is not hard to modify this Gauss-Newton algorithm so as to converge to one of the
limits β± of the desired confidence interval. For the upper limit, a sensible starting
point, because it is trivial to compute, is the upper limit β̂− σ̂βcα/2 of the interval (2)
based on Wald tests. Then, at step i of the iterative procedure, the updating rule is

β(i+1) = β(i) + (t(i) − cα/2)σ(i)
β , (12)

where t(i) is the t statistic from the GNR (10) with variables evaluated at β(i). When
the rule (12) converges with β(i+1) = β(i), it must be the case that t(i) = cα/2, since
σ

(i)
β 6= 0. It then follows that β(i) = β+, since, when (10) is evaluated at β(i), the
t statistic t(i) is the LM test for the hypothesis that β = β(i).

The rule (12) can be seen to be reasonable, in the sense that it can be expected to
converge faster than other rules that converge to a condition in which t(i) = cα/2, by
considering the special case of a linear regression, for which (10) becomes

y − xβ = xb + residuals.

Note that the standard error σ̂β from this regression is always the same, whatever
the value of β at which the regressand is evaluated. The t statistic is the estimate b̂
divided by σ̂β , and b̂ is β̂ − β, where β̂ is the OLS parameter estimator. Let β(0) be
the starting point of the algorithm. Then rule (12) gives

β(1) = β(0) + (b̂/σ̂β − cα/2)σ̂β

= β(0) + b̂− σ̂βcα/2
= β(0) + β̂ − β(0) − σ̂βcα/2 = β̂ − σ̂βcα/2.

In the linear case, the confidence interval corresponding to the family of LM tests is
the same as that corresponding to the family of Wald tests, and so we see that the
upper limit β+ is reached in one single iteration from an arbitrary starting point.
For the lower limit, the obvious starting point is the lower limit of the Wald interval,
and, in the updating rule (12), cα/2 is replaced by c1−α/2. A convenient convergence
criterion (in nonlinear cases) is just t(i) − cα/2, or the analogous expression for the
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lower limit. When the absolute value of this expression is smaller than some suitably
small value, like 10−6, the algorithm is terminated.

It turns out to be quite easy to extend the algorithm to cases in which there are other
parameters than the one for which a confidence interval is desired. This is the case
treated by Hu and Kalbfleisch (2000) under the heading of “Nuisance Parameters.”
Consider again the GNR (9) for the case in which β2 is a scalar parameter. With
suitable notational adjustments, (9) becomes

y − x(β1, β2) = X1(β1, β2)b1 + x2(β1, β2)b2 + residuals. (13)

In order to obtain an LM test for the hypothesis β2 = β0
2 , the variables of (13) should

be evaluated at β2 = β0
2 and β1 = β1(β0

2), where this last expression denotes the
restricted estimates of β1 under the assumption that β2 = β0

2 . It is precisely the need
to evaluate β1(β2) for each candidate value of β2 that makes it harder to construct
a confidence interval based on a family of tests other than Wald tests. The virtue of
the artificial regression methodology is that it provides a single iterative procedure
such that, at convergence, β2 is equal to one of the limits of the desired confidence
interval, and β1 = β1(β2).

The parameters β1 and β2 are first estimated, using the GNR or otherwise, so as to
obtain estimates β̂1 and β̂2, along with the standard error σ̂2 of β̂2. The starting
point for the algorithm is then β(0)

1 = β̂1, and β(0)
2 = β̂2− σ̂2cα/2 for the upper limit,

with an analogous expression for the lower limit. Then, at step i of the iterative
procedure, we update as follows. The GNR (13) is modified so that the last regressor
is replaced by its orthogonal projection on to the orthogonal complement of the space
spanned by the other regressors. This gives

y − x(β(i)
1 , β

(i)
2 ) = X1(β(i)

1 , β
(i)
2 )b1 +M (i)

1 x2(β(i)
1 , β

(i)
2 )b2 + residuals, (14)

where M (i)
1 projects on to the orthogonal complement of the columns of the ma-

trix X1(β(i)
1 , β

(i)
2 ). The easiest way to perform the modification is to evaluate the

variables of (13) as usual, then to regress the last regressor on the others, and to
use the residuals from this auxiliary regression as the last regressor in (14). After
running (14) and obtaining the OLS estimates b(i)

1 and b(i)2 , updating follows the rule

β
(i+1)
1 = β

(i)
1 + b(i)

1 , and

β
(i+1)
2 = β

(i)
2 + (t(i)2 − cα/2)σ(i)

2 ,
(15)

where t
(i)
2 and σ

(i)
2 are respectively the t statistic and standard error for the last

regressor in (14). A convergence criterion can be based on the absolute value of t(i)2 −
cα/2 and the absolute values of the other t statistics in (14); either the sum of these
absolute values or the sum of their squares would be appropriate.

When the procedure defined by (15) converges, the LM test statistic t2 is equal to
the critical value cα/2, as required. In addition, b1 = 0. Since the last regressor
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in (14) is orthogonal to the others, the estimate of b1 is the same as the one we
would obtain if the last regressor were to be omitted from the regression. If that
estimate is zero, then this implies that the regressors X1(β1, β2) are orthogonal to
the regressand y − x(β1, β2). These orthogonality conditions are exactly the first-
order conditions defining the restricted estimates of β1. At convergence, therefore,
we have β1 = β1(β2), again as required. Note that this result does not hold unless
the last regressor in (14) is orthogonal to the others.

The procedure for basing a confidence interval on a family of LR tests is, for the case
of a nonlinear regression, only slightly different from that for LM tests. If we denote
by SSR(β1, β2) the sum of squared residuals from the model (8), the asymptotically
pivotal function used by LR tests is

τ(β2) ≡ n log
(SSR(β1(β2), β2)

SSR(β̂1, β̂2)

)
. (16)

Since the nominal distribution of this statistic is χ2(1) rather than standard normal,
the equation defining the limits of the confidence interval is slightly different. It is

τ(β2) = c1−α, (17)

where c1−α is now the 1 − α quantile of the χ2(1) distribution. The equation (17)
now has two solutions, one the lower, the other the upper, bound of the interval.
Using the explicit form of (16), (17) becomes

SSR
(
β1(β2), β2

)
= SSR(β̂1, β̂2) exp(c1−α/n).

In the notation of (14), the derivative of the left-hand side of this equation with
respect to β2 is

−2x2
>(β1(β2), β2)M1

(
y − x(β1(β2), β2)

)
,

and so the updating rule for β2 in (15) can be replaced by an ordinary Newton step:

β
(i+1)
2 = β

(i)
2 +

SSR
(
β1(β(i)

2 ), β(i)
2

)− SSR(β̂1, β̂2) exp(c1−α/n)

2x2
>(β1(β(i)

2 ), β(i)
2 )M (i)

1

(
y − x(β1(β(i)

2 ), β(i)
2 )
) ,

while that for β1 remains unchanged. Note that SSR(β1(β(i)
2 ), β(i)

2 ) is just the sum
of squared residuals from the modified GNR (14) evaluated at (β1(β(i)

2 ), β(i)
2 ), that

is, the GNR used at step i of the iterative procedure.

Although the example we have treated in detail in this section is the nonlinear regres-
sion model, the same algorithms can be applied to any model for which an artificial
regression obeying the three conditions set out at the beginning of this section exists.
For LM tests, the algorithm can be applied unaltered; for LR tests, the additional
necessary information is the loglikelihood function and its derivative with respect to
the parameter of interest.
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4. The Bootstrap

The most straightforward application of the methodology developed in the preceding
section to bootstrap confidence intervals is to the estimating function bootstrap of
HK. They assume that the estimates of the k --vector θ of parameters of a given model
are defined by a set of estimating equations, which can be written as

s(θ) = 0, (18)

where the k --vector s(θ) of estimating functions depends implicitly on the data. The
estimator θ̂ is defined as the solution of the equations (18). Suppose that θ is parti-
tioned as θ = [θ1

.... θ2], as in the statement of Theorem 1. Then it is further supposed
that s(θ) can be partitioned as s(θ) = [s1(θ) .... s2(θ)], conformably with the parti-
tion of θ. For fixed θ2, the restricted estimates of θ1 are defined by the estimating
equations s1(θ1,θ2) = 0, of which the solution can be written as θ̃1 = θ1(θ2). Then
the vector s2

(
θ1(θ2),θ2

)
of the remaining estimating functions is, under very mild

regularity conditions, of expectation zero if evaluated at the true θ2, and can be com-
bined with a suitable covariance matrix estimate to provide an asymptotically pivotal
statistic with an asymptotic χ2 distribution. If θ2 is scalar, then an asymptotically
standard normal asymptotic pivot can be constructed in the usual manner.

HK give general instructions as to how to obtain bootstrap estimates of the distribu-
tion of such asymptotic pivots. It is then possible to construct a confidence region for
a vector θ2, or a confidence interval for a scalar θ2, by means of an equation setting
the asymptotic pivot to the appropriate critical value of the bootstrap distribution.
They show that the coverage error of such regions or intervals is O(n−3/2) as the
sample size n tends to infinity, this being the usual order of magnitude of the error
made by the bootstrap when used for a two-tailed test with an asymptotic pivot.

If the estimating functions are the components of the score vector for a model esti-
mated by maximum likelihood, then it is clear that HK’s pivot is just an LM test
statistic. For other estimators, the pivot is a test statistic analogous to the classi-
cal LM statistic; in the rest of the paper, we will not distinguish between classical
LM statistics and their analogues in contexts other than that of maximum likelihood.

HK recommend a particular way of obtaining the bootstrap distribution of the
statistic. They assume that the components of the estimating functions s(θ) are
sums of independent contributions from the observations contained in the sample:
s(θ) = n−1/2

∑n
t=1 gt(θ). Let zt ≡ gt(θ̂). Then a bootstrap sample (z∗1 , . . . , z

∗
n) is

obtained by resampling the zt. The bootstrap distribution is the empirical distribu-
tion of the quantities τ∗ defined as

τ∗ = (s∗)>(U∗)−s∗,

where s∗ ≡ n−1/2
∑n
t=1 z

∗
t and (U∗)− is the Moore-Penrose generalised inverse of a

covariance matrix based on the bootstrap covariance matrix

V ∗ = n−1
n∑
t=1

(z∗t − z̄∗)(z∗t − z̄∗)>,
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with z̄∗ ≡ n−1
∑n
t=1 z

∗
t ; see HK for details. In some circumstances, HK suggest that

it may be desirable for reasons of efficiency to use a different definition of V ∗.

If HK’s recommendation regarding the bootstrap distribution is followed, the method
of the preceding section for constructing confidence intervals can be applied to it
unchanged. For the case of a scalar θ2, the critical values cα/2 and c1−α/2 are quantiles
of the bootstrap distribution of an asymptotically standard normal statistic rather
than those of the standard normal or t distributions. These need to be evaluated
only once, and, that done, the iterative procedure can be used as described, since the
statistic is just an LM statistic. The possibility of determining the critical values of
the bootstrap distribution just once, without the need to perform a possibly costly
nonlinear estimation for each bootstrap sample, is one of the great virtues of HK’s
estimating function bootstrap.

However, although the confidence interval does indeed correspond to a family of tests
each with its own null hypothesis, the bootstrap DGP , that is, the data-generating
process for the bootstrap statistics, is the same for each null. At first glance, this
seems to violate the principle by which the bootstrap DGP must satisfy the null hy-
pothesis, but since the bootstrap estimating functions s∗ are computed by resampling
from a set which by construction has mean zero, the violation is only apparent.

Despite this, it is in general desirable for the bootstrap DGP, to the extent that it
depends on parameters, to be based on parameter estimates computed under the null
hypothesis that is to be tested. Davidson and MacKinnon (1999a) show that this
can in many cases lead to an additional bootstrap refinement. Implementing this
suggestion may however be computationally costly. To see why, observe that it is
an analogous requirement that makes it more computationally demanding to use a
family of LM tests than a family of Wald tests to construct a confidence interval.
For each limit of the interval, it is necessary to consider a statistic that depends on
the restricted estimates of the other parameters; these depend on what restriction
is to be imposed, and so are different, not only for the two limits of the confidence
interval, but also for any candidates for the limit that an algorithm may consider. If
we want our bootstrap DGPs to use restricted estimates, this seems to imply that
an iterative procedure for finding the limits of a bootstrap confidence interval needs
to employ at least as many different bootstrap DGPs as the number of iterations,
something that could be an exceedingly costly undertaking in terms of computing
time.

However that may be, it is clear that, if we use different bootstrap DGPs for the
different limits, and also along the path we take in order to find these limits, then
there is no single bootstrap distribution, as there is with HK, of which we can use the
quantiles as critical values. Instead, the appropriate concept is the bootstrap P value,
which, in the construction of a bootstrap confidence interval, is used instead of the
asymptotic pivot τ(θ) used for an asymptotic interval. Indeed, if θ0 is the true value of
the parameter, the bootstrap P value for the hypothesis that θ = θ0 is asymptotically
uniformly distributed on the interval [0, 1], and is therefore asymptotically pivotal.

– 11 –



If we denote this bootstrap P value as P ∗(θ0), the equation defining the limits of the
confidence interval is

P ∗(θ±) = α, (19)

for an interval of nominal coverage 1−α. As with the LR test, the equation (19) will
have two solutions.

We can now describe conceptually an algorithm for constructing a confidence interval
based on a family of bootstrap tests for which the bootstrap DGP is based on re-
stricted estimates. Suppose that we plan to use an artificial regression that we write
as

r(θ1, θ2) = R1(θ1, θ2)b1 + r2(θ1, θ2)b2 + residuals; (20)

this is a partitioned version of (6), in which we separate out the parameter θ2 for which
we wish to construct a confidence interval. This artificial regression must correspond
to the estimator θ̂ defined by the estimating equations (18). We intend to base
the bootstrap tests on the LM statistics (7) generated by this artificial regression
evaluated at (θ1(θ2), θ2) for each hypothesised value of θ2. First, suitable starting
values of θ1 and θ2 can be found exactly as for an asymptotic interval. Then, at
step i of the subsequent iterative procedure, we update as follows.

(i) Run the artificial regression (20) evaluated at θ(i) ≡ (θ(i)
1 , θ

(i)
2 ), obtaining the es-

timates b(i) and the t statistic, τ(θ(i)
2 ) say, corresponding to the regressor r2(θ(i)),

which would be the LM statistic if θ(i)
1 were equal to θ1(θ(i)

2 ).

(ii) Update θ1 by the formula

θ
(i+1)
1 = θ

(i)
1 + b(i)

1 .

(iii) Use a bootstrap DGP for which the parameters take on the values θ(i+1)
1 and θ(i)

2

to generate B bootstrap samples, for each of which we compute the bootstrap
LM statistic τ∗j , j = 1, . . . , B.

(iv) Compute the bootstrap P value P ∗(θ(i)
2 ) as the proportion of the τ∗j that are

greater than τ(θ(i)
2 ).

(v) Define θ(i+1)
2 in some suitable manner so as to make P ∗(θ(i+1)

2 ) closer to α than
was P ∗(θ(i)

2 ).

This conceptual layout is lacking essential details, and can be expected to be com-
putationally very inefficient. However, it is clear that, if it can be implemented in
some way, then at convergence θ2 satisfies the defining equation (19) for a limit of
the confidence interval. The next section is devoted to supplying the missing details
and improving efficiency.
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5. Details of a More Efficient Algorithm

Steps (i) and (ii) of the conceptual algorithm above involve no difficulty, and entail
only trivial computational cost. The same is by no means true of step (iii). We spend
no time discussing what sort of bootstrap DGP to use, because the choice should
be specific to the model. It may be parametric or semiparametric, that is, using
resampling, and it may impose much or little structure. The important point is just
that its true parameter values should be (θ(i+1)

1 , θ
(i)
2 ). The use of θ(i+1)

1 rather than
θ

(i)
1 is motivated by two considerations: First, updating θ1 is easy, and, second, doing

so makes the bootstrap DGP closer to using the genuine restricted estimates of θ1

for the value of θ(i)
2 . Formally, this point is just an implementation detail, rather

than a point of principle.

It is in general costly to compute the actual LM statistic for each of the bootstrap
samples, since it is necessary to compute the restricted estimates of θ1 for each
of them. However, it has been shown by Davidson and MacKinnon (1999b) that
the artificial regression can be used to economise significantly on computing time
by performing only a fixed number of iterations in the direction of the restricted
estimates. See also Andrews (2001) for an exposition of the theoretical underpinnings
of the method. The trick is that the fixed number of iterations use as starting point
the known true parameter values of the bootstrap DGP. The method can be used,
not only for bootstrapping an LM statistic, but also for an LR statistic.

A crucial point at this stage is that the same random numbers must be used in
successive iterations when generating the bootstrap samples. Unless the number B
of bootstrap samples is truly immense, simulation error will be enough to swamp the
information necessary for the overall procedure to converge. One possible approach
is to generate all the needed random numbers once and for all and to save them for
subsequent use; another is simply to save the random number seed at the beginning,
and to reset it to the same value for each iteration. On modern computers, the second
approach is probably preferable, since it makes virtually no use of computer memory,
and the time needed to generate random numbers is not much greater than the time
needed to fetch them from memory.

Step (iv) once again appears straightforward and almost free of cost. But it must be
noted that the resulting P values take on only a discrete set of values, namely i/B,
i = 0, 1, . . . , B. It is well known that, if a nominal level of α is of particular interest,
size distortion of a bootstrap test is minimised if B is chosen so that α(B + 1) is an
integer; see for instance Davison and Hinkley (1997). If such a choice is made, no
P value can be exactly equal to α. Rather, as θ2 varies in the direction from the
interior to the exterior of the confidence interval, there is a discontinous jump from
a value greater than α to a value less than α. The value of θ2 for which the jump
occurs is the limit of the confidence interval.

It is not possible to use Newton’s method, or indeed any of the usual methods of
finding zeros of functions, when the function is discontinuous. It is therefore desirable
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to perform a linear interpolation. For given θ2, let τ∗− be the greatest bootstrap
statistic that is less than the actual statistic τ(θ2), and let τ∗+ be the smallest one
that is greater than or equal to τ . Further, let there be exactly m bootstrap statistics
greater than or equal to τ . Then we replace the integer m by the real number

m+
τ∗+ − τ(θ2)
τ∗+ − τ∗−

, (21)

which varies continuously with θ2, since τ(θ2) does so, since, for constant m, τ∗−
and τ∗+ do so also, and since, for values of θ2 for which m jumps by an integer,
the fractional part of (21) jumps by an integer in the other direction. The limit of
the confidence interval in then the locally unique θ2 for which (21) is equal to the
integer α(B + 1).

Step (v) is left completely unspecified in the layout of the preceding section. In
principle, Newton’s method could be used, or some approximation to it, in order to
find θ2 such that the expression (21) is equal to α(B+1). The derivative of (21) with
respect to τ(θ2) is well approximated by −1/(τ∗+ − τ∗−), and the derivative of τ(θ2)
with respect to θ2 is easy to approximate using the data provided by the artificial
regression. However, attempts to implement this method proved very numerically
unstable, on account of the discontinuities of the derivative of (21) at points at which
m jumps.

There exist many algorithms for finding the zeros of scalar functions of a scalar
argument, often called root-finding algorithms,and most of them perform very well
when the function is monotonic in the neighbourhood of the zero. In all but the
most pathological cases, (21) will be a monotonic function of θ2, decreasing as θ2

moves towards the exterior of the confidence interval. A number of available root-
finding methods were tried for the implementation of step (v), and one in particular,
Brent’s method, for which see Press, Teukolsky, Vetterling, and Flannery (1992),
section 9.3, was particularly effective in our simulation experiments. The method
combines the method of bisection with higher-order interpolation methods in an
attempt to minimise the number of function evaluations needed in the search for the
zero.

When a root-finding algorithm like Brent’s method is used, step (v) becomes an
iteration of that method. Such methods normally suppose that the function of which
the zero is sought can be evaluated exactly at trial values of the argument. That is
not the case here, because, at each iteration of the overall algorithm, θ1 is updated as
well as θ2. Neither Brent’s method nor any other of the methods we tried seemed to
be affected by this point. In addition, convergence of the overall algorithm seems to
be governed by convergence of the root-finding method. In principle, it is necessary
to be sure that the updates of θ1 have converged as well as the updates of θ2, but, in
practice, it was found that the convergence of θ2 was slower than that of θ1, so that
convergence of θ2 is enough for overall convergence. Since this result is by no means a
mathematical theorem, it is no doubt prudent in practice to check convergence of θ1

once θ2 has converged. This is easy to do using the artificial regression.
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We conclude this section by respecifying steps (iii)-(v) of the procedure of the pre-
ceding section.

(iii) Use a bootstrap DGP for which the parameters take on the values θ(i+1)
1 and θ(i)

2

to generate B bootstrap samples, using the same random numbers for each
iteration of the overall procedure. For each bootstrap sample, perform a fixed
number (2, 3, 4, in typical cases) of iterations of the artificial regression (20),
starting from (θ(i+1)

1 , θ
(i)
2 ). The bootstrap statistic τ∗j , j = 1, . . . , B, is typically

the absolute value of the t statistic associated with the regressor r2 on the last
artificial regression iteration.

(iv) Compute the expression (21) that represents a smoothed version of the number
of bootstrap statistics greater than τ(θ(i)

2 ).

(v) Do one iteration of Brent’s method interpreted as a method for finding the zero
of the function of θ2 given by (21) minus α(B + 1).

Many root-finding methods, Brent’s in particular, essentially need two starting
points, in order to bracket the zero. If the starting point turns out to be inside
the confidence interval, then the other starting point should be far enough away from
the first to be outside, and vice versa. This requirement is easy to satisfy in practice.

At this point, it is reasonable to ask how much longer it takes to compute a confidence
interval of the type we are considering compared with a conventional percentile-t
interval or an interval of the sort recommended by HK based on the estimating
function bootstrap. A second question is then whether the extra computing time is
worth it in terms of improved coverage accuracy. An answer to the second question is
given in one particularly simple case by Davidson (2000), who considers the coverage
accuracy of a confidence interval for the autoregressive parameter ρ in the simple
autoregression

yt = ρyt−1 + ut,

based on a family of parametric bootstrap tests where the bootstrap DGP is defined
using restricted estimates. Accuracy is seen to be substantially superior to that of
a percentile-t interval; indeed, even with 100, 000 simulations, it was impossible to
reject a null of perfect coverage. In the next section, we investigate computing time
and accuracy in the context of a nonlinear regression.

6. Illustrative Example

Simulation experiments were carried out in the context of the regression model

yt = α+ δxt1/γ + γxt2 + ut, ut ∼ IID(0, σ2). (22)

This model appears to be nonlinear, but it can be reparametrised to become linear,
so that the parameters α, δ, and γ can be estimated by OLS. It is desired to construct
a confidence interval for δ, and it is clear that, if the value of δ is fixed, the regression
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function is genuinely nonlinear with respect to α and γ. If δ = 1, the model (22) is
the model considered by Gregory and Veall (1985), known to yield particularly badly
behaved Wald statistics for large or small values of γ.

The GNR that corresponds to (22) can be written as

yt − α− δxt1/γ − γxt2 = bα + bγ(xt2 − δxt1)/γ2 + bδxt1/γ + residual. (23)

We use this GNR, and the restricted version of it in which the last regressor is absent,
as the artificial regression for constructing confidence intervals.

We consider three types of bootstrap confidence interval. The first is the percentile-t
interval, for which (22) is estimated unrestricted (by OLS), and an asymptotic pivot

τt(δ) =
δ̂ − δ
σ̂δ

of the form (3), that is, an asymptotic t statistic, bootstrapped using the bootstrap
DGP

y∗t = α̂+ δ̂xt1/γ̂ + γ̂xt2 + u∗t , (24)

where α̂, δ̂, and γ̂ are the OLS estimates from (22), and where the u∗t are resampled
from the residuals of (22), multiplied by (n/(n− 3))1/2, a degrees-of-freedom correc-
tion. The regressors xt1 and xt2, treated as exogenous, are used unchanged in the
bootstrap DGP. The bootstrap statistics τ∗t are computed as

τ∗t =
δ∗ − δ̂
σ∗δ

,

where δ∗ and σ∗δ are respectively the OLS estimate of δ and its standard error,
from (24).

The second type of confidence interval we consider is the HK interval for models with
IID errors. The asymptotic pivot, τHK(δ), is the t statistic on the last regressor of
the GNR (23), with variables evaluated at δ, and α(δ) and γ(δ), where these are
restricted parameter estimates with fixed δ. The bootstrap DGP does not generate
samples y∗t , but just bootstrap statistics according to the formula

τ∗HK =
1
σ∗
a>u∗,

where u∗ is a vector of residuals resampled as for the percentile-t method, and a is
a vector obtained by projecting the last regressor of the GNR (23), with variables
evaluated at (α̂, δ̂, γ̂), on to the orthogonal complement of first two regressors, and
then standardising the result to have unit Euclidean length. The estimate σ∗ is
defined as the sample variance of the components of u∗.
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Finally, the third type of confidence interval is of the sort discussed in the preceding
section. The GNR (23) is used as the artificial regression, and Brent’s method is used
to update the parameter δ. The asymptotic pivot is the same as for the HK method,
and the bootstrap DGP for given δ is

y∗t = α(δ) + δxt1/γ(δ) + γ(δ)xt2 + u∗t ,

with the bootstrap residuals u∗t defined as for the other two methods.

7. Concluding Remarks

The algorithms developed in this paper can be applied more generally than we have
done here. Sometimes one-sided confidence intervals are of interest, based on a family
of one-tailed tests. There is of course no difficulty in applying our algorithms to such
intervals. If a confidence set is desired for more than one parameter, then things are
more complicated. HK maintain that their method can be used with little difficulty,
but it is still necessary to solve an equation, not for a point, but for a contour or
higher-dimensional manifold. We know of no computationally efficient way of doing
this, and have therefore limited ourselves in this paper to confidence intervals.

There is plenty of scope for incorporating techniques of variance reduction into the
algorithms of this paper. Control variates and importance functions have been sug-
gested for reducing simulation error in bootstrapping. It seems likely that artificial
regressions can incorporate these techniques. A method of improving the reliabil-
ity of bootstrap tests is proposed in Davidson and MacKinnon (2000), involving the
computation of two statistics for each bootstrap sample. This too can easily be
incorporated into the artificial regression methodology.

We hope to have shown in this paper that bootstrap confidence intervals can benefit
from the numerous refinements that have been shown to exist for bootstrap tests, but
are seldom exploited for confidence intervals. Bootstrapping with restricted estimates
is a prime example of a technique that has been shown to improve the accuracy
of bootstrap P values, and that can now be made use of for bootstrap confidence
intervals of improved coverage accuracy.
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