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Abstract

In an attempt to free bootstrap theory from the shackles of asymptotic considerations,
this paper studies the possibility of justifying, or validating, the bootstrap, not by letting
the sample size tend to infinity, but by considering the sequence of bootstrap P values
obtained by iterating the bootstrap. The main idea of the paper is that, if this sequence
converges to a random variable that follows the uniform U(0, 1) distribution, then the
bootstrap is valid. The idea is studied by making the model under test discrete and finite,
so that it is characterised by a finite three-dimensional array of probabilities. This device,
when available, renders bootstrap iteration to any desired order feasible. It is used for
studying a unit-root test for a process driven by a stationary MA(1) process, where it is
known that the unit-root test, even when bootstrapped, becomes quite unreliable when the
MA(1) parameter is in the vicinity of -1. Iteration of the bootstrap P value to convergence
achieves reliable inference except for a parameter value very close to -1. The paper then
endeavours to see these specific results in a wider context, and tries to cast new light on
where bootstrap theory may be going.
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1. Introduction, Background, and Motivation

The statistical method called the bootstrap makes no use of any asymptotic considerations,
but current bootstrap theory relies on them. I find this an extremely undesirable state
of affairs, if for no other reason than that the choice of an asymptotic construction is
inevitably somewhat arbitrary. This paper tries to take a first step towards remedying the
sitution.

Asymptotic arguments rely on sequences of random variables that converge, in probability
or in distribution, to some desirable limit. Since bootstrap inference is exact only in rare
instances, any justification of it must also rely on some sequence of random variables with
a desirable limit.

The approach of this paper involves the convergence or otherwise of a sequence of bootstrap
P values for testing the correct specification of an econometric (or statistical) model,
obtained by iterating the bootstrap. Computing resources are nowadays such that the first
iterate, called the double bootstrap, is in many cases feasible; when it is, it is presumed
that it can provide more reliable statistical inference than either conventional asymptotics
or the single uniterated bootstrap.

Bootstrap iteration first appeared in the literature in the 1980s, with one approach due to
Hall (1986), another to Beran (1987) and (1988). Shortly after, Hall and Martin (1988) set
out a unified approach that subsumes Hall’s earlier one and that of Beran. In these papers,
bootstrap iteration was justified on the strength of asymptotic expansions in negative
powers of the sample size, which show that errors in inference are of progressively lower
order as the order of iteration increases. Among other relevant papers from around this
time, see also Martin (1990). Bootstrap iteration is discussed in Hall’s (1992) influential
book, in which Edgeworth expansions play a vital theoretical role.

The bootstrap can provide asymptotic refinements over leading-order asymptotic theory, as
brought out clearly in Horowitz (2001). These refinements have sometimes been described
as “Edgeworth corrections”. Indeed, the bootstrap was thought of as having many of the
same properties as an Edgeworth expansion, and, on this view, iterated bootstraps are
akin to higher-order Edgeworth expansions.

Bootstrap iteration is very costly in terms of the required computing effort. Various at-
tempts have therefore been made to alleviate this cost. An early one, making use of
analytical approximations, is contained in DiCiccio, Martin, and Young (1992), where
Edgeworth expansions are not used, although the method is justified by asymptotic ar-
guments. The approach taken in Lee and Young (1995) makes somewhat different use of
Edgeworth expansions as a way to avoid the cost of a double bootstrap. Chan and Lee
(2001) derive an algorithm for infinitely iterated bootstrap bias correction, by consider-
ing bootstrap iteration as a Markov provess. Lee and Young (2003) develop methods of
weighted bootstrap iteration, shown to be asymptotically equivalent to two consecutive
conventional bootstrap iterations. In Davidson and MacKinnon (2007), the so-called fast
double bootstrap is described; it had been used in various studies before that.

– 1 –



The constant theme throughout this literature is that bootstrap iteration leads to more
reliable inference. In a wide variety of circumstances, it has been possible to demonstrate
that asymptotic refinements accrue with bootstrap iteration. It is certainly tempting,
therefore, to suppose that the only barrier to completely reliable inference via bootstrap
iteration is computational infeasibility. This paper attempts to show, in the finite-sample
context, and with no use of asymptotic arguments, that bootstrap iteration can indeed
improve reliability of inference.

In the next Section, I introduce the definitions and notation needed to formulate the
problem. In Section 3, the discretisation procedure is laid out, and the mechanics of
bootstrap iteration developed. The notion of the bootstrap discrepancy is considered in
Section 4, and some simple conclusions drawn. Then, in Section 5, a specific model is
treated, and analysed numerically. The model under test is characterised by a unit-root
process, obtained by cumulating a stationary MA(1) process, and the specification is tested
by an augmented Dickey-Fuller (ADF) test. The model is completely parametric, with
one single parameter, namely the MA(1) parameter. It is well known that, when this
parameter is close to -1, the ADF test becomes thoroughly unreliable. A parametric
bootstrap suggests itself as a way of improving reliability. The numerical study shows that
it does so except for a parameter in a very small neighbourhood of -1, if the sequence
of iterated P values is followed until convergence. This occurs for the 60th bootstrap
iteration, an order of iteration completely inconceivable in normal circumstances. Potential
loss of power due to use of an iterated bootstrap P value is considered in Section 6, and
shown to be unimportant unless the hypothesis under test is substantially false. The results
obtained for this example are discussed in a more general context in Section 7, and some
concluding remarks are offered in Section 8.

2. Framework

The focus in this paper is on bootstrap P values as the tool of inference. Reliability
of inference is measured by means of the bootstrap discrepancy , by which is meant the
difference between the rejection probability (RP) of a bootstrap test and the nominal
significance level. For level α and a bootstrap P value, P say, rejection is the event P < α.
Inference is called reliable, or exact, if the probability that P < α is equal to α.

A model is defined as a set of data-generating processes (DGPs), a DGP being, for present
purposes, a unique recipe for simulation. A model M may correspond to a hypothesis,
namely that M, as a set, contains all DGPs that satisfy the hypothesis. In order to test
the hypothesis, a test statistic, τ , is used. For notational convenience, we may suppose that
the range of τ is the [0, 1] interval rather than the whole real line, and that the statistic
takes the form of an approximate P value, which thus leads to rejection of the hypothesis
characterised by M when the statistic is too small.

Let R0 : [0, 1]×M → [0, 1] be the cumulative distribution function (CDF) of τ under any
DGP µ ∈ M:

R0(α, µ) = Pr µ(τ ≤ α).
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Thus R0(α, µ) is the RP, at nominal level α, of a test based on τ .

Assumption 1:

The distributions characterised by the CDFs R0(·, µ), µ ∈ M, are absolutely
continuous on [0, 1].

The statistic τ is said to be a pivot , or be pivotal , if R0(α, µ) is equal to some function R(α)
for all µ ∈ M, and for all α ∈ [0, 1]. In this case, the random variable R(τ) follows the
U(0, 1) distribution under all DGPs µ ∈ M, and so permits exact inference.

If τ is not pivotal, exact inference based on τ would be possible, using the statistic R0(τ, µ),
if µ were known. In practice, of course, µ is unknown, and exact inference is no longer
possible. The principle of the bootstrap is that, when we want to use some function or
functional of an unknown DGP µ, we use an estimate in place of µ. This estimated DGP is
the bootstrap DGP, denoted by β. Let a realisation of τ be denoted as t, and a realisation
of β, obtained from the same data set, as b. Then the bootstrap statistic is R0(t, b). If
indeed the bootstrap DGP β is a good estimator of the true DGP µ, then R0(t, b) is a
realisation of the random variable R0(τ, β), which can be expected to follow the U(0, 1)
distribution approximately under the null. Note that it is necessary that b ∈ M, according
to the first Golden Rule for bootstrapping; see, for instance, Davidson (2007)).

Only in exceptional, and usually trivial, cases can R0(t, b) be evaluated analytically, and so
the usual practice is to estimate it by simulation. One obtains some large number, B say,
of bootstrap statistics, τ∗j , j = 1, . . . , B, by simulation under the bootstrap DGP b, and
then estimates R0(t, b) by

R̂0(t, b) =
1

B

B∑
j=1

I(τ∗j < t),

where I(·) is the indicator function, equal to 1 if its Boolean argument is true, and to 0
otherwise. By the law of large numbers, as B → ∞, R̂0(t, b) tends almost surely to the
“ideal” bootstrap P value R0(t, b).

Let p1 denote the ideal bootstrap P value, which, expressed as a random variable, is
R0(τ, β), and let R1(α, µ) be the CDF of p1 under a DGP µ ∈ M. Observe that, since b ∈
M, by Assumption 1, the distribution of p1 is absolutely continuous on [0, 1]. Consequently,
the random variable R1(p1, µ) follows the U(0, 1) distribution. As µ is unknown, the double
bootstrap P value is defined as p2 ≡ R1(p1, β). Estimating p2 by simulation is much more
costly than estimating p1.

Iterated bootstrap P values are then defined by the following recursive scheme:

Rr(α, µ) = Pr µ(pr ≤ α),

pr+1 = Rr(pr, β),
(1)

where the recurrence is initialised by the definition p0 = τ . Thus pr+1 is the bootstrap
P value obtained by bootstrapping the r th order P value pr. It estimates the probability
mass in the distribution of the r th order P value to the left of its realisation.
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In order for bootstrap iteration to be useful in the sense of permitting exact inference, it is
necessary for the sequence {pr} of iterated bootstrap P values to converge as r → ∞, and
for the limit of the sequence to be distributed as U(0, 1). Note that it is possible to have
convergence to different distributions for different µ ∈ M, and for these, or some of them,
to be quite different from U(0, 1). For instance, with a resampling bootstrap, since with
high probability each resample does not contain some of the observations of the original
sample, repeated iteration leads almost surely to iterated bootstrap DGPs that have only
one observation of the original sample, repeated as many times as the original sample has
observations. This is one reason for our having limited attention until now to absolutely
continuous distributions. As a resampling bootstrap DGP has a discrete distribution, and
since, by the first Golden Rule, it must belong to the null model M, we have ruled it out
by Assumption 1.

This research project aims at sorting this out, and finding sufficient conditions for conver-
gence. Necessary conditions would be even better, if we achieve sufficiency. It would then
be possible to free the bootstrap from asymptotic theory in order to say what bootstrap
procedures are valid and what not. The new criterion will be convergence of the sequence
of iterated bootstrap P values to a known distribution.

3. Making Things Discrete

It’s not obvious where to start in the study of convergence. But it is sometimes helpful, at
least for intuition, if a discrete model is considered. This means that it is useless to aim for
the continuous U(0, 1) distribution, but that need not be harmful. Various wild bootstraps
exist, and although they are in many ways similar to resampling bootstraps, they do not
suffer from the problem that the bootstrap DGP becomes degenerate if the bootstrap is
iterated. The P value remains discrete, however. In the case of a wild bootstrap that
assigns random signs to N residuals, there are at most 2N possible bootstrap samples, and
so at most 2N possible bootstrap statistics. But if the bootstrap statistic is distributed
uniformly over these 2N values, that is quite enough for reliable inference, even although
one cannot achieve exact inference for a test at any arbitrary level in [0, 1].

In what follows, I assume that the statistic, in approximate P value form, can take on only
the values πi, i = 0, 1, . . . , n, with

0 = π0 < π1 < π2 < . . . < πn−1 < πn = 1. (2)

Here n is not the sample size. Further, I assume that there are only m possible DGPs
in the model that represents the null hypothesis. Thus the outcome space on which the
random variables τ , the test statistic, and β, the bootstrap DGP, are defined consists of
just m(n+1) points, labelled by two integer coordinates (i, j), i = 0, 1, . . . , n, j = 1, . . . ,m.

The model is then completely characterised by the probabilities pkij , k, j = 1, . . . ,m,
i = 0, 1, . . . , n, where, under the DGP indexed by k,

pkij = Pr k
[
τ = πi and β = j

]
. (3)
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It follows for all k = 1, . . . ,m, that

n∑
i=0

m∑
j=1

pkij = 1.

Make the definitions

akij =
i−1∑
l=0

pklj and Aki =
m∑
j=1

akij i = 0, . . . , n+ 1. (4)

Thus akij is the probability under DGP k that τ is less than πi and that b = j, while Aki

is the marginal probability under k that τ < πi. The CDF of τ can therefore be written as

R0(α, k) = Ak,⌊αn⌋+1.

Note that ak0j = Ak0 = 0 for all k, j = 1, . . . ,m. Further, Ak(n+1) = 1 and ak(n+1)j is the
marginal probability under k that β = j, for all k = 1, . . . ,m.

Consider next the bootstrap P value p1 under DGP k with realisation (i, j). It is the
probability mass under the bootstrap DGP j of a value of τ less than πi. It follows that

p1 = Aji, (5)

In order to iterate the bootstrap, we need the CDF of p1 under the DGP k. It can be
written as

R1(α, k) = Pr k(p1 < α) =
n∑

i=0

m∑
j=1

pkijI(Aji < α), (6)

where I(·) is an indicator function. Now let q1j (α) be defined by

q1j (α) = max
i=0,...,n+1

{
i
∣∣ Aji ≤ α

}
In this discrete context, q1j (α)/n can be interpreted analogously to an α-quantile of the
distribution of the statistic τ with DGP j. In fact, for α = Aji, it is easy to see that
q1j (Aji) = i. Since the ajil are increasing in i, so too are the Aji, and we see that

Aji < α for all i < q1j (α) and Aji ≥ α for all i ≥ q1j (α).

Thus the event {Aji < α} is equivalent to the inequality i < q1j (α).

This allows us to compute R1(α, k). We find from (6) that

R1(α, k) =
m∑
j=1

q1j (α)−1∑
i=0

pkij =
m∑
j=1

akq1
j
(α)j . (7)
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We may think of the indices k (a DGP), i (a statistic), and j (a DGP) as forming a three-
dimensional array, with k varying in the horizontal direction and i in the vertical direction
of a flat two-dimensional surface, and j varying perpendicular to that surface. Fixing k
in R1(α, k) puts us on a sheet defined by the vertical i-direction and the perpendicular
j-direction. The sum in the right-hand expression above takes us on a trip across this
sheet, where, as we vary j, the i-coordinate traces out the values q1j (α).

Next, we wish to compute the double bootstrap P value p2. By definition, p2 = R1(p1, β),
so that, for a realisation (i, j),

p2 = R1(Aji, j) =

m∑
l=1

ajq1
l
(Aji)l (8)

where the first equality follows because p1 = Aji, and β = j, and the second follows from
the definition (7). Make the definition

A2
ji =

m∑
l=1

ajq1
l
(Aji)l, (9)

where the superscript 2 is an index, not an exponent. Then the double bootstrap P value
p2 is A2

ji; compare with the relation (5).

The recursive scheme for obtaining the sequence of iterated bootstrap P values is given in
the following Theorem.

Theorem 1

Let the finite, discrete, model M consist of m DGPs, labelled by j = 1, . . . ,m.
Each DGP in M can generate realisations of the pair of random variables (τ, β),
where the statistic τ takes on the values πi, i = 0, 1, . . . , n satisfying (2), and the
bootstrap DGP β takes on values j = 1, . . . ,m. Under the DGP labelled by k,
the probability of the realisation (i, j) is pkij . Define the cumulative probabilities
akij and Aki by the relations (4). Then the sequence {pr}, of iterated bootstrap
P values for realisation (i, j) is given by the recurrence:

pr = Ar
ji, (10)

Ar+1
ji =

m∑
l=1

ajqr
l
(Ar

ji
)l, (11)

qrl (α) = max
i=1,...,n+1

{i
∣∣ Ar

li ≤ α}, (12)

initialised by the definitions

A1
ji = Aji; q1l (α) = max

i=0,1,...,n+1
{i

∣∣ Aji ≤ α}.
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Proof:

By (5), the ordinary bootstrap P value p1 is given by Aji for realisation (i, j). By (11)
with r = 1 and the given initialisation, the double bootstrap P value p2 is

A2
ji =

m∑
l=1

ajq1
l
(A1

ji
)l,

in agreement with (9). Note that the A1
ji are strictly increasing in i for all j = 1, . . . ,m,

given that the inequalities in (2) are strict. Suppose now that (10) holds for some given
r ≥ 2, and that the Ar

ji are strictly increasing in i for all j = 1, . . . ,m. It follows from (11)

that the Ar+1
ji are also strictly increasing in i. With pr defined by (10), the CDF of pr

under DGP k is

Rr(α, k) =
n∑

i=0

m∑
j=1

pkijI(A
r
ji ≤ α). (13)

From (12), it can be seen that the inequality Ar
ji < α is equivalent to i < qrj (α), and so

Rr(α, j) =
m∑
l=1

qrl (α)−1∑
i=0

pjil =
m∑
l=1

ajqr
l
(α)l. (14)

By the general definition (1) of iterated bootstrap P values, it can be seen that, for
realisation (i, j),

pr+1 = Rr(pr, j) =

m∑
l=1

ajqr
l
(Ar

ji
)l = Ar+1

ji , (15)

where the last equality follows from (11). Thus (10) holds for r + 1, and the theorem is
proved.

The question of the convergence of the sequence {pr} as r → ∞ is the subject of the next
theorem.

Theorem 2

The recurrence (10), (11), and (12) defines the sequence {Ar
ji} as a Markov pro-

cess. The sequence converges for some finite r, or else it is locked in a limit
cycle.

Proof:

Inasmuch as the probabilities ajil are given once and for all in the definition of the prob-
abilistic structure of the model, it follows from (11) that the transition from the Ar

ji to

the Ar+1
ji is completely determined by the three-dimensional array of integers qrl (A

r
ji),

l, j = 1, . . . ,m, i = 0, 1, . . . , n. By (12) with α = Ar
li, these integers in turn are completely
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determined by the Ar
li. This shows that the sequence {Ar

ji} is a Markov process, as also
the sequence {qrl (Aji)}.

Since the values of each integer qrl (Aji) are limited to the finite set {0, 1, . . . , n, n + 1},
there must be at least one configuration of these integers that occurs infinitely often in the
sequence. If the first occurrence is at iteration r, then the successor configuration for r+1
may be the same as for r, in which case the sequence converges at iteration r, or else there
is a limit cycle constituted by the set of configurations from iteration r on until the next
occurrence of the configuration at iteration r.

Remarks:

The limit cycle possibility seems unlikely to arise with realistic models, for which the
statistic τ is an approximate pivot, and the bootstrap DGP β under a DGP k is in some
sense close to k. Indeed, I have been unable to construct even a pathological example that
leads to a limit cycle.

Although one of the outcomes allowed by Theorem 2 must certainly occur for some finite r,
convergence to this outcome need not be quick, given the number of possible configurations
of the qrl (Aji), namely m2(n+ 2).

The mapping, independent of r, which takes the Ar
ji to their successors Ar+1

ji , is of course
very nonlinear, and is not a contraction mapping, as can be seen by the following argu-
ment. For some l = 1, . . . ,m and some iteration r, consider the (n + 2) ×m matrix with
element (i, j) given by qrl (A

r
ji). All elements of the row with i = 0 are necessarily equal

to 0, since Ar
j0 = 0 and all elements of the row with i = n + 1 are equal to n + 1, since

Ar
j(n+1) = 1. If all other elements of a column j are equal to 0 at iteration r, they remain

equal to 0 at all successive iterations, and similarly, if all elements except the first are
equal to 1, they remain so subsequently. Thus any configuration in which every column
either has all elements except the last equal to 0, or else has all elements except the first
equal to 1 is a fixed point of the mapping. Since a contraction mapping has a unique fixed
point, the mapping defined by the recurrence cannot be a contraction mapping.

4. Bootstrap Discrepancies

In general, the bootstrap discrepancy is defined, for a given DGP µ in a model M, and
for a given significance level α, as the difference between the rejection probability of the
bootstrap test under the DGP µ and level α and α itself. It is therefore given by R1(α, µ)−
α, where as before R1(·, µ) is the CDF of the bootstrap P value p1 under µ. For iterated
bootstraps, the definition is the same: at level r, the order-r discrepancy is Rr(α, µ)− α.
The aim in bootstrapping, and in iterated bootstrapping, is to minimise the bootstrap
discrepancy. If it is zero, the bootstrap permits exact inference.

There are two trivial cases in which the discrepancy is zero, and the iterated bootstrap
P values coincide with the single bootstrap P value. The first case arises when the statistic
τ is a pivot, the second when the bootstrap DGP coincides with the true DGP. It is a useful
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sanity check to ensure that these properties hold for the discrete model of the preceding
section.

First, if τ is a pivot, the Aki do not depend on k; recall that Aki is the probability under k
that τ < πi. We may express this by writing Aki = A·i. This means that q1j (α) depends
only on α, not on j; we write q1j (α) = q1· (α). We see that, in this case,

R1(α, k) =

m∑
j=1

akq1· (α)j = A·q1· (α), (16)

and this does not depend on k. Therefore the bootstrap P value is also a pivot, with the
same distribution whatever the DGP k, and the probability that it is less than α is the
probability that i < q1· (α), which would be exactly equal to α without the discreteness of
the problem, and is indeed equal to α for α = A·i, since q1· (A·i) = i, and the probability
that τ < πi is A·i = α. For these values of α, therefore, the bootstrap discrepancy is zero.

For realisation (i, j), the bootstrap P value is A·i. The double bootstrap P value is,
from (8), A2

ji = R1(A·i, ·), and, from (16), this is A·q1· (A·i). Now

q1· (A·i) = max
j

{j
∣∣ A·j ≤ A·i},

and the value of the right-hand side is clearly just i. Thus the double bootstrap P value
is A·i, the same as the single bootstrap P value, and also therefore independent of j.

The other special case arises when the bootstrap DGP always coincides with the true DGP.
If so, then, for all admissible k, i, and j, we have akij = Akiδkj , where δkj is the Kronecker
delta. The factor of Aki on the right-hand side of this equation is justified, because

Aki ≡
m∑
j=1

akij = Aki

m∑
j=1

δkj = Aki.

From (7) we have

R1(α, k) =
m∑
j=1

akq1
j
(α)j =

m∑
j=1

δkjAkq1
j
(α) = Akq1

k
(α).

In particular, for α = Aki, i = 0, . . . , n, since q1k(Aki) = i, R1(Aki, k) = Aki, which implies
that for these values of α, the bootstrap discrepancy is zero. The double bootstrap P value
is A2

ki, which is

A2
ki =

m∑
j=1

akq1
j
(Aki)j = Akq1

k
(Aki) = Aki.

Thus, as in the case of a pivotal statistic, so too here the bootstrap discrepancy is zero for
α = Aki, and the double bootstrap P value is identical to the single bootstrap P value, as
are all higher-order P values.
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When the discrepancy is not zero, it can be examined graphically using a P value plot or
a P value discrepancy plot; see Davidson and MacKinnon (1998). Without bootstrapping,
the former plot under DGP k of the discrete model is the locus of points (πi, Aki), since
Aki is the probability that τ < πi, that is, the actual RP at significance level πi. The latter
plot is the locus of points (πi, Aki−πi). Exact inference corresponds to the former tracing
out the 45◦ line across the unit square, or the latter tracing out the horizontal axis.

Theorem 3

Under DGP k of the discrete model, the P value plot for the order r bootstrap
contains the points (Ar

ki, A
r+1
ki ), i = 0, 1, . . . , n, and the P value discrepancy plot

the points (Ar
ki, A

r+1
ki −Ar

ki). If the recurrence defined by (11) and (12) converges
at order r, the bootstrap discrepancy is zero for all significance levels Ar

ki.

Proof:

The CDF under DGP k of the order r bootstrap P value pr is the function Rr(·, k),
given in (13). Thus the probability that pr < Ar

ki is Rr(A
r
ki, k), which, by (15), is equal

to Ar+1
ki . Hence the point (Ar

ki, A
r+1
ki ) lies on the P value plot for order r, and the point

(Ar
ki, A

r+1
ki −Ar

ki) lies on the P value discrepancy plot.

If the recurrence defined by (11) and (12) converges at order r under DGP k, then
Ar+1

ki = Ar
ki for all i = 0, 1, . . . , n. Hence the bootstrap discrepancy at level Ar

ki is
Ar+1

ki −Ar
ki = 0.

Remark:

It is important to note here that Theorem 3 does not guarantee that exact inference is
available with the fully iterated bootstrap for an arbitrarily chosen significance level. In
the example of the next section, it is seen that, in some cases, the levels at which the
bootstrap discrepancy is zero are roughly uniformly spread out over the unit interval, so
that a level chosen arbitrarily will be close to one with zero discrepancy. In other cases,
however, levels with zero discrepancy are bunched up near zero or one, with the result that
the discrepancy at some conventional level may be far from zero.

5. An Example

Whereas it is easy to make the set of P values discrete, for instance by choosing n = 100
and letting a P value take on values 0.00, 0.01, 0.02, . . . , 0.99, 1.00 only, there are not very
many examples for which it is obvious how to make the null model discrete. An exception
to this, which we study in this section, is the model treated in Davidson (2010). The model
can be expressed as

yt = yt−1 + ut, ut = vt + θvt−1, t = 1, . . . , T (17)

where the vt are Gaussian white noise with variance 1, so that yt is a unit-root process,
obtained by cumulating the MA(1) process ut with MA parameter θ. Since (17) takes the
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form of a recurrence relation, it must be initialised. In order to make ut stationary, v0 is
set to a standard normal variable, independent of the vt, t = 1, 2, . . . , T .

The model is tested by a unit-root test, for which the test statistic is the τc version of the
augmented Dickey-Fuller (ADF) test, proposed by Dickey and Fuller (1979), and justified
asymptotically under much less restrictive assumptions by Said and Dickey (1984) and
Phillips and Perron (1988). The statistics are computed using the ADF testing regression

∆yt = β0 + β1yt−1 +

p∑
i=1

γi∆yt−1 + residual,

where p is a lag truncation parameter, usually chosen in a data-determined way on the
basis of some information criterion. When this regression is run by ordinary least squares,
the τc statistic is the conventional t statistic for the hypothesis that β1 = 0. Under the
null hypothesis that the series yt has a unit root, this statistic has a well-known but
nonstandard asymptotic distribution.

With all of these assumptions, the model (17) is purely parametric, with only one par-
ameter, namely θ. It is therefore easy to make the model discrete, by choosing a grid
of values for θ. Since the model is parametric, the bootstrap is also parametric, and is
characterised by a value of θ. In our discrete model, these values are restricted to the
chosen grid. The parameter θ has to be estimated under the null hypothesis, as discussed
in Davidson (2007) – the second “Golden Rule of Bootstrapping”. In his earlier study,
Davidson used a nonlinear least-squares (NLS) procedure that gave results comparable to
those of maximum likelihood.

Testing for a unit root in a series obtained by summing a stationary MA(1) process with
a parameter close to -1 leads to serious size distortions under the null, on account of the
near cancellation of the unit root by the MA component in the driving stationary series ut.
Davidson (2010) found that, for a sample size of 100, the best results in terms of minimising
size distortion under the null were obtained with a lag truncation parameter of p = 12.
Since we wish to study the effect of bootstrap iteration, it is very desirable to consider a
setup in which the size distortion is non-negligible, and so the neighbourhood of θ = −1
is suitable in this regard. Further, as θ approaches -1 from above, the distortion changes
sign from negative to positive.

In Figure 1 are plotted the 0.01, 0.05, and 0.10 quantiles of the distribution of the asymp-
totic P value obtained from the raw τc statistic by use of the program described in Mac-
Kinnon (1994) and MacKinnon (1996), plotted as a function of θ from -0.4 to -0.99, and
for a sample size T = 100.
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Figure 1

It can be see that, for values of θ from -0.4 to around -0.7, the curves are nearly flat,
with P values close to nominal. Thus the distribution does not change much over this
range. From -0.7 to -0.99, however, the distribution is very sensitive indeed to the value
of θ, and this implies difficulties for the bootstrap if data are generated by a DGP in this
region. The greatest size distortions are to be expected around θ = −0.90, since it is in
that neighbourhood that the curves bend most. Closer to θ = −1, although the curves
are very far from flat, they follow more or less straight lines. According to the analysis in
Davidson and MacKinnon (1999), this fact helps to reduce distortion more than in regions
in which the graphs are curved.

The discrete model is as follows:

• The number of possible test statistics, n + 1, is given by n = 100, with probabilities
πi = i/100, i = 0, . . . , n, forming the grid 0.00, 0.01, 0.02, . . . , 0.99, 1.00.

• The τc test statistic is converted into an asymptotic P value by use of the program
described in MacKinnon (1994) and MacKinnon (1996). The P value is rounded to
the closest point on the grid defined above.

• The discrete model M is defined, with m = 60 points, for the DGPs (17) with para-
meters θ on the grid −0.40,−0.41,−0.42, . . . ,−0.98,−0.99. The value of θ = −1 must
of course be excluded, as belonging to the alternative hypothesis by which yt is an
I(0) process rather than to the null of an I(1) process.
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• The parameter θ which defines the bootstrap DGP is estimated by the NLS procedure
mentioned above. Values greater than −0.40 are rounded down to this value; values
between −0.99 and −1 are rounded up to −0.99; intermediate values are rounded to
the nearest point on the grid.

For the iteration procedure defined in Section 3 to be implemented, it was necessary to
estimate by simulation the 60 × 101 × 60 = 363,600 probabilities pkij defined in (3). To
this end, 60 separate simulation experiments were undertaken, for each of the 60 DGPs of
the discrete model, on a machine with 64 cores. There were 100,000 replications for each
of the 60 experiments, and the whole set of experiments took about an hour and a quarter
of computer time. When all of the pkij had been estimated in this way, the probabilities
Aki defined in (4) were constructed, and then the successive iterates Ar

ki computed using
(11) and (12). Convergence of the recurrence was achieved after 60 iterations. Since
one iteration of the bootstrap gives what we call the double bootstrap, it is the 61-tuple
bootstrap which can be identified with the infinitely iterated bootstrap. As expected
on the basis of the evidence in Figure 1, convergence was slowest for the DGPs with θ
around -0.95.

Selected results

The iterative procedure yields so many results, many of them rather uninteresting, that I
limit myself here to a selection of more interesting things that emerge from the computa-
tions.

In Figures 2, 3, and 4, are shown results similar to some results in Davidson (2010). For
θ = −0.90, −0.95, and −0.99, P value discrepancy plots are given for bootstrap iterations,
starting with the ordinary (single) bootstrap, through the quintuple bootstrap. In order to
give a complete picture, the abscissa α in these graphs takes the values i/100, i = 0, . . . , 100,
and the ordinate is computed as Rr(α, j) − α, with Rr given by (14), for the values of j
that correspond to the given values of θ. If a graph hits the horizontal axis for some α, this
means that that iteration of the bootstrap gives exact inference for level α. Rather than
studying the discrepancy for conventional significance levels only, this graphical approach
allows us to see the extent to which the iterated bootstrap P values converge to a discrete
distribution close to the continuous U(0, 1) distribution. Although this may be of limited
practical importance, it is of essential theoretical interest.

For θ = −0.90, the discrepancy plots appear to converge monotonically to the horizontal
axis, implying that the quintuple bootstrap and higher iterations give exact inference
for a rather dense set of levels, up to the errors induced by the discretisation and the
simulation errors in estimating the probabilities pkij . However, for θ = −0.95 things look
rather different. The results are plainly contaminated by more noise than for θ = −0.90,
and it is not clear whether there really is convergence. For θ = −0.99, the switch from
under- to over-rejection is evident. Here, it is possible to believe that the discrepancy plots
are converging to the horizontal axis, but that has not happened even for the quintuple
bootstrap.
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Figure 2: T = 100, θ = -0.90
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Figure 3: T = 100, θ = -0.95
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Figure 4: T = 100, θ = -0.99

It can be remarked here that, for values of θ greater than −0.90, convergence to the hori-
zontal axis is essentially complete by the quadruple or quintuple bootstrap. One example
is presented in Figure 5, for θ = −0.70. Notice the scale of the vertical axis. Evidently,
the distortion even of the single bootstrap is not very great.
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Figure 5: T = 100, θ = -0.70

After the recurrence has converged, we can look at the discrepancy plot for the infinitely
iterated, or 61-tuple, bootstrap. In Figure 6, these discrepancy plots are shown for θ equal
to −0.70, −0.90, −0.95, and −0.99. Because the recurrence converged, the discrepancy
in all cases must be exactly equal to zero for the nominal levels in the relevant rows of
the matrix we may write as A∞, with element (i, j) equal to A60

ji . For θ between -0.95
and -0.99, a great many of these levels are in the neighbourhood of 1. For α = 1, of course,
inference is trivially exact. All of the curves cross the horizontal axis several times, and are
almost coincident with it for values of θ not in the close neighbourhood of -1. The fact that
the discrepancies are not zero everywhere is of course a consequence of the discrete nature
of the model. However, even for θ = −0.90, and more so for θ = −0.70, the discrepancy is
everywhere very small indeed.
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Figure 6: T = 100, fully iterated bootstraps

A referee suggested that, as the approach of this paper is in no way asymptotic, it would
be interesting to see how it performs for a much smaller sample size. A second set of
experiments was therefore undertaken with T = 20. Convergence of the iterated bootstrap
P values was much slower, requiring 660 iterations. The P value discrepancy plots for the
fully iterated bootstrap are shown in Figure 7 for θ = −0.7,−0.9,−0.95, and −0.99. The
distortions are, if anything, smaller than those for T = 100.
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Figure 7: T = 20, fully iterated bootstraps

6. Power

Any time that a procedure seems to give better control of Type I error, it is advisable
to see to what extent this has been bought at a cost in terms of power. However, power
cannot be unambiguously defined when a non-pivotal test statistic is used, since, without
some means of size or level adjustment, the raw RP of the test under a DGP not in the
null hypothesis cannot be interpreted as power. See Horowitz and Savin (2000) for a full
discussion of this point; they recommend the raw RP of a well-constructed bootstrap test
as the best that can be done. That is what is done in this section using a fully iterated
bootstrap P value for the test statistic.

Four DGPs were investigated, characterised as follows:

yt = ρyt−1 + ut, ut = vt + θvt−1, t = 1, . . . , 100,

where θ = −0.7 for all four, and the values of the AR parameter ρ, successively farther
from the null-hypothesis value of 1, were 0.99, 0.95, 0.90, and 0.85. The value of θ was
chosen in order to avoid the near cancellation that arises if ρ is close to −θ.

As with the DGPs in the null model, an experiment involving 100,000 replications was
carried out for each of the four DGPs (in parallel), in order to estimate the probabilities
of obtaining each of the 101× 60 = 6060 realisations (i, j), i = 0, 1 . . . , 100, j = 1, . . . , 60,
allowed by the model. For each realisation (i, j), the corresponding fully iterated boot-
strap P value, A60

ji was found. The probability under any of the four non-null DGPs of
realisations (i, j) such that A60

ji < α is the RP of the fully iterated bootstrap test at level α,
which can then properly be interpreted as the power.

Graphs of the size-power tradeoff, as proposed in Davidson and MacKinnon (1998), are
shown in Figure 8, with significance level α on the horizontal axis, and the RP at that
level on the vertical axis.
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Figure 8: Size-power tradeoff; iterated bootstrap, θ=-0.7
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Figure 9: Size-power tradeoff; asymptotic test, θ=-0.7

For comparison purposes, Figure 9 shows the apparent size-power tradeoff if the test is
based on the asymptotic P value τ . For θ = −0.7, Figure 1 suggests that the distribution
of this asymptotic P value should be close to nominal under the null hypothesis, implying
that a comparison of the curves in Figures 8 and 9 is not unreasonable. It is clear that
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there is no serious power loss occasioned by use of the iterated bootstrap P value, except
for ρ = 0.85. This last feature is accounted for by noting that estimating θ under the
assumption of a unit root when in fact ρ is not far removed from −θ biases the estimate
in the direction of -1. Again according to Figure 1, the critical values of the bootstrap
distribution are larger than for the true DGP, leading to a loss of power. This presumably
could be alleviated by estimating θ under the alternative, although this would normally
be bad practice.

7. Discussion

The study in this paper raises a number of issues. One obvious one is to what extent
the use of a discrete model is feasible in practice, with the sort of bootstrap commonly
used, rather than one governed by a single scalar parameter. Two parameters are probably
feasible, but with any more one swiftly runs afoul of the curse of dimensionality.

It is clear that the most important advantage of this discrete approach is that it eliminates
conventional bootstrapping based on a simulation experiment. In exchange, it is necessary
to conduct the probably costly simulation experiment needed in order to estimate the
pkij of (3). However, once that experiment is carried out, it serves as a fixed overhead for
arbitrary levels of bootstrap iteration. It thus becomes feasible to examine the convergence
or otherwise of the sequence of iterated bootstrap P values.

In the discrete case, Theorem 2 tells us that the sequence of iterated bootstrap P values
converges except in the unlikely case of a limit cycle. However, this need not imply that
exact inference is possible for significance levels of interest, since Theorem 3 makes it
clear that the fully iterated bootstrap discrepancy is exactly zero only for a specific set
of significance levels. Figure 6 makes it clear that, for θ = −0.99, there is non-negligible
distortion away from these levels.

It is quite possible to concoct pathological examples in which, after convergence, the only
levels capable of giving exact inference are zero and one; hardly a desirable state of affairs.
One such example is given by a model with only two DGPs, and a statistic the distribution
of which under one of these strictly stochastically dominates the distribution under the
other. If the bootstrap DGP is always, deterministically, just one of the two, then, under
that one, as we saw in Section 4, convergence is immediate and allows exact inference.
Under the other DGP, numbered 2 say, however, convergence is eventually achieved, with
all of the A2i equal to 0 or 1, except for the first or the last, depending on the direction of
the dominance.

What we saw for θ = −0.99 is far from being as extreme as the above example, but it
brings out another point, namely that, for one and the same model, for some DGPs we may
have convergence, in the discrete case, of the sort we observed for θ greater than −0.90,
while, for others, it may be more like what we saw with θ = −0.99. In the continuous case,
convergence to a uniform limit may occur for some DGPs in the model, but not for others.
If there is such convergence for all DGPs in the null model, then the infinitely iterated
bootstrap P value is a pivot with respect to that model.
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The most frequently used sort of bootstrap is a resampling bootstrap. This implies that
the bootstrap distribution is discrete, although it is usually presumed that the underly-
ing distribution or distributions are continuous. It is in any case impossible to iterate a
resampling bootstrap indefinitely, because each resample has fewer separate objects than
the sample from which the resample is drawn. If one iterates a resampling bootstrap,
eventually there will be only one element of the original sample left, which one presumably
being randomly selected with equal probabilities for all the elements. “Convergence” in
such a case would be meaningless.

If we abstract from the simulation noise in the estimation of the pkij , the discrete model
is quite nonrandom. We are, in effect, working simultaneously with every point in the
outcome space. Convergence, therefore, is to be understood in the ordinary sense of
convergence of a sequence of real numbers. In the continuous case, of course, we have to
speak of stochastic convergence, which may perhaps be almost sure, or in probability. If
this discrete approach were to be used with real data, it would be necessary to use these
data to compute realisations of the quantity being bootstrapped and of the bootstrap
DGP, and then to discretise them according to the plan of discretisation in use. If the
realised quantity is indexed by i and the realised bootstrap DGP by j, then for the r-tuple
bootstrap, the bootstrap P value is Ar

ji.

Many questions remain regarding the numerical stability of the discrete model. It would for
instance be useful to examine to what extent simulation error in the preliminary estimation
of the pkij is propagated through the iterations; I plan to study this in future work.
Another point that will bear future investigation is to what extent coarseness or fineness
of the discretisation matters, both for the statistics (the P values) and for the DGPs of
the model. If relatively coarse discretisation yields satisfactory results, this would be of
enormous importance for any practical use of this approach.

It would be immensely useful to find ways of discretising the set of bootstrap DGPs used
in situations that are not purely parametric. While it is easy enough to replace the use
of a discrete empirical distribution for resampling by a continuous version, thus avoiding
the problem inherent to iterating a conventional resampling bootstrap, it is not obvious
how to make discrete the set of bootstrap DGPs that would be obtained in this way. I
conjecture that, when bootstrapping an approximately pivotal statistic, it may be possible
to cover the set of bootstrap DGPs rather coarsely and still achieve satisfactory results.
Although how best to do so remains to be seen, it is not at all necessary to adopt the
strategy of the example in Section 5, and to use an equally spaced grid of either P values
or the parameter(s) that define the bootstrap DGP, and this suggests that it may be
advantageous to make use of adaptive sparse grids, of the sort proposed in Brumm and
Scheidegger (2015); see also the many relevant references in that paper.

The double bootstrap was introduced by Beran in two papers, Beran (1987) and Beran
(1988), in which he refers to “pre-pivoting”, meaning making some quantity more close to
being pivotal for a model by bootstrapping it, and then bootstrapping the result. This
interpretation clearly applies to higher orders of bootstrap iteration. In some sense, the
iterative procedure, if it converges appropriately, serves to project the original statistic
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into a space of pivotal statistics. It would be desirable to formalise this intuition. It
is also necessary to see to what extent this “projection” may adversely affect the power
of a test. Of course, power is not uniquely defined when a non-pivotal statistic is used,
but, as remarked previously, if an iterated bootstrap P value follows the uniform U(0, 1)
distribution, it is by definition a pivot.

In discussing bootstrap “validity”, it is conventional to make use of an appropriate asymp-
totic construction in order to show that the limiting distribution of the quantity considered
is the same as the limiting distribution of its bootstrap counterpart, conditional on the
realised data. This is of course a very weak requirement. A somewhat better justification
for the bootstrap comes from any refinements that can be demonstrated by an asymptotic
argument, as in Hall’s (1992) book, where he uses Edgeworth expansion. But the boot-
strap is not intrinsically an asymptotic procedure; rather, current bootstrap theory relies
on asymptotic arguments. It seems to me that convergence of the sequence of iterated
bootstrap P values to the uniform distribution is a much richer and more satisfactory
means of justifying or validating the bootstrap. No asymptotic argument is involved, so
that the potential arbitrariness of the choice of an asymptotic construction is avoided.
To the extent that the approach of this paper can be made operational for problems of
interest, the approach carries its validity along with it.

Further, the new proposed criterion for validity is by no means equivalent to asymptotic
validity. An example of this is when a regression model, the disturbances of which are not
necessarily Gaussian, is bootstrapped using a bootstrap DGP that imposes Gaussianity.
Under very weak conditions on the asymptotic construction, this bootstrap is asymptoti-
cally valid. But it certainly is not, by the criterion of convergence of iterated P values to
U(0, 1), for any DGPs in the model the disturbances of which are in fact not Gaussian.

8. Concluding Remarks

In this paper, I have tried to take a step towards realising my ambition of freeing bootstrap
theory from the use of asymptotic methods. The main idea is that the bootstrap can
be justified – or not, as the case may be – by the convergence of the iterations of the
bootstrap. This idea is developed here by making it tractable to study the bootstrap to
any order of iteration, by means of a discretisation procedure that makes the model under
test represented by a finite three-dimensional array of probabilities.

Much work remains to be done if the approach of the paper is to be useful, either in practice,
or in the further development of bootstrap theory. One question seems particularly urgent:
can we find sufficient conditions for convergence of the sequence of iterated P values to the
uniform U(0, 1) distribution in the continuous case, conditions that can be checked without
excessive trouble in situations of practical interest? This, and other related questions, will
be pursued in future work.
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