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1. Introduction

While the bootstrap can provide spectacularly reliable inference in many cases, there
are others for which results are much less reliable. Intuition can often suggest reasons
for this state of affairs, and the asymptotic theory of bootstrap refinements does so as
well; see Hall (1992) and Horowitz (1997) among many other relevant references.

It has often been remarked that heavy-tailed distributions give rise to difficulties for
the bootstrap; see Davidson (2012) and the discussion of that paper in Schluter (2012).
Autocorrelation of unknown form also presents a severe challenge to the bootstrap. So
far, no bootstrap has been proposed that, in the presence of autocorrelation of unknown
form, can deliver performance comparable to what can be obtained in its absence. Per-
haps in consequence, a considerable number of bootstrap methods have been proposed,
some a good deal better than others. By far the most popular of these are the various
versions of the block bootstrap, which was originally proposed by Künsch (1989); see
also Hall, Horowitz, and Jing (1995), Lahiri (1999) and (2003). However, it has been
seen that the block bootstrap often works poorly, while, in some circumstances, other
schemes may work better. These include (versions of) the sieve bootstrap (see for
instance Bühlmann (1997) and (2002)), frequency-domain bootstraps (Kreiss and E.
Paparoditis (2003), Kirch and Politis (2011)), and the recently-proposed dependent
wild bootstrap, Shao (2010).

Simulation experiments can of course be used to study the performance of different
bootstrap procedures in different circumstances. When the bootstrap is used for hy-
pothesis testing, this is most readily done by looking at the bootstrap discrepancy, de-
fined as the difference between the actual rejection frequency of the bootstrap test and
the nominal significance level at which the test is performed. In this paper, simulation-
based diagnostic methods are proposed, intended to determine when a given procedure
works well or not, and, if not, provide an analysis of why. Asymptotic theory, includ-
ing the theory of bootstrap refinements characterised by a rate at which the bootstrap
discrepancy tends to zero, is not very useful for this purpose. One obvious reason is
that the bootstrap is a finite-sample procedure, not an asymptotic one. To be useful,
therefore, a diagnostic technique should be based on finite-sample arguments only. A
paper that does not seem to be very widely known that proposes such a technique
is Beran (1997). The technique, although implemented with finite samples, is justi-
fied by sophisticated asymptotic arguments. Beran’s paper is not oriented towards
econometrics, but contains useful ideas that are developed differently here.

Despite the rapidly growing power of computing machinery, it would be more useful
for practitioners if a diagnostic technique was no more CPU-intensive, or at least
very little more intensive, than simply undertaking a bootstrap test or constructing
a bootstrap confidence set. The techniques outlined here satisfy that requirement,
although simulations are performed that are more CPU-intensive, for the purpose of
evaluating the reliability of the diagnostic methods themselves.

The paper is organised as follows. In Section 2, definitions and notation appropriate
for theoretical study of the bootstrap are given. The wild bootstrap is presented in
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Section 3, and its use in the context of a regression model with disturbances that
follow a GARCH(1,1) process studied. It turns out that the wild bootstrap is capable
of giving essentially perfect inference even with very small samples. The ideas behind
the fast double bootstrap (FDB) of Davidson and MacKinnon (2007) are laid out in
Section 4, and used to motivate a method for estimating the bootstrap discrepancy
that is much less computationally intensive than a direct simulation-based approach.
This leads in Section 5 to the development of the diagnostic techniques that constitute
the main contribution of this paper. In Section 6 the GARCH model of Section 3
is revisited, and the diagnostic techniques applied to it. It is seen that very good
bootstrap performance can be diagnosed as well as poor performance. In Section 7, a
version of the block bootstrap is diagnosed. There, it is seen to perform rather poorly,
while the FDB, which can also be studied using the diagnostics of this paper, yields
only a slight improvement. Another technique sometimes used with time series, the
sieve bootstrap, is the topic of Section 8. It can perform reasonably well in favourable
circumstances, and has the advantage that it can be combined with the wild bootstrap
to take account of possible heteroskedasticity. Finally, some concluding remarks are
presented in Section 9.

2. Definitions and Notation

A model is a collection of data-generating processes (DGPs). If M denotes a model,
it may also represent a hypothesis, namely that the true DGP, µ say, belongs to M.
Alternatively, we say that M is correctly specified.

We almost always want to define a parameter-defining mapping θ, which maps the
model M into a parameter space Θ, which is usually a subset of Rk for some finite
positive integer k. For any DGP µ ∈ M, the k--vector θ(µ), or θµ, is the parameter
vector that corresponds to µ. Sometimes the mapping θ is one-one, as, for instance,
with models estimated by maximum likelihood. More often, θ is many-one, so that
a given parameter vector does not uniquely specify a DGP. Supposing that θ exists
implies that no identification problems remain to be solved.

In principle, a DGP specifies the probabilistic behaviour of all deterministic functions
of the random data it generates – estimators, standard errors, test statistics, etc. If
y denotes a data set, or sample, generated by a DGP µ, then a statistic τ(y) is a
realisation of a random variable τ of which the distribution is determined by µ. A
statistic τ is a pivot, or is pivotal, relative to a model M if its distribution under any
DGP µ ∈ M is the same for all µ ∈ M.

We can denote by M0 the set of DGPs that represent a null hypothesis we wish to
test. The test statistic used is denoted by τ . Unless τ is a pivot with respect to M0,
it has a different distribution under the different DGPs in M0, and it certainly has a
different distribution under DGPs in the model, M say, that represents the alternative
hypothesis. I assume as usual that M0 ⊂ M.

It is conventional to suppose that τ is defined as a random variable on some suitable
probability space, on which we define a different probability measure for each different
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DGP. Rather than using this approach, we define a single probability space (Ω,F , P ),
with just one probability measure, P . Then we treat the test statistic τ as a stochastic
process with the set M as index set. We have

τ : M× Ω → R.

Leaving aside questions of just what real-world randomness – if it exists – might be,
we can take the probability space Ω to be that of a random number generator. A
realisation of the test statistic is written as τ(µ, ω), for some µ ∈ M and ω ∈ Ω.

For notational convenience, we suppose that the range of τ is the [0, 1] interval rather
than the whole real line, and that the statistic takes the form of an approximate
P value, which leads to rejection when the statistic is too small. Let R0 : [0, 1]×M0 →
[0, 1] be the cumulative distribution function (CDF) of τ under any DGP µ ∈ M0:

R0(x, µ) = P
{
ω ∈ Ω | τ(µ, ω) ≤ x

}
. (1)

Suppose that we have a statistic computed from a data set that may or may not have
been generated by a DGP µ ∈ M0. Denote this statistic by t. Then the ideal P value
that would give exact inference is R0(t, µ). If t is indeed generated by µ, R0(t, µ) is
distributed as U(0,1) if the distribution of τ is absolutely continuous with respect to
Lebesgue measure – as we assume throughout – but not, in general, if t comes from
some other DGP. The quantity R0(t, µ) is available by simulation only if τ is a pivot
with respect to M0, since then we need not know the precise DGP µ. When it is
available, it permits exact inference.

The principle of the bootstrap is that, when we want to use some function or functional
of an unknown DGP µ, we use the same function or functional of an estimate of µ.
Analogously to the stochastic process τ , we define the DGP-valued process

β : M× Ω → M0.

The estimate of µ, which we call the bootstrap DGP, is β(µ, ω), where ω is the same
realisation as in t = τ(µ, ω). We write b = β(µ, ω). Then the bootstrap statistic that
follows the U(0,1) distribution approximately is R0(t, b), where t and b are observed,
or rather can be computed from the observed data. In terms of the two stochastic
processes τ and β, the bootstrap P value is another stochastic process:

p1(µ, ω) = R0

(
τ(µ, ω), β(µ, ω)

)
. (2)

Normally, the bootstrap principle must be implemented by a simulation experiment,
and so, analogously to (1), we may define

R̂0(x, µ) =
1

B

B∑
j=1

I
(
τ(µ, ω∗

j ) < x
)
,
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where the ω∗
j are independent realisations of the random numbers needed to compute

the statistic. As the number of bootstrap repetitions B → ∞, R̂0(x, µ) tends almost
surely to R0(x, µ). Accordingly, the bootstrap P value is estimated by R̂0(t, b).

Since by absolute continuity R0 is a continuous function, it follows that p1 also has
an absolutely continuous distribution. We denote the continuous CDF of p1(µ, ω) by
R1(·, µ). This CDF can also be estimated by simulation, but that is very compu-
tationally intensive. The double bootstrap uses this approach, using the bootstrap
principle by replacing the unknown true DGP µ by the bootstrap DGP b. An ideal
double bootstrap P value that would give exact inference is R1

(
p1(µ, ω), µ

)
, which is

distributed as U(0,1). The double bootstrap P value is, analogously, R1

(
R0(t, b), b

)
.

3. The Wild Bootstrap

Models that incorporate heteroskedasticity can be bootstrapped effectively by use of
the wild bootstrap. Early references to this procedure include Wu (1986), Liu (1988),
and Mammen (1993). For the linear regression

y = Xβ + u, (3)

the wild bootstrap DGP can be written as

y∗ = Xβ̃ + u∗,

where, as usual, stars denote simulated quantities, and β̃ is a vector of restricted
estimates that satisfy the possibly nonlinear null hypothesis under test. The bootstrap
disturbances are defined by u∗

t = |ût|s∗t , where ût is the residual for observation t
obtained by estimating the restricted model, and the s∗t are IID drawings from a
distribution such that E(s∗t ) = 0, Var(s∗t ) = 1.

Davidson and Flachaire (2008) recommend the Rademacher distribution, defined as
follows:

s∗t =

{
1 with probability 1/2
−1 with probability 1/2,

(4)

for the wild bootstrap. When the Rademacher distribution is used, the covariance
structure of the squared bootstrap disturbances is the same as that of the squared
residuals from the original sample. This is because the squared bootstrap disturbances
are always just the squared residuals, so that any relationship among the squared resid-
uals, like that given by any GARCH model, is preserved unchanged by the Rademacher
wild bootstrap.

In order to study the consequences of this fact for a simple GARCHmodel, a simulation
experiment was conducted for the model

yt = a+ ρyt−1 + ut, (5)
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where ut are GARCH(1,1) disturbances, defined by the recurrence relation

σ2
t = λ+ (δ + γε2t−1)σ

2
t−1;

ut = σtεt, (6)

with the εt standard normal white noise, and the recurrence initialised by σ2
1 =

λ/(1 − γ − δ), which is the unconditional stationary expectation of the process. The
parameters of the DGP used in the experiment were a = 1.5, y0 = 0, λ = 1, γ = 0.4,
and δ = 0.45, with very small sample size n = 10, and ρ = 0.3. In order to test the
hypothesis that ρ = ρ0, the test statistic used was

τ =
ρ̂− ρ0
σ̂ρ

,

where ρ̂ is the OLS estimate from (5), run over observations 2 to n. The standard
error σ̂ρ was obtained by use of theHC2 variant of the Eicker-White heteroskedasticity-
consistent covariance matrix estimator (HCCME); see White (1980) and Eicker (1963).

The bootstrap DGP is determined by first running the constrained regression

yt − ρ0yt−1 = a+ ut, t = 2, . . . , n,

in order to obtain the estimate ã, and the constrained residuals ũt, t = 2, . . . n. A
bootstrap sample is defined by

y∗1 = y1 and y∗t = ã+ ρ0y
∗
t−1 + s∗t ũt, t = 2, . . . , n, (7)

where the s∗t are IID realisations from the Rademacher distribution. The bootstrap
statistics are

τ∗j =
ρ̂∗ − ρ0

σ̂∗
ρ

, j = 1, . . . , B

with ρ̂∗ and σ̂∗
ρ defined as the bootstrap counterparts of ρ̂ and σ̂ρ respectively. The

bootstrap P value is the proportion of the τ∗j that are more extreme than τ . The
performance of the bootstrap test, as revealed by experiments with N = 100,000
replications with B = 399 bootstrap samples for each, is excellent. Rather than
presenting the simulation results here in tabular form, they will be seen in Section 6
in the context of the diagnostic procedures presented in Section 5.

4. The Fast Approximation

The idea behind the diagnostic procedures discussed here is closely related to the fast
double bootstrap (FDB) of Davidson and MacKinnon (2007). It is convenient at this
point to review the FDB.

As a stochastic process, the bootstrap P value can be written as p1(µ, ω), as in (2). The
double bootstrap bootstraps this bootstrap P value, as follows: If R1(·, µ) is the CDF
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of p1(µ, ω), then the random variable R1

(
p1(µ, ω), µ

)
follows the U(0,1) distribution.

Since µ is unknown in practice, the double bootstrap P value follows the bootstrap
principle by replacing it by the bootstrap DGP, β(µ, ω). We define the stochastic
process

p2(µ, ω) = R1

(
p1(µ, ω), β(µ, ω)

)
. (8)

Of course it is computationally expensive to estimate the CDF R1 by simulation, as
it involves two nested loops.

Davidson and MacKinnon (2007) suggested a much less expensive way of estimat-
ing R1, based on two approximations. The first arises by treating the random variables
τ(µ, ω) and β(µ, ω), for any µ ∈ M0, as independent. Of course, this independence
does not hold except in special circumstances, but it holds asymptotically in many
commonly encountered situations. By definition,

R1(α, µ) = P
{
ω ∈ Ω | p1(µ, ω) < α

}
= E

[
I
(
R0(τ(µ, ω), β(µ, ω)) < α

)]
, (9)

where I(·) is the indicator function, with value 1 when its argument is true, and 0
otherwise. Let Q0(·, µ) be the quantile function corresponding to the distribution
R0(·, µ). Since R0 is absolutely continuous, we have

R0

(
Q0(α, µ), µ

)
= α = Q0

(
R0(α, µ), µ

)
.

Use of this relation between R0 and Q0 lets us write (9) as

R1(α, µ) = E
[
I
(
τ(µ, ω) < Q0(α, β(µ, ω)

)]
If τ(µ, ω) and β(µ, ω) are treated as though they were independent, then we have

R1(α, µ) = E
[
E
[
I
(
τ(µ, ω) < Q0(α, β(µ, ω))

)
|β(µ, ω)

]]
≈ E

[
R0

(
Q0(α, β(µ, ω)), µ

)]
(10)

Define the stochastic process

τ1 : M× (Ω1 × Ω2) → R,

where Ω1 and Ω2 are two copies of the outcome space, by the formula

τ1(µ, ω1, ω2) = τ
(
β(µ, ω1), ω2

)
.

Thus τ1(µ, ω1, ω2) can be thought of as a realisation of the bootstrap statistic when
the underlying DGP is µ. We denote the CDF of τ1 under µ by R1(·, µ). Thus

R1(α, µ) = Pr
{
(ω1, ω2) ∈ Ω1 × Ω2 | τ

(
β(µ, ω1), ω2) < α

}
= E

[
I
(
τ(β(µ, ω1), ω2) < α

)]
= E

[
E
[
I
(
τ(β(µ, ω1), ω2) < α

)
| F1

]]
= E

[
R0

(
α, β(µ, ω1)

)]
. (11)
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Here F1 denotes the sigma-algebra generated by functions of ω1.

The second approximation underlying the fast method can now be stated as follows:

E
[
R0

(
Q0(α, β(µ, ω)), µ

)]
≈ R0

(
Q1(α, µ), µ

)
, (12)

where Q1(·, µ) is the quantile function inverse to the CDF R1(·, µ). See Davidson and
MacKinnon (2007) for the reasoning that leads to this approximation.

On putting the two approximations, (10) and (12), together, we obtain

R1(α, µ) ≈ R0

(
Q1(α, µ), µ

)
≡ Rf

1 (α, µ).

The fast double bootstrap substitutes Rf
1 for R1 in the double bootstrap P value (8).

The FDB P value is therefore

pf2 (µ, ω) = Rf
1

(
p1(µ, ω), β(µ, ω)

)
= R0

(
Q1(p1(µ, ω), β(µ, ω)), β(µ, ω)

)
. (13)

Estimating it by simulation involves only one loop.

A way to see to what extent the FDB may help improve reliability is to compare the
(estimated) distribution of the bootstrap P value and the fast approximation to that
distribution. The graphs in Figure 1 perform this comparison for the wild bootstrap
applied to the GARCH model of Section 3. On the right are plotted the distribution
estimated directly (in green) and the fast approximation (in red). On the left the same
thing, but in deviations from the uniform distribution. Such differences as are visible
are clearly within the simulation noise of the experiment.
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Figure 1: Direct and fast estimates of the bootstrap discrepancy
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5. Diagnostic Procedures

A standard way of evaluating bootstrap performance by simulation is to graph the
P value and P value discrepancy plots for a test based on the bootstrap P value;
see Davidson and MacKinnon (1998). The former is just a plot of the CDF of this
P value; the latter a plot of the CDF minus its argument. Perfect inference appears
as a P value plot that coincides with the diagonal of the unit square, or a P value
discrepancy plot that coincides with the horizontal axis.

A simulation experiment that provides the information for a P value plot for a boot-
strap test can be described as follows. For each of N replications in the experiment,
there are B bootstrap repetitions for each replication. The data for each replication i,
i = 1, . . . , n, are generated using a DGP denoted by µ, which satisfies the null hy-
pothesis. These data are used to generate the realisation τi of the statistic τ , and
the realisation of the corresponding bootstrap DGP, which is then used to generate
B bootstrap statistics τ∗ij , j = 1, . . . , B. The bootstrap P value P ∗

i for replication i is
the proportion of the τ∗ij that are more extreme than τi. The graph of the empirical
distribution function of the P ∗

i is then a simulation-based estimate of the P value plot.

If the bootstrap discrepancy, that is, the ordinate of the P value discrepancy plot,
is acceptably small, there is no need to look further. But, if not, it is useful to see
why, and it is for this purpose that we may use the procedures of this section. For
replication i, i = 1, . . . , n, let τi be as above a realisation of the test statistic, and let
τ∗i be a single bootstrap statistic generated by the bootstrap DGP for replication i.

The next step is to graph kernel-density estimates of the distribution of the statistic τ
and that of the bootstrap statistic τ∗. If these are not similar, then clearly the boot-
strap DGP fails to mimic the true DGP at all well. Poor bootstrap performance is
then a consequence of this fact. Alternatively, graphs of the empirical distributions
of the simulated τ and τ∗ may be compared. Another diagnostic is based on running
an OLS regression of the τ∗i on a constant and the τi. Suppose without loss of gen-
erality that τ itself is in nominal P value form, so that the rejection region is on the
left. A significant constant in the regression indicates that the distribution of τ∗ is
shifted relative to that of τ , and this typically causes under-rejection in one tail and
over-rejection in the other. Next, suppose that this regression reveals that, for the
data generated on any one replication, τ is strongly positively correlated with τ∗. The
positive correlation then implies that, if τ is small, then τ∗ tends to be small as well.
It follows that the P value is greater than it would be in the absence of the correla-
tion, and that the bootstrap tests under-rejects. Similarly, on the right-hand side of
the distribution of the P value, there is more probability mass than there would be
with no or smaller correlation. A similar argument shows that, mutatis mutandis, a
negative correlation leads to over-rejection.

The presence or otherwise of a significant correlation is related to the extent of boot-
strap refinements. In Davidson and MacKinnon (1999), it is shown that if the test
statistic τ(µ, ω) and the bootstrap DGP β(µ, ω) are asymptotically independent, then
there is a refinement, in the sense that the bootstrap discrepancy tends to zero faster
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as the sample size tends to infinity than it would in the presence of an asymptotic
correlation. In the finite-sample context, a significant correlation between τ and τ∗

shows that the statistic and the bootstrap DGP are not independent, giving rise to
over- or under-rejection, as suggested by the asymptotic theory. For the bootstrap to
work well, the distribution of the bootstrap statistic τ∗, conditional on the data that
led to τ , should be close to the distribution of τ itself. A correlation between τ and τ∗

suggests that, even if the unconditional distributions of τ and τ∗ are close, the con-
ditional distribution of τ∗ may be rather different from the unconditional distribution
of τ .

6. The Model with GARCH(1,1) disturbances

As a first example of the diagnostic tests, results are given here for the test of ρ = ρ0 in
the model specified by (5) and (6), parametrised as described there, with ρ = 0.3 and
n = 10. First, the P value and P value discrepancy plots. They appear in Figure 2.
Since the test has only one degree of freedom, it was possible to look separately at a
one-tailed test that rejects to the right and the two-tailed test. The curves in red are
for a two-tailed test; those in green for a one-tailed test that rejects to the right.
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Figure 2: P value and P value discrepancy plots, GARCH model, wild bootstrap

It is reasonable to claim that the discrepancy is acceptably small, even though it does
not seem to be exactly zero. For α = 0.05, its simulated value is 0.011 for the one-tailed
test, and -0.005 for the two-tailed test. The experiment that led to these results, with
N = 100,000 replications with B = 399 bootstrap repetitions each, used just under
100 minutes of computer time on a computer with Intel Xeon processors at 2.3 GHz.*

Next the results of the diagnostic procedure. In Figure 3 are plotted the kernel density
estimates of the distributions of the statistic and the bootstrap statistic for both cases.

* The actual running time was only between two and two and a half minutes, since 50 cores were

used in parallel.
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Figure 3: Diagnostic comparison of densities, GARCH model, wild bootstrap

The information above can also be represented by the plots of the distribution functions
of the estimates, seen in Figure 4..
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Figure 4: Comparison of EDFs, GARCH model, wild bootstrap

The computing time needed for these diagnostics was about two and a quarter minutes.

For the one-tailed test, the regression of the bootstrap statistic τ∗ on a constant and τ
gives (standard errors in parentheses)

τ∗ = −0.637 + 0.0015τ, centred R2 = 0.000002
(0.005) (0.003)

so that the constant is highly significant, but the coefficient of τ is completely insignif-
icant. For the two-tailed test, the result is

τ∗ = 1.024 + 0.044τ, centred R2 = 0.002
(0.005) (0.003)

Here, both estimated coefficients are significant, although the overall fit of the re-
gression is very slight. The negative constant for the one-tailed test means that the
distribution of the bootstrap statistic is to the left of that of τ , leading to the over-
rejection seen in the P value discrepancy plot, since the test rejects to the right.
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Similarly the positive constant for the two-tailed test explains the under-rejection for
interesting values of α.

For a second example of the diagnostics, consider testing a hypothesis for the same
model as above, but with a larger value of ρ, equal to 0.9, and using a conventional
IID resampling bootstrap instead of the wild bootstrap. That is, a bootstrap sample
is generated, not as in (7), but by

y∗1 = y1 and y∗t = ã+ ρ0y
∗
t−1 + u∗

t , t = 2, . . . , n,

where the u∗
t are resampled from the constrained residuals ũt, t = 2, . . . , n. We

may reasonably expect considerably worse bootstrap performance in this case. The
expectation is borne out, as shown in the (costly) P value and P value discrepancy
plots in Figure 5.
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Figure 5: P plots, GARCH model, resampling bootstrap

Now the diagnostics: there is no need for more than the kernel density plots.
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Figure 6: Density comparison, GARCH model, resampling bootstrap
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For both tests, it is clear that the two distributions differ considerably. For the one-
tailed test, the regression results are:

τ∗ = −1.127 + 0.062τ, centred R2 = 0.003
(0.006) (0.003)

and, for the two-tailed test:

τ∗ = 1.448 + 0.027τ, centred R2 = 0.0006
(0.007) (0.004)

The very significant estimated constants also show that the two distributions differ.
The slope coefficients, although small, are also highly significant, and indicate that
there is a positive correlation between the statistic and the bootstrap counterpart.

7. The Block Bootstrap

Davidson and Flachaire (2008) show that there is a special setup where the wild
bootstrap can deliver perfect inference. Unlike the GARCH example just considered,
the setup here is of a static linear regression model. If one wishes to test the hypothesis
that the entire vector β in the static linear regression y = Xβ + u is zero when the
disturbances u may be heteroskedastic, the obvious test statistic is

τ ≡ y⊤X(X⊤Ω̂X)−1X⊤y, (14)

where the dependent variable y is the vector of restricted residuals under the null
hypothesis, and Ω̂ is one of the (inconsistent) estimates of the covariance matrix of
the disturbances used in the different versions of either the HCCME or a heteroskedas-
ticity and autocorrelation consistent (HAC) covariance matrix estimator. When the
Rademacher distribution (4) is used, the wild bootstrap P value, in the presence of
heteroskedasticity, is uniformly distributed under the null up to discreteness due to a
finite sample size. In this and the next section, simulation results are presented for two
different bootstrap procedures that are found in the literature, with a setup similar
to the above. The model is a linear regression with disturbances that are possibly
serially correlated as well as heteroskedastic, with null hypothesis that all the regres-
sion parameters are zero, and a test statistic with the form of (14), but with a HAC
covariance matrix estimator instead of the HCCME. It serves as a useful test bed,
as it allows us to compare the performance of these bootstrap tests with the perfect
inference obtainable with only heteroskedasticity and the wild bootstrap.

As remarked in the Introduction, when it is suspected that the disturbances are not
necessarily white noise, the commonest way to proceed is to use some version of the
block bootstrap. A recent paper by Nordman and Lahiri (2012) reviews many of these
and compares their performance. Here, the one chosen as an illustration is not the
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best to emerge from these comparisons, so that mediocre performance can be readily
detected by the diagnostics of this paper.

The model is a static linear regression with a constant and three non-constant regres-
sors, all themselves serially correlated with an autoregressive parameter of 0.8. The
disturbances are an AR(1) process, with an autoregressive parameter of 0.9. The hy-
pothesis to be tested is that the complete vector β of regression coefficients is zero.
The sample size is n = 64. The test statistic takes the form (14), and makes use of
a Newey-West HAC covariance estimator – see Newey and West (1987) – with lag
truncation parameter of p = 16.

The bootstrap procedure is the basic moving-block bootstrap with overlapping blocks.
The block length was chosen to be b = 24, after some experimentation with different
choices of p and b showed that these choices were far from the worst, although perfor-
mance was similar for many other choices in the neighbourhood of this one. In Figure 7
are shown, on the left, the P value discrepancy plot obtained using the (costly) direct
method, and on the right the (cheap) diagnostic comparison of the densities of the
statistics τ and τ∗. The distortion is clearly considerable.
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Figure 7: P value discrepancy plot; density comparison, block bootstrap

The results of the regression diagnostic are as follows:

τ∗ = 2.854 + 0.192τ, centred R2 = 0.040
(0.010) (0.003)

The constant shows what is already seen in the density plot, namely that the distribu-
tion of τ∗ is shifted to the right relative to that of τ . Since the statistic is asymptotically
chi-squared, it rejects to the right, and so the shift tends to make P values larger than
they would ideally be. The resulting tendency to under-reject is reinforced by the very
significant positive correlation between the two statistics.

Figure 8 compares the P value and P value discrepancies as computed directly with
the computation by the fast method.
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Figure 8: Fast and direct computations of the P value; block bootstrap

It can be seen that the fast method underestimates the under-rejection for large sig-
nificance levels, but overestimates it somewhat for conventional levels. It is thus inter-
esting to see whether use of the FDB improves inference. To this end, the simulation
experiment was extended to compute FDB P values. For each replication, a realisa-
tion of the statistic τ was obtained, and a realisation of the bootstrap DGP µ∗. Then
B first-level bootstrap statistics, τ∗j , j = 1, . . . , B, were generated using the realisa-
tion of µ∗, along with a second-level bootstrap DGP µ∗∗

j , using which the second-level
statistic τ∗∗j was generated. The FDB bootstrap P value was then computed as an
estimate of the theoretical formula (13): the function R0 estimated as the empirical
distribution of the τ∗j , and the quantile function Q1 as an empirical quantile of the τ∗∗j .

Figure 9 repeats the plots in Figure 7, with the corresponding graphs for the FDB
overlaid.
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Figure 9: Plots for single bootstrap and FDB; block bootstrap

It can be seen that the FDB does yield some slight improvement, only slight, presum-
ably, because the shift of the distribution of τ∗ to that of τ∗∗ is less than the shift
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from τ to τ∗. If τ∗∗ is regressed on a constant and τ , we obtain

τ∗∗ = 3.005 + 0.171τ, centred R2 = 0.030
(0.010) (0.003)

The estimated constant shows the greater shift from τ to τ∗∗, but it seems that τ∗∗ is
less correlated with τ than is τ∗.

8. The Sieve Bootstrap

The sieve bootstrap most commonly used with time series when there is serial cor-
relation of unknown form is based on the fact that any linear invertible time-series
process can be approximated by an AR(∞) process. The idea is to estimate a station-
ary AR(p) process and use this estimated process, perhaps together with resampled
residuals from the estimation of the AR(p) process, to generate bootstrap samples. For
example, suppose we are once again concerned with the static linear regression model
y = Xβ + u, where it is assumed that the covariance matrix Ω of the disturbance
vector u can be well approximated by the covariance matrix of a stationary AR(p)
process, which implies that the diagonal elements are all the same.

The first step is to estimate the regression model, possibly after imposing restrictions
on it, so as to generate a parameter vector β̂ and a vector of residuals û with typical
element ût. The next step is to estimate the AR(p) model

ût =

p∑
i=1

ρi ût−i + εt (15)

for t = p + 1, . . . , n. In theory, the order p of this model should increase at a certain
rate as the sample size increases. In practice, p is most likely to be determined either
by using an information criterion like the AIC or by sequential testing. Care should
probably be taken to ensure that the estimated model is stationary. This may require
the use of full maximum likelihood to estimate (15), rather than least squares.

Estimation of (15) yields residuals and an estimate σ̂2
ε of the variance of the εt, as well

as the estimates ρ̂i. We may use these to set up a variety of possible bootstrap DGPs,
all of which take the form

y∗t = Xtβ̂ + u∗
t .

There are two choices to be made, namely, the choice of parameter estimates β̂ and
the generating process for the bootstrap disturbances u∗

t . One choice for β̂ is just
the OLS estimates from running (3), or (3) subject to the restrictions of the null
hypothesis. But these estimates, although consistent, are not efficient if Ω is not a
scalar matrix. We might therefore prefer to use feasible GLS estimates obtained under
the assumption that the AR(p) model is correctly specified.
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For observations after the first p, the bootstrap disturbances are generated as follows:

u∗
t =

p∑
i=1

ρ̂iu
∗
t−i + ε∗t , t = p+ 1, . . . , n, (16)

where the ε∗t can either be drawn from the N(0, σ̂2
ε ) distribution for a parametric

bootstrap or resampled from the residuals ε̂t from the estimation of (15), preferably
rescaled by the factor

√
n/(n− p). In order to initialise the recurrence (16), the

simplest way is just to set u∗
t = ût for the first p observations of each bootstrap sample,

thereby conditioning on the initial observations of the real data. Unless we are sure
that the AR(p) process is really stationary, rather than just being characterized by
values of the ρi that correspond to a stationary covariance matrix, this is the only
appropriate procedure.

If we are happy to impose full stationarity on the bootstrap DGP, then we may draw
the first p values of the u∗

t from the p--variate stationary distribution. This is easy to
do if we have solved the Yule-Walker equations for the first p autocovariances, provided
that we assume normality. If normality is an uncomfortably strong assumption, then
we can initialize (16) in any way we please and then generate a reasonably large number
(say 200) of bootstrap disturbances recursively, using resampled rescaled values of the
ε̂t for the ε

∗
t . We then throw away all but the last p of these disturbances and use those

to initialize (16). In this way, we approximate a stationary process with the correct
estimated stationary covariance matrix, but with no assumption of normality.

We now consider the same setup as in the previous section, with the statistic (14) used
to test the hypothesis that the full vector β of regression parameters is zero. As the
disturbances are in fact AR(1), we set p = 1 in the AR(p) model estimated with the
OLS residuals. It would have been possible, and, arguably, better to let p be chosen
in a data-driven way. Figure 10 shows the P value and P value discrepancy plots, on
the left, and the kernel density plots on the right.
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Figure 10: P values and density diagnostic; sieve bootstrap
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Overall, the bootstrap test performs well, although there is significant distortion in
the middle of the distribution of the P value. In the left-hand tail, on the other hand,
there is very little. The (unconditional) distributions of τ and τ∗ are very similar.

The regression of τ∗ on τ gave (OLS standard errors in parentheses):

τ∗ = 2.57 + 0.05τ, centred R2 = 0.003
(0.008) (0.003)

Figure 11 shows the comparison between the P value plot as estimated directly by
simulation (in green) and as estimated using the fast method (in red) on the right,
and that for the P value discrepancy plot, on the left.
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Figure 11: Fast and direct computations of the P value; sieve bootstrap

It is clear that the fast method works much better here than for the block bootstrap,
and gives results very close indeed to those obtained by direct simulation. This suggests
that the FDB could improve performance substantially. This is also supported by the
barely significant correlation between τ and τ∗, and the fact that there is no visible
shift in the density plot for τ and that for τ∗, although the significant positive constant
in the regression shows that τ∗ tends to be greater than τ , which accounts for the
under-rejection in the middle of the distribution.

Figure 12 shows on the left a comparison of the P value discrepancy plots for the single
bootstrap (in red) and the FDB (in green). There is a slight improvement, but it is
not very impressive. On the right are the kernel density plots for τ (red), τ∗ (green),
and τ∗∗ (blue). All three are very similar, but the densities of τ∗ and τ∗∗ are closer
than is either of them to the density of τ . This fact is probably the explanation of
why the FDB does not do a better job.
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Figure 12: Plots for single bootstrap and FDB; sieve bootstrap

The three statistics are at most very weakly correlated, as seen in the regression results:

τ∗ = 2.57 + 0.05τ, centred R2 = 0.003
(0.008) (0.003)

τ∗∗ = 2.50 + 0.08τ∗, centred R2 = 0.006
(0.009) (0.003)

τ∗∗ = 2.60 + 0.04τ, centred R2 = 0.002
(0.008) (0.003)

The significant constants, though, are indicators of shifts in the distributions that are
not visible in the kernel density plots, and contribute to the under-rejection by both
single and fast double bootstrap P values.

The sieve bootstrap as described so far takes no account of heteroskedasticity. It is
interesting, therefore, to see whether it performs well when combined with the wild
bootstrap. For that purpose, equation (16) is replaced by

u∗
t =

p∑
i=1

ρ̂iu
∗
t−i + s∗t ε̂t,

where ε̂t is the residual from (15), and the s∗t are IID drawings from the Rademacher
distribution. In Figure 13 are shown results of the diagnostic procedure for a simulation
experiment in which the disturbances are scaled by one of the regressors.
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Figure 13: Results with heteroskedasticity; sieve and wild bootstrap

Heteroskedasticity, it appears, can be handled by the wild bootstrap in this context
as well. However, the regression of τ∗ on τ gave:

τ∗ = 2.02 + 0.23τ, centred R2 = 0.054
(0.008) (0.003)

This time, there is significant correlation, and consequent under-rejection in the left-
hand part of the distribution, although the distributions of τ and τ∗ are at least as
similar as in the homoskedastic case.

9. Concluding Remarks

The diagnostic techniques proposed in this paper do not rely in any way on asymptotic
analysis. Although they require a simulation experiment for their implementation,
this experiment is hardly more costly than undertaking bootstrap inference in the
first place. Results of the experiment can be presented graphically, and can often be
interpreted very easily. A simple OLS regression constitutes the other part of the
diagnosis. It measures to what extent the quantity being bootstrapped is correlated
with its bootstrap counterpart, and to what extent the distributions of this quantity
and its bootstrap counterpart are shifted relative to each other. Significant correlation
not only takes away the possibility of an asymptotic refinement, but also degrades
bootstrap performance, as shown by a finite-sample analysis.

Since bootstrapping time series is an endeavour fraught with peril, the examples for
which the diagnostic techniques are applied in this paper all involve time series. In
some cases, the bootstrap method is parametric; in others it is intended to be robust
to autocorrelation of unknown form. Such robustness can be difficult to obtain, and
the reasons for this in the particular cases studied here are revealed by the diagnostic
analysis.
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The methods of the paper can, of course, be applied equally well in circumstances that
do not necessarily involve time series, but in which the bootstrap seems not to work
very well.
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Künsch, H. R. (1989). “The jackknife and the bootstrap for general stationary
observations”, Annals of Statistics 17, 1217–1241.

Lahiri, S. N. (1999). “Theoretical comparisons of block bootstrap methods”, Annals
of Statistics 27, 386–404.

Lahiri, S. N. (2003). Resampling Methods for Dependent Data, New York: Springer.

Liu, R. Y. (1988). “Bootstrap procedures under some non-I.I.D. models”, Annals of
Statistics 16, 1696–1708.

Mammen, E. (1993). “Bootstrap and wild bootstrap for high dimensional linear
models”, Annals of Statistics 21, 255–285.

Newey, W. K. and K. D. West (1987). “A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix”, Econometrica
55, 703–8.

Nordman, D. J. and S. N. Lahiri (2012). “Block Bootstraps for Time Series with
Fixed Regressors”, Journal of the American Statistical Association, 107, 233–46.

Schluter, C. (2012) “Discussion of S. G. Donald et al and R. Davidson”, Economet-
rics Journal, 12, C54-C57

Shao, X. (2010). “The Dependent Wild Bootstrap”, Journal of the American
Statistical Association 105, 218–235.

White, H. (1980). “A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity,” Econometrica, 48, 817–838.

Wu, C. F. J. (1986). “Jackknife, bootstrap and other resampling methods in
regression analysis”, Annals of Statistics 14, 1261–1295.

– 21 –


	Title Page
	Abstract
	Introduction
	Definitions and Notation
	The Wild Bootstrap
	The Fast Approximation
	Diagnostic Procedures
	The Model with GARCH(1,1) disturbances
	The Block Bootstrap
	The Sieve Bootstrap
	Concluding Remarks
	References

