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be obtained by orthogonal projection on to the efficient subspace. Examples are
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1. Introduction

The aim of this paper is to construct a general geometrical setting, based on Hilbert
space, in which one may study various estimation techniques, in particular with
respect to efficiency and robustness. Given the sort of data one wishes to study,
such as continuous, discrete, etc., the set of data-generating processes (DGPs)
capable of generating data of that sort is given the structure of a Hilbert manifold.
Statistical models will be treated as submanifolds of this underlying manifold.

Geometrical methods are frequently used in the study of statistical inference.
One important strand of the literature is presented in Amari (1990), whose numer-
ous earlier papers were inspired by some very abstract work of Chentsov (1972) and
led to the concept of a statistical manifold. Other review papers and books in this
tradition include Barndorff-Nielsen, Cox, and Reid (1986), Kass (1989), Murray
and Rice (1993), and Barndorff-Nielsen and Cox (1994). Most of this work makes
use of finite-dimensional differential manifolds, which are usually representations
of models in the exponential family.

Infinite-dimensional Hilbert space methods are extensively used in another
strand of literature, for which the most suitable recent reference is Small and
McLeish (1994). This book contains numerous references to the original papers
on which it builds. In this work, random variables are represented as elements
of Hilbert space, and different probability measures (that is, different DGPs) cor-
respond to different inner products on the Hilbert space. However, no manifold
structure is imposed on the set of inner products, so that the set of DGPs, rather
than the set of random variables, is not given a geometrical interpretation. Never-
theless, Small and McLeish’s approach provides most of the geometrical elements
used in this paper.

Davidson and MacKinnon (1987) introduced infinite-dimensional statistical
manifolds, with Hilbert manifold structure, in a manner similar to that used by
Dawid (1975, 1977). Infinite-dimensional differential manifolds are less frequently
encountered than finite-dimensional ones, but see Lang (1972) for an excellent ac-
count. The use of infinite-dimensional manifolds avoids the need to limit attention
to models in the exponential family. In this paper, that Hilbert space representa-
tion is extended, and adapted for use in the context of asymptotic theory.

In this paper, estimators are defined in such a way as to correspond to ele-
ments of the tangent spaces to the statistical manifold at DGPs belonging to the
manifold. In fact, an interpretation of these tangent spaces is given as the space
of random variables with zero mean and finite variance under the DGP at which
the space is tangent. Since a tangent space to a Hilbert manifold is itself a Hilbert
space, it can, under this interpretation, be identified with the subspace of Small
and McLeish’s Hilbert space corresponding to zero-mean random variables.

The principal focus in this paper is on estimators defined by the Method of
Estimating Functions, as proposed by Godambe (1960). This method is essentially
equivalent to the method known in the econometrics literature as the Generalised
Method of Moments, introduced by Hansen (1982). With little effort, the results
given in this paper can be extended to Manski’s (1984) Closest Empirical Dis-
tribution class of estimators. The efficiency and/or robustness of an estimator is
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always treated relative to a statistical model, treated as a Hilbert submanifold.
Since estimators estimate parameters, they are defined relative to a parameter-
defining mapping defined on the model. A parametrised model is just the pair
consisting of the model and the parameter-defining mapping.

A major result of the paper is that the tangent space to the underlying statis-
tical Hilbert manifold at a DGP belonging to a parametrised model is the direct
sum of three mutually orthogonal subspaces. The model, being a Hilbert sub-
manifold, has its own tangent space at any DGP in it, this being a subspace of
the full tangent space. The first of the three subspaces is just the orthogonal
complement of the tangent space to the model. The other two are therefore com-
plementary subspaces of the model tangent space. Of these, one is the tangent
space to the subset of the model for which the model parameters do not vary, and
the other, orthogonal to it, turns out to be the finite-dimensional space in which
(asymptotically) efficient estimators are located.

Robustness of an estimator with respect to a given model is interpreted as
meaning that the estimator is root-n consistent for all DGPs in the model. The
property of root-n consistency is shown to have a geometrical interpretation ac-
cording to which the tangents that represent the estimator are orthogonal to the
second subspace described above, the one which is tangent to the space over which
the parameters do not vary. Quite generally, a root-n consistent estimator can be
made efficient at any given DGP by projecting it orthogonally in Hilbert space
on to the finite-dimensional third subspace. Such orthogonal projections can be
achieved by making use of a particular privileged basis of the third subspace, a
basis that is easy to characterise in terms of Godambe’s estimating functions.

In the next section, the Hilbert manifold of DGPs is constructed, and it is
shown how to adapt it for use with asymptotic theory. Then in section 3, es-
timators are defined in a geometrical context, as also the concepts of efficiency
and robustness of estimators. The main results pertaining to the three-subspace
decomposition of the tangent space are proved in this section. Section 4 is an
interlude of examples and illustrations, and in section 5 the results are specialised
to estimators defined by estimating functions and the generalised method of mo-
ments. In section 6, the linear regression model is used as the simplest example in
which the results of section 5 can be deployed, and a nontrivial application of or-
thogonal projection is given. Finally, concluding comments are found in section 7.

2. Data-Generating Processes in Hilbert Space

In Davidson and MacKinnon (1987) a Hilbert space representation was introduced
for the set of data-generating processes (DGPs) that could have generated a given
data set. The representation used here is a slight generalisation of that presented
there, in that we will not restrict ourselves to samples of i.i.d. random variables.

First, it is assumed that the DGPs we are concerned with are defined on a
measure space (£2, F). A DGP corresponds to a probability measure, P say, defined
on this space. Observed data, y™ = {y; };~,, say, for a sample of size n, are inter-
preted as realisations of random variables on (2, F). Thus, if each observation has
m components (there are m simultaneously observed dependent variables), then
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for each t = 1,2,...,n there exists a mapping Y; : 2 — R™  and for each sample
size n =1,2,... a mapping Y" : Q — R™", where Y; and Y are respectively the
random variable for observation ¢ and the random variable for a complete sample
of size n. Their stochastic properties are given by the probability measure P, or,
equivalently, by the measure that P induces on R™" by the mapping Y.

A model, for a given sample size n, will be thought of as a set of DGPs,
that is, as a set of probability measures on R™". We assume that there exists a
carrier measure P§ on R™" such that the measures associated with all DGPs in
the model are absolutely continuous with respect to it. By the Radon-Nikodym
theorem, this ensures for each DGP in the model the existence of a probability
density for the random variable Y.

Consider now one single DGP in the model, and denote the density of Y by
L™ : R™ — R. Since this is the joint density of the Y;, t = 1,...,n, it can be
factorised as follows:

Ln<y17"'ayn):HLt<yt ‘yt—b---;yl)? (1)
t=1
where L; denotes the density of the t*! observation, Y;, conditional on all the
observations before it in the ordering {1,2,...,n}, that is, the observations 1
through ¢ — 1.

We may now make contact with the representation given in Davidson and
MacKinnon (1987), by considering, not the density (1), but its square root. Anal-
ogously to (1), we write

wn(yl,"'ayn):Hwt(yt |yt—17-'-7y1)7 (2)
t=1

where L™(y1,...,yn) = (V™ (y1,...,yn))?, with a similar relation between L;(-)
and ¢:(-), t = 1,...,n. By construction, ¥™ belongs to the Hilbert space
L?(R™™, Pr), in fact to the unit sphere of that space, since the integral of the
square of Y™ with respect to dy™ = dy,dys . ..dy, equals one. We write H"™ for
this unit sphere.

Usually we choose 9™ and the 1, to be the nonnegative square roots of L"
and the L;, but this is not necessary. Indeed, in Hilbert space, it is impossible
to limit oneself to nonnegative square-root densities, since the nonnegative cone
in an infinite-dimensional Hilbert space has an empty interior, and thus does not
have a manifold structure. A consequence of this is that we cannot represent a
given DGP uniquely in Hilbert space, but this does not matter for anything in this
paper. Hilbert space, on the other hand, is the natural setting for mean-square
convergence, and has the considerable advantage that the information matrix — to
be defined later — is a smooth tensor in this representation. This would not be so
if we used, for instance, the log of the density in place of the square root density.

It is clear from (2) that a convenient way to deal with arbitrary sample sizes
is to consider infinite sequences of contributions {1¢};°,. For any given sample
size m, the joint square-root density of the n observations is given by (2). For a
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given infinite sequence to define a DGP for each n, it is necessary and sufficient
that

/Wt(yt | Yeo1,. - y) P dyy = 1 (3)

for all possible values of the conditioning variables y;,...,y:—1. We denote by S
the set of sequences satisfying these conditions, and consider S as the space of
DGPs for asymptotic theory, since, given any element of S, a proper probability
density can be defined for arbitrary sample size. A model, for the purposes of
asymptotic theory, will thus be a subset of S.

Consider first, for a given n, the tangent space to the unit sphere H" at
some DGP y™ € H™. A tangent at ¢™ is associated with a smooth curve in H"
through ™. Such a curve is a one-parameter family of DGPs that includes ™. Let
the curve be denoted by ¥™(¢), € €] — 1, 1[, and ¢™(0) = ¥™. The tangent to this
curve at 1™ is then represented by the derivative of 1" (¢€) at e = 0. The appropriate
derivative in Hilbert space is a mean-square derivative, (¢™) € L?(R™", Py), say,
that satisfies

3 1 n n n
lim || = (4"(€) = ¢7(0)) = (¥")'|| = 0, (4)
where || - || is the Hilbert space norm in H™.

Consider next a curve in S through the point ¢ = {1;}?2,. Denote the curve
by 1 (€), and, for each n, we have a curve in H" given by

v (e) = [T vr(e).

In order to define the tangent to the curve v (¢€), and for the purposes of asymptotic
theory more generally, it is more convenient to consider, not the sequence {¢"(¢)}
for a fixed €, but rather the sequence

{¢n(n—l/2e)}oo

n=1"

On differentiating with respect to € at e = 0, this gives the following representation
for the tangent to ¥(e) at :

{n2wry} (5)

where each (™)’ is defined as in (4).

The reason for the factor of n=1/2 is that we can now define the norm of the
sequence (5), and thus the norm of the tangent ¢’ to 1(¢) at ¢ by the formula

'l = Tim [Jn=2@") 4., (6)

where the norm of each (™)’ is calculated in the Hilbert space corresponding to
sample size n. The limit in (6) will be shown shortly to exist in a wide variety of
circumstances. Without the factor of n=1/2, this would not be the case. Another
way to see why the factor is useful is to note that its use converts the curve (e)
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into what Davidson and MacKinnon (1993) call a drifting DGP, in the sense of a
Pitman drift.

Note that there is no obvious way to embed the contributions (¢) in a
Hilbert space or manifold, and there is therefore no direct way to compute their
derivatives with respect to €. An appropriate indirect way is as follows. Recall
that ¢™ with a superscript refers to a product of contributions, while v; with a
subscript refers to a single contribution. Then define derivatives 1, recursively by
the relations

=@, T = (W) — () (7)

For values of (yi,...,y;—1) for which !~! vanishes, 1, is arbitrarily set equal
to zero. It should be clear that, whenever the ¢;(e) can be differentiated in any
useful sense, the derivatives will satisfy (7). With that definition, it is clear that the
tangent 1’ can be represented by the infinite sequence of contributions, {;}$2;,
such that, for each n,

W)
(U _;th' ®)

The construction of the tangent space at the DGP ¢ € S as a Hilbert space is
almost complete. Tangents are represented by infinite sequences of contributions
satisfying (8), with the norm (6). The final step, needed so that (6) should be
positive definite, is to identify tangents of zero norm with the actual zero tangent,
defined as an infinite sequence of zero contributions. In this way, the Hilbert
space that we consider is the space of equivalence classes of infinite sequences
of contributions satisfying (8), two sequences being equivalent if the difference
between them is a sequence of zero norm using the norm (6). It will be clear shortly
that the different elements of equivalence classes so defined are asymptotically
equivalent in the usual sense of asymptotic theory. The Hilbert space thus defined,
the space of tangents to S at the DGP 1, will be denoted as Ts(?)).

It is now possible to give a statistical interpretation of the space Ts(1)). Con-
sider a curve v(€) and suppose that, for each n and for all admissible values of
y" = (Y1,---,Yn), ¥ (€ y™) is nonzero, so that log [ (e; y™)| exists everywhere.
We remarked above that the curve corresponds to a one-parameter family of DGPs,
and it is clear that £™ (e, y™) = 2log [™(e; y™)| is the loglikelihood function corre-
sponding to this one-parameter family. Further, ¢;(¢;y*) = 21og |1 (€; y?)| is just
the contribution to ¢™ from observation ¢, and

Mey") =) bleyh). (9)

Assuming now that ¢", ¢;, and 1; can be differentiated with respect to €, we see
that, by (8),

Oy o ()N
;E(O)—E(O)—Z 7 _2;% (10)

The expression second from the left above is the gradient of the loglikelihood of
the one-parameter family at e = 0, and, as such, its expectation under the DGP
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™ is zero. In Hilbert space, this result corresponds to a simple orthogonality
property, as follows. The expectation of each expression in (10), since the square
of ¢™ is the density of y™, can be written as

o P S
2/ R dy —2/<w>w a (11)

and the right-hand side of this can be seen to be zero when the normalisation
relation

/ (W) dy" = 1,

which holds for all admissible ¢, is differentiated with respect to € and evaluated
at € = 0 to yield

/(W)’W dy" =0, (12)

which just says that the inner product in L?(R™", P§") of (¢™)" and 9™ is zero, so
that (¢™)" and ™ are orthogonal. Geometrically, this just says that a radius of
the unit sphere — 1™ — is orthogonal to a tangent to that sphere — (™)’

From (3), it follows that a result like (12) holds for each contribution:

/lﬂfe Yy dys = 0,

which, in terms of /;, becomes

0t o, )
/E(O;yt) exp(0e(0;9")) dyr = E (E(U;yt) ‘ y' 1) —0.

The second equation above implies the well-known result that the sequence
TN
t=1 n=1

is a martingale under .

Now consider the norm of the tangent 1, as given by (6). In order to calculate
it, we need the norms, in L?(R™", Pf"), of the tangents (¢™)’. These norms are
given by the formula

@I = [ () ay = | (%)2<w>2dy"=Ew [i%mr ,

t=1
(13)
where the last equality follows from (10). The martingale property allows (13) to

be simplified to
> By ({%(0)} ) . (14)



From (6), the squared norm of ¢’ is

n 8( 2
lim n=" ) By ({8—%0)} )
n— o0 €

t=1

where the limit exists under mild regularity conditions allowing a law of large
numbers to be applied. This limit can be interpreted as the limiting (asymptotic)
variance under 1) of the sequence

{n—1/2 Zl %(0)} : (15)

n=1

Although (15) is derived from a triangular martingale array rather than being a
martingale, we will refer to sequences like (15) as martingales, by a slight abuse of
terminology. Exactly similar considerations allow us to express the inner product
of two tangents (')’ and (¢0?)" in Ts(7)) as the limit of the covariance of the two
random variables

—1/2 — ol —1/2 — 047
n Zﬁ(e =0) and n Z@(G =0),
t=1 t=1

in obvious notation.

The above considerations lead to an intuitive understanding of the Hilbert
space Ts(1)) we have constructed. It is the space of equivalence classes of asymp-
totically equivalent sequences of random variables of the form

h = {n—Wth} ,
t=1 n=1
where
Ey(hy | hayoooshimr) =0, t=1,2,...,
Ew(hf):nt<oo, t=1,2,..., and (16)

n
n~! g 7; converges as n — oo to a finite limiting variance.
t=1

The squared norm ||h]|? of such a sequence is the limiting variance, and the inner
product (h', h?) of two such sequences is the limiting covariance of

nil/Qthl and nil/Qth. (17)
t=1 t=1

The construction depends heavily on the martingale property. On account of
the variety of central-limit theorems applicable to martingales — see for instance
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McLeish (1974) — this property also justifies considering limiting normal random
variables to which sequences like (17) tend as n — oc.

The choice of the particular Hilbert space structure just constructed so as
to define the tangent space at ¢ confers a Hilbert manifold structure on the set
S itself. It is not the aim of the present paper to conduct a full investigation of
this structure, since all the remaining analysis of the paper will be local, and so
just a few remarks will be made. It is clear that it would be necessary to group
the elements of S into equivalence classes of DGPs with asymptotically equivalent
properties. The regularity conditions (16) implicitly restrict the sorts of DGPs
admitted into S. These are not so strong as those imposed by Hansen (1982), who
worked in a stationary ergodic framework. Methods of the sort used in White and
Domowitz (1984) and White (1985) are presumably appropriate for determining
just what restrictions are implicit in the present treatment.

3. Efficiency and Robustness in Hilbert Space

All procedures of estimation or inference treated here will be situated in the context
of a particular model, that is, a subset of the set S introduced in the preceding
section. If M denotes such a model, it is almost always interesting to define some
parameters for it. A parametrised model will therefore be a pair, of the form
(M, 8), where the mapping 6 : Ml — © is termed a parameter-defining mapping.
The set © is a finite-dimensional parameter space, a subset of R* for some positive
integer k. A parametrisation would go the other way, associating a DGP to each
parameter vector in ©.

Models that can be estimated by maximum likelihood constitute a very
straightforward class. They are special in that a parametrisation does exist for
them: for each admissible parameter vector, and for each sample size, the like-
lihood function gives a probability density for the dependent variables, which is
precisely what we mean by a DGP. The image of the parametrisation is the model,
and the parameter-defining mapping is the inverse of the parametrisation. Note
that the inverse will not exist if the parametrisation is not one-to-one. In such
cases, the model parameters are not identified. A convenient way to impose iden-
tification of all the parameters we consider, not just in the context of maximum
likelihood models, is to require the existence of a parameter-defining mapping.

In more general circumstances, a given parameter vector corresponds to an
infinite number of DGPs. A simple case is that of a linear regression model

yr = X8 + uy, E(Ut) =0, E(“?) = 7'27 (18)

in which the distribution of the error terms is not specified past the first two
moments. Any mean-zero error distribution with finite variance can be used in
combination with a fixed parameter vector 3 and variance 72. Clearly, there is an
infinite number of such error distributions.

In order to benefit from the Hilbert space structure introduced in the pre-
ceding section, it will be desirable to consider only models M that are closed
submanifolds of S. Locally, in a neighbourhood of a DGP v € M, this just means
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that, if we consider the subset of tangents at 1) generated by curves that lie entirely
in the subset M, this subset, denoted by Th;(1)), should be a closed subspace of
the full tangent space Ts(v)).

If this condition is satisfied, then another regularity condition needed for the
rest of the development can be imposed on the parameter-defining mappings that
may be used with M. It is that such a mapping must be a submersion (see,
for instance Lang (1972)). Among the consequences of this technical condition
is that, if @ denotes the parameter-defining mapping, open neighbourhoods of
1 in Ml are mapped by 6 into open sets of the parameter space ©. This avoids
redundant parameters: if, for instance, one parameter, 6; say, was always just twice
another parameter, 05, all points in the image of 8 would satisfy 6; = 265, and
so the image could not be an open set. Another consequence, more important for
what follows, is that T/ (1)) can be expressed as the direct sum of two orthogonal
subspaces, the first, possibly infinite-dimensional, corresponding to tangents to
curves along which the parameters defined by 6 are constant, and the second
the orthogonal complement of the first, and necessarily of finite dimension &,
where k is the number of parameters defined by 8. A maximum-likelihood model
is itself of dimension k, and so the first of these orthogonal subspaces contains
only the zero element of Ty;(1)). In general, the first of the subspaces, that for
which the parameters are constant, will be denoted as Th;(1), 6), and the second
as E(1,0). These two subspaces, together with their orthogonal complement
in T (v)), comprise the three-subspace decomposition of Th;(v) alluded to in the
Introduction.

An estimator of the parameters of a given parametrised model is a sequence of
random k-vectors O™ which, for each n, are defined solely in terms of the random
variable Y™ of which any data set of size n is a realisation. Thus 8" maps from
R™" to a parameter space ©. The estimator characterised by the sequence {6}

will be written as just 6. The above definition clearly contains many useless esti-
mators; usually we will be interested only in consistent estimators. The property
of consistency can be expressed as follows. For each DGP ¢ € M, we must have

plim , ™ = O(x)).

n—oo

The notation means that the probability limit is calculated under the DGP ¢, and
that the limit is what is given by the parameter-defining mapping 0 for that DGP.

Most root-n consistent estimators correspond to vectors of tangents at each
point of the model for which they are defined. Consider a DGP 1) in a parametrised
model (M, 0), and let 8(¢)) = 6, be the parameter vector for ¢». Then, for a root-n

consistent estimator @, construct the vector sequence with typical element
si=t(0" —0y) — (t—1)(6""' — ). (19)

Clearly
nl/? (é” — 00) =n /2 Z S¢.
t=1
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The components of {s;} may not exactly satisfy the conditions (16), but they
will usually be asymptotically equivalent to sequences that do. Since such asymp-
totically equivalent sequences are identified in our Hilbert space structure, the
estimator @ can be associated with the vector of tangents at 1 defined by the
equivalence classes containing the components of {s;}. In fact, all estimators that
are asymptotically equivalent to 0 are associated with the same vector of tangents.

A simple illustration may be helpful here. The OLS estimator of the regression
model (18) satisfies the relation

n -1 n
nt/? (B" — BO) = (n_l Z XtTXt> n~1/2 Z X,y (20)
t=1 t=1

when the true parameter vector is By. Under standard regularity conditions,
n=! Sy X/ X, tends to a nonrandom, symmetric, positive definite limiting ma-
trix A, say. Thus the sequence with typical element (20) is asymptotically equiv-
alent to the sequence

s = {nl/QZAlX;rut} ,

t=1 n=1

which clearly obeys the requirements of (16).

If the parameter space © is k-dimensional, we may denote the k tangents
corresponding to 0 at 1 by the vector §, with typical element 5;,, 2 = 1,..., k. It
follows from the interpretation of the Hilbert space norm of a tangent as a variance
that the & x k matrix with typical element (8;, ;) is the asymptotic covariance

matrix of é, that is,
lim Var (n1/2 (é” — 00)> . (21)
n—oo
The notion of robustness used in this paper can be defined as follows. Suppose
we have two parametrised models (M, 8y) and (My, 681), where 8, and 6; map
into the same parameter space ©, such that My C M; and 64(v)) = 61(¢) for all
¥ € Mp. Then a consistent estimator 6 of the parameters of the first model is
said to be robust with respect to the second if it is also consistent for the second
model. (Note that, since 8y : R™" — 0, it satisfies our definition of an estimator
of (My, 6;).) Thus the OLS estimator of the regression model (18) restricted so as
to have normal errors is robust with respect to the full model (18) with arbitrary
error distribution satisfying the conditions on the first two moments.

It may happen that the “unrestricted” model M; has more parameters than
the “restricted” model M. The above definition may still be used by limiting the
parameter-defining mapping 6; to its projection on to those parameters that do
appear in (M, 8y). For instance, the unrestricted regression

y=XiB+ Zyy +wy (22)
contains the restricted regression

Y = XufB + w (23)
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as a special case, but has more parameters. In order to see if an estimator for
(23) is robust with respect to (22), one just forgets about the ~ parameters for
model (22). It then follows by standard arguments that the OLS estimator of (23)
is robust with respect to (22) if and only if plim n 1Y Z/ X, =0.
Robustness is often thought to entail a cost in terms of the efficiency of an
estimator. One of the chief aims of this paper is to make explicit the tradeoff
between these two desirable features. Before we can do so, we need a geometrical
characterisation of efficiency. As with robustness, efficiency will always be defined
with respect to a given parametrised model (M, ). A root-n consistent estimator
6 is efficient for (M, ) at a DGP 1 € M if no other root-n consistent estimator
0 for (M, 0) has smaller asymptotic variance under 1. Specifically, the difference

n—oo

between the asymptotic covariance matrix of @, given by (21), and that for 0 is
a positive semi-definite matrix. The geometrical characterisation of efficiency is
given by the following theorem.

Theorem 1

Under the regularity assumed so far, the root-n consistent estimator 0 is
efficient for the parametrised model (M, 8) at a DGP ¢ € M if and only if
the tangents $;, i = 1,..., k, associated with € belong to the space E(1, ).

In order to prove this theorem, we will develop in a series of lemmas a number of
properties of root-n consistent estimators. First, note that, if the condition of the
theorem is true, the §;, i = 1,...,k, span the k-dimensional space F(v,8), since
any linear dependence of the §; would imply that the model parameters were not
independent, contrary to the assumption that the parameter-defining mapping is
a submersion.

Lemma 1

The tangents §;, ¢ = 1,..., k, associated with a root-n consistent estimator
0 of the parametrised model (M, 0) at a DGP ¢ € M are orthogonal to
the space T (1, 6).

Proof: 1f Ty (1), 0) consists only of the zero tangent, the lemma is trivial. Other-
wise, consider a curve in M through ) such that, for all points 1(¢) on the curve,
0(¢(€)) = 0(¢). The tangent ¢’ to this curve belongs to Ty (v, 0) by definition,
and any element of Th,(1,0) can be generated by such a curve. Then, for all
admissible €, the expectation of 8" under 1(€) tends to 8y = 0(1)) as n — oo.

Suppose that the curve is expressed in terms of contributions ¢;(€), as in (9),
and that the tangents $; correspond to components §;; satisfying (16). Then we
have

0=Eye(3uy’) |y = /eXp(Et(E;yt)) 5i(y") dy:.

From (19), it is clear that, since 8(v(¢)) is independent of €, so too is §;; along the
curve ¥(€). Thus differentiating with respect to € and evaluating at e = 0 gives

o BY -
[ exp (o) GO suty') do = By (a—;m;yt) 5uy') \ y' ) o,
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Thus the random variables 0¢;/0¢(0) and $;; have zero covariance at ¢ conditional
on y'~!. By the martingale property (compare (14)), this implies that the un-
conditional covariance of n=1/2 31" | 9¢,/9¢(0) and n=Y/2 3" | 54, is zero, and so,

letting n — oo gives

. — - ol n AN, n
lim E (n 1/22 6—:(0,y ) n'/? (0" (y") - 90)) =0. (24)
t=1

n—oo

Since the left-hand side of this is the limiting covariance of n'/?(" — ) and
n~Y/23" (94,/0¢) under 1, the typical element of (24) becomes

Since 1)’ is an arbitrary element of Th; (1), @), this completes the proof. |

Lemma 1 shows that any §; can be expressed as the sum of a component in
E(1),0) and a component in the orthogonal complement of T;() in Ts(v)). The
two terms of this sum are themselves orthogonal. According to Theorem 1, the
second term must vanish for an efficient estimator. In fact, the efficient estimator
will turn out to be asymptotically unique.

For the next lemma, for each j = 1,...,k, consider any curve v;(e) in M that
satisfies the relation

0(¥;(e) = 6o + ee;, (25)

where e; is a k-vector all the components of which are zero except for component 7,
which equals one. The existence of such curves is once more guaranteed by the
requirement that @ be a submersion.

Lemma 2

For any root-n consistent estimator @ characterised at the DGP 1) in the
parametrised model (M, @) by the tangents 3;, ¢ = 1,...,k, and for any
curve v;(€) satisfying (25), the inner product (¢}, 3;) = d;;.

Proof: Suppose as in the proof of Lemma 1 that the §; correspond to components
34 satisfying (16). From (19) and (25) it follows that 03 /0e = 6;; along ;(e).
Letting 1, (€) be expressed in terms of contributions (¢;).(e), then, by exactly the
same arguments as in the proof of Lemma 1, for : = 1,...,k, we see that

B (25 0 sutu) | w ) = b

This implies that (¢, §;) = d;;, as required. |
Lemma 3

At each DGP % in the parametrised model (M, @), there exist unique
tangents §;, i = 1,...,k in the space E(v,0) such that for any root-n
consistent estimator @ characterised at ¢ by the tangents §;, i = 1,...,k,
3; = §; + v;, where v; belongs to the orthogonal complement of T (1))
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in Ts(¢). Similarly, for all j = 1,...,k and for any curve ;(e) satisty-
ing (25), there exist unique tangents o; in E (3, @) such that ¢! = o; +wj,
where w; belongs to T (v, 0).

Proof: For any 0, we know from Lemma 1 that §; can be expressed as a sum of a
tangent in (1, 0) and some v; in the orthogonal complement of T/ (1)) in Ts(1)).
This decomposition is unique, because it is orthogonal. Thus we may choose an
arbitrary estimator @ and define the §; by 3, = §; + v;. Similarly, for any given
set of curves v;(e) satisfying (25), since the 1} lie in T(?)), we may define the
tangents o; by ¢i = o; + wj, 05 € E(¢,0), w; € Ta(,0). Clearly the o
span E(1,0).

By Lemma 2, we have
5ij:<77/}§~,§i>:<0'j +wj,§i+vi>:(aj,§i>, (26)

since v;, being orthogonal to Th/(1)), is orthogonal to both ¢; and w;, and wj,
being orthogonal to E(1,8), is orthogonal to §;.

Consider any other root-n consistent estimator characterised by tangents §;
such that §; = t; + u;, t; € E(¢,0), u; orthogonal to ¢;. Then (26) applies to the
Si, and so

(0, ti) = i

Since the o; span E(1,0), and the t; and the §; belong to E(1,0) and have the
same inner products with the basis vectors o;, we have ¢; = 3;, and so the 3;
are unique, as claimed. The uniqueness of the o; follows by an exactly similar
argument starting from any other set of curves satisfying (25). |

Since all the tangents in the above Lemma can be represented by martingales,
the results of the Lemma can be expressed in terms of contributions, as follows:

The relations
(0j,8:) = 0ij (27)

can be expressed by saying that the o; and the §; constitute a pair of dual bases
for E(v,80). This property also implies that the k x k matrix with typical element
(8i,8;) is the inverse of the matrix with typical element (o;,0;). Since the former
matrix is the asymptotic covariance matrix of the estimator 0, the latter can be
thought of as performing the role of the asymptotic information matrix — in a
maximum likelihood model, it would be the asymptotic information matrix in the
usual sense. Since the scalar product is a smooth tensor on Hilbert space or a
Hilbert manifold, it is seen that the information matrix is smooth in our Hilbert
space construction.

The proof of Theorem 1 can now be finished easily. Any estimator 0 satisfying
the condition of the theorem is characterised by tangents lying in E(1), 6), which,
by the uniqueness given by Lemma 3, must be the 3; of that lemma. Any other
estimator @ has associated tangents of the form § + v;. Since all the §; are
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orthogonal to all the v;, the asymptotic covariance matrix of 8 equals the matrix
of inner products of the §; plus the matrix of inner products of the v;. Since all
of these matrices are covariance matrices, they are all positive semi-definite, and
so the difference between the asymptotic covariance matrix of @ and that of 0 is
positive semi-definite, as required. |

4. Examples and Illustrations

As a textbook example, consider the linear regression model (18) with normal
errors. Since asymptotic theory is hardly necessary to treat this model, we can
consider a finite sample size n. The model can be written in matrix notation as
follows:

y= X0+ u, (18)

where y and w are n x 1, X is n x k, and B is kK x 1. We also consider the
model (22):
y=XB+ Zv+u. (22)

As we saw, the OLS estimator for (18) is not robust with respect to (22) if Z'X

is nonzero. However the OLS estimator for (22), restricted to the parameters (3,

is consistent, but not efficient, for (18). The OLS estimator from (18) is
B=(X"X)"'XTy,

and the estimator of 3 from (22) is

B=(X"M;X) ' X Myy, (28)

where My =1— Z(Z"Z)~"'Z" is the orthogonal projection on to the orthogonal
complement of the span of the extra regressors Z. It is easy to show that (see, for
instance, Davidson and MacKinnon (1993) Chapter 11)

B-8=(X"M;X)"'X"M;Mxy, (29)

with M x defined similarly to M.

When (18) is specified with normal errors, the model is finite-dimensional,
k + 1-dimensional in fact, if 72 is allowed to vary. Since the loglikelihood of the
model is

n 1
(B, 7%) = =5 log2n7* — —— ||y — XBP*,

the tangents to the curves along which just one component of 3 varies are repre-
sented by the k-vector of zero-mean random variables

19 1
o=n 1/2§XT'U,. (30)
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The only way to vary the DGP without changing the parameter vector 3 is to
vary the error variance. Thus the space Ty (v, 3) is one-dimensional in this case,
and is generated by the tangent represented by

ol 1 <= [u?
—1/2 O _ —1/2_23 wo_q 1
" or? " 272 — (72 ) ’ (31)

which has zero covariance with all the components of (30). This means that these
components lie in E(1), 3), thereby justifying the notation o .

The OLS estimator /3 is associated with the tangents

§ = (n_lXTXY1

n~ V2 Xy, (32)
which are seen immediately to be linear combinations of the components of o
in (30). The tangents § therefore also lie in E(, 8) and so (3 is seen to be asymp-
totically efficient. Note also that the matrix of inner products of the components
of o and § is the expectation of

1 _
n_1/2—2XTu n_l/QuTX(n_lXTX) ! =1,
T

confirming the dual basis property (27).

The tangents corresponding to the estimator (28) are seen, from (29), to be
§=58+ (n ' X"M,;X) 'nV2X M, Mxu.

It is simple to check that the covariances of the second term of this with the
components of (32) are zero, as also with (31), which represents the tangent that
generates Ty (1, 3). Thus this second term represents a tangent orthogonal to all
of Th (1)), as required by the theory of the preceding section.

As a slightly less trivial example, consider again the regression model (18),
without imposing the normality of the error terms. The OLS estimator is of course
robust for any model at all that satisfies the regression equation with zero-mean
errors, but it is interesting to enquire under what conditions it is also efficient.

Consider a parametrised model (M, 3) the DGPs of which satisfy (18), but
do not necessarily have normal errors. The OLS estimator is still characterised by
the tangents (32), and its robustness implies, by Lemma 1, that these tangents
are orthogonal to T (v, B) for all b € M. Consequently, the estimator is efficient
at a given 1 if M is large enough to contain the tangents (32) in its tangent
space Thr(1)) at 1, since then, being orthogonal to Th; (1, 3), they must belong
to E (1, 3). Although it is difficult to state a precise condition that will guarantee
this property, intuitively it can be seen that the model must include the case of
normal errors.

It can be checked that, if the model specifies the error distribution, up to a
scale factor, then only normal errors are compatible with the efficiency of the OLS
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estimator. Suppose that the error density, scaled to have unit variance, is denoted
by f. Then the log-density of observation ¢ of the model (18) is

(b (2552)).

The tangent corresponding to a variation of g; is then represented by
L /2 - f'(er)
__n Xyt
T ; " fler)

where e, = (y. — X¢3)/7. If the tangents § given by (32) are linear combinations

of those above, for « = 1,...,k, then it is necessary that
f'(er)
= Ceé ; 33
f(et) ' (33)

for some constant ¢ independent of t. The general solution to the differential
equation (33) is
f(e) = Cexp (ce?/2) ,

(C another constant) and, since this density must have mean zero and unit vari-
ance, it must be the standard normal density, with C' = (27)~/2, and ¢ = —1.

In general, if one wishes to improve the precision of a parameter estimate,
more information of some sort is necessary. Such information may take the form
of the true value of some other parameter, or the true nature of the error density,
or the like. When models are considered as sets of DGPs, this sort of informa-
tion corresponds to a reduction of the model size, since only DGPs satisfying the
constraints imposed by the new information can belong to the model. Then effi-
ciency gains are possible because estimators that would not have been robust with
respect to the original model may be so for the reduced model. In some circum-
stances, though, this is not so, in which case the extra information is uninformative
concerning the parameters.

These general considerations can be illustrated geometrically. Consider Fig-

ure 1, which represents the space E(1),0) for some parametrised model as a two-
dimensional space, with 8 = [ i 7].
The origin corresponds to the DGP 1, at which it is supposed that § = Sy, v = 0.
The dual bases {53,5,} and {os,0,} are drawn, and it can be seen that 5z is
orthogonal to o, and 5, to og. The tangent o, gives the direction in which only
~y varies, and so it is labelled 8 = By. Similarly, oz is labelled v = 0.

Now suppose that we are provided with the information that v = 0. The
model must now be restricted to DGPs that satisfy that property. The two-
dimensional F (1, 0) depicted in the Figure is reduced to the one-dimensional line
in the direction of o3, that being the direction in which « remains constant at zero.
But $3 does not belong to the one-dimensional E(1, 3), and so is no longer efficient
for the constrained model. The efficient estimator for that model is obtained by
projecting 53 orthogonally on to the direction of o0, using the projection denoted
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B = Bo op

f)/:() og Pg§55§5

Figure 1

Efficiency gain from added information

by Pjs in the figure. This gives rise to a new consistent estimator associated with
53 = Pgsg. Since sg is obtained from sz by an orthogonal projection, it is of
smaller norm, or in statistical terms, of smaller asymptotic variance. In addition,
the orthogonal projection means that sg has the same inner product with o as
does 33, and so it satisfies the condition of Lemma 2 for a consistent estimator.
The result of Lemma 1 is also seen to be satisfied: the inefficient estimator 53 for
the constrained model equals the efficient estimator 55 plus something orthogonal
to the constrained model.

If v is a “nuisance” parameter, the value of which is used only to improve the
precision of the estimate of 3, then it could have been left out of the parameter-
defining mapping of the original, unreduced, model. If so, the omission of v once
more leads to a one-dimensional E(v,3), but this time in the direction of §g.
This is because E(1, ) must be orthogonal to all directions in which 5 does not
vary, now including the direction of o,. This time, it is g which is projected
orthogonally on to the direction of 53 to yield 63, which replaces oz for the model
with v dropped. This orthogonal projection, which means that o3 has smaller
norm than og, corresponds to a reduction in information about 3. Notice that
the estimator 53 is unchanged whether or not v is dropped. The information gain
moving from o3 to og is not realised so long as 3 and v are estimated jointly, and
is realised only when information about + is available.

If og and o, were orthogonal, so would be 53 and 5,, and the directions
of o0z and 53 would coincide, as would those of o, and 5,. Redrawing Figure 1
to reflect this state of affairs shows that information about v no longer leads to
any gain in the precision of the estimate of 3. This is perfectly intuitive, since
the orthogonality means that the asymptotic covariance matrix of the parameter
estimates is diagonal.

A simple example of such orthogonality is provided by the linear regression
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model (18) with normal errors, for which the tangents (30) corresponding to vari-
ation of the parameters 3 of the regression function are orthogonal to the tangent
(31), which corresponds to variation of 72. As is well known, knowledge of the
value of the error variance is uninformative about 3. In much the same way, it
was seen above that if normal errors are not assumed in (18), then, if it were
learnt that the errors were in fact normal, this new information would not lead to
any gain as regards estimation of 3, since the OLS estimator remains efficient for
normal errors.

5. Estimating Functions and GMM

The generalised method of moments (GMM) was proposed by Hansen (1982)
apparently without knowledge of a very similar method proposed by Godambe
(1960); see also Godambe and Thompson (1989) and Godambe (1991). It is con-
venient to refer to Godambe’s method as the method of estimating functions. Both
approaches start from what in the estimating function context are called elemen-
tary zero functions, which are functions, at least one for each observation of the
sample, of both data and parameters. When these functions are evaluated at
the correct values for any given DGP, their expectation under that DGP is zero.
The simplest example is, as usual, the linear regression model (18), for which the
elementary zero functions are the y; — X;/3, one for each observation t.

Specifying a set of elementary zero functions is very similar to specifying a
model and a parameter-defining mapping. Suppose that, for each observation ¢, the
elementary zero functions are written as f;(y', 0), where, as before, the argument
y! € R™! corresponds to the observed data in observations 1 through ¢, and 0 is
a k-vector of parameters. The p-vector-valued function f; will usually depend on
explanatory variables (covariates), hence the index ¢. The natural way to proceed
is to specify the model as the set of those DGPs 1) for which there exists a unique
parameter vector 8 such that Ey,(fi(Y* 0)) = 0. (Recall that Y* is the random
variable of which observations 1 through ¢ are a realisation.) The parameter-
defining mapping then maps 1 to this unique 6.

The above way of defining a parametrised model needs to be qualified some-
what, for a number of reasons. The first is that, in order to perform inference,
it is necessary to be able to estimate not only the parameter vector 8, but also
the asymptotic covariance matrix of the estimator é, and, for this, one needs the
existence of higher moments. It would therefore be preferable to limit the model
to those DGPs for which those higher moments exist.

The second reason reveals a difficulty that arises whenever a model, para-
meter-defining mapping, or estimation method makes use of moments, that is
expectations. It is that, in any commonly used stochastic topology, including
the one used here based on Hilbert space norms, (see Billingsley (1968, 1979))
expectations of unbounded random variables are not continuous functions of the
DGP under which they are calculated. For instance, even the smallest admixture
of the Cauchy distribution with the normal is enough to destroy the existence of
the first moment. The unfortunate consequence is that, if a model is defined by
moments, it will not be a smooth submanifold of the overall set of DGPs, S.
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The lack of continuity of moments is a problem for establishing appropriate
regularity conditions in many contexts, not just the geometrical one. For present
purposes, the easiest solution is just to require that the elementary zero functions
f:(y', 0) should be bounded functions of y*. Of course, this assumption excludes
most interesting models, even the linear regression model, but, since the emphasis
of this paper is geometrical, it does not seem worthwhile to look further for more
suitable regularity conditions. In particular, imposing the existence of moments
on a model is not informative about that model’s parameters. This can be seen
by considering a very simple problem, namely that of estimating the mean of a set
of scalar i.i.d. observations. If these observations may take values anywhere in an
unbounded set, then the set of DGPs defined by requiring that the observations
be i.i.d. drawings from a distribution for which the mean exists is not a smooth
submanifold of S. However, the set is dense in such a submanifold. To see why,
consider the Hilbert space L?(IR) in which the unit sphere represents all univariate
densities defined on R. Then, for v in this unit sphere, the mean of the density to
which ¢ corresponds, if it exists, is

/Oo ()Y dy. (34)

— 00

The integral above defines an unbounded quadratic operator on L?(R), the domain
of which is dense in L?(R). In other words, the densities for which the mean exists
are dense in the unit sphere of L?(RR). It is straightforward to extend this univariate
result to the asymptotic Hilbert space S.

Clearly the model implicitly defined by the problem of estimating the mean is
just the set of all i.i.d. sequences, and this set does constitute a smooth submanifold
because the requirement that all the observations be i.i.d. can be expressed by the
relations ¢ = 1, for some v independent of t = 1,..., and these relations are
trivially continuously differentiable in the Hilbert space norm of L?(R). The set
of DGPs in this model for which the mean actually exists is a dense set, so that
its closure is the full submanifold. However, any information gain that could lead
to increased precision of the estimate of the mean must involve, as we saw above,
a reduction in the dimension of the model. Since we have seen that imposing a
finite mean does not reduce the dimension, no information gain is possible from
the knowledge that the mean exists.

Any expectation can be expressed as an integral similar to (34), and can
therefore be used to define an unbounded operator on the Hilbert spaces for finite
samples. Thus the argument above generalises to all models defined using the ex-
pectations of unbounded random variables, and so, for the purposes of geometrical
discussions of efficiency and robustness, we must limit ourselves to models defined
in terms of the expectations of bounded random variables, for instance, variables
obtained by censoring unbounded variables above some suitably high threshold.

Suppose then that we define a parametrised model (M, ) by a set of elemen-
tary zero functions given by the components of the p-vector fi(y¢,8), as above.
Suppose further that the parameter-defining mapping 0 thus implicitly defined is in
fact defined for all ¢ € M, so that the identification condition is satisfied, and that
0 is a submersion, as we required earlier. Consider any v € M and suppose that
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0(y)) = By. Then, for each component fy;, i =1,...,p, of fi, Ey(fri(Y*,00)) =0,

and so in some circumstances it may be that the sequence

n=1/2 Z Z awi(y" ") fu(y', 60) (35)

t=1 i=1

represents a vector of tangents at v, where the a;;(y*~!) are predetermined at ¢,

and such that lim, .o n™ 'Y " >°F  E,(a?,) is finite. This may equally well not
be so, because, since only the unconditional expectations of the zero functions must
vanish, the sequence may not be a martingale, as required by the first equation
of (16). For the moment, we suppose that the martingale property is satisfied.
Then we have

Lemma 4

For a parametrised model (M, 8) defined by a set of elementary zero func-
tions f;(y', 0) obeying the above regularity conditions and such that, for
all ©» € M, the sequence (35) is a martingale, the tangents represented
by the components of (35) are orthogonal to T (v, @), the space of tan-
gents at ¢ that correspond to curves within the model along which the
parameters are constant at 6.

Proof:  As in the proof of Lemma 1, consider a curve 1 (e) in T/ (1, 8), represented
by the log-density contributions ¢;(¢). Then, as in Lemma 1,

[ futyt00) St v expltley) dy =o. (30)

On multiplying by a;, the martingale property implies the result. |

Lemma 4 is the geometrical expression of the fact that, under suitable regu-
larity conditions, the parameters @ can be consistently estimated by solving any
k linearly and functionally independent equations of the form

n p
> DY) fu(Y",0) =0, (37)
t=1 1=1

where the ay, t = 1,...,n, ¢ = 1,...,p, are predetermined at t. Standard ar-

guments based on a short Taylor expansion (see for instance Davidson and Mac-
Kinnon (1993), Chapter 17) show that, asymptotically, the components of the
sequence n'/2(0 — @) are linear combinations of the tangents represented by

_1/2 Z Z atz ftz y 00) (38)
t=1 =1
provided that a law of large numbers can be applied to the sequences

afti t >
{Gororen)

t=1

— 20 —



Although this point will not be developed here, regularity conditions like these are
the algebraic counterparts of the geometrical regularity conditions, involving iden-
tifiability and the submersion property, discussed above. For further discussion,
see Newey and McFadden (1994).

Just as with the tangents §; used in Lemma 1, the tangents (38) can be
expressed as the sum of two orthogonal components, one in the k-dimensional
space E(1,0), and the other orthogonal to the model M. The first component
corresponds to the asymptotically efficient estimator, and so, in order to find an
efficient estimator, we wish to project the tangents (38) orthogonally on to E(1), 0).
Intuitively, this orthogonal projection is on to the model M itself, since the tangents
are already orthogonal to Th/ (v, 0), the orthogonal complement of E(1),0) in the
tangent space to the model M.

We can perform the orthogonal projection by expressing the unique tangents
oj,j=1,...,k, defined in Lemma 3, in the form (38). As seen in the proof of that
lemma, we can compute the inner product of any tangent of the form (38) with
o; by considering a curve satisfying (25), since the tangent to such a curve equals
o plus a component orthogonal to everything like (38). These inner products are
given by the following lemma.

Lemma 5

For a parametrised model (M, @) defined by a set of elementary zero func-
tions f;(y', @) obeying the regularity conditions of Lemma 4, the tangent
o; at DGP ¢ € M corresponding to component j = 1,...,k of 8 can be
represented by the sequence of contributions

p
Otj = Zatijfti(00)~ (39)
i=1
Further, forallt=1,...,p, j=1,...,k,
Eu(o£(00) | y'=1) = —By ( 2L (00) [ 4= 40
¢(Ut]fm( 0)‘?! )— Y 89’< 0)|y : (40)
J

If the covariance matrix of fi(y?,8g) under v, conditional on y'~!, is

Qt (yt_l)a then

ous(y' ™) = —i(ﬁfl(yt‘l))il% (%(yt) ‘ yt‘l) S (41)

=1

Proof:  The first statement of the lemma, (39), simply requires the equations that
define the asymptotically efficient estimator to take the general form (37). For this
to be false, there would need to exist consistent estimators defined by equations
that did not take this form. But the model is defined by the expectations of the
elementary zero functions, and expectations of nonlinear functions of these will not
in general be zero. Thus a consistent estimator cannot be defined using nonlinear
functions of the elementary zero functions, and so (39) is true.
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For (40), consider, as in Lemma 2, a curve v;(e) in M satisfying (25). Then
we have, fort=1,...,p, 7 =1,...,k, t =1,..., and all admissible e,

/ exp ((£)e(y":©)) fui (', B0 + ce;) dys = 0,

and so, on differentiating with respect to €, and setting ¢ = 0, we get
0(4;):(0 _ Ofri _
By (29 fion) | 1) = B0 (t60) |91
j

Oe
By Lemma 3 and the remark following it, we may replace 0(¢;)(0)/0e in the
left-hand side above by the contribution o;, thus yielding (40).

Substituting the expression for o¢; in (39) into (40) gives

p .
> s Eofultn) o) | 1) = -y (Ghct60) | ).
=1 J

from which (41) follows, since by definition (£2;);; = Ey(fu(600) fu(60) | ¥*=1). 1

The following theorem now follows immediately from Lemma 5.
Theorem 2

Let the parametrised model (M, @) be defined by means of the set of
bounded elementary zero functions f;(y’, ) with the restriction that for
all 1 € M, the sequences f;;(Y?,0q),7=1,...,p, satisfy the conditions of
(16) under 1. Define the sequences of random variables o4; by (39), with
the coefficients o4;;(y*~!), predetermined at ¢, given by (41). Then the

estimator 6 obtained by solving the equations

Zzam YN fa (Y, 8) =0, (42)

t=1 i=1
for j =1,...,k, is asymptotically efficient for (M, ).

Proof: As mentioned above, 6 can be expressed asymptotically as a linear com-
bination of the tangents (38) with the a4 replaced by o4;;. By Lemma 5, these

tangents belong to E(1),0) for all » € M. By Theorem 1, 0 is asymptotically
efficient. |

The conditions (16) are quite essential for Theorem 2, in particular the mar-
tingale condition. However, if the elementary zero functions do not satisfy that
condition, it is often possible to find linear combinations, g;(y*, @) of the f(y*, ),
s=1,...,t, that do. The transformation from the f; to the g; is analogous to the
transformation used to estimate models by GLS rather than OLS.

For instance, suppose that there is just one elementary zero function f;(0)
per observation (that is, p = 1), and denote the covariance matrix of the f;, for
sample size n, by the n x n matrix V. V may depend on 6, and possibly on
other parameters as well, such as autocorrelation coefficients. Let ¢ denote the
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complete set of parameters, and let ¢y be the parameter values for the DGP .
In addition, since we are interested in the conditional covariance structure, Vi, if
t > s, may depend on Y571

Then if the lower-triangular matrix P(¢) is such that PT(¢)P(¢) = V~1(¢),
we may form the vector of zero functions g(¢p) = P(¢)f(0), where f is n x 1,
with typical element f;. Note that P;s(¢) is nonzero only if ¢ > s, and in that case
it may depend on y®~!. The covariance matrix of g(¢) is then just the identity
matrix, and the martingale condition is satisfied.

In order to obtain the optimal estimating equations, we use the relation

0 Ofs _
Ew (ait (y ¢0 ’ ) ZPts 5 1 <8£J(y8700>‘y8 1)7

which holds since

B, (8’3 ' (4", )£, (y" 60) ‘ y>

—% s—1 s s—1\
o 6¢g (y 7¢)Ew(fs(y ,00) ‘ Y ) = 0.

Thus the equations that define the asymptotically efficient estimator are obtained
from (42) with g; in place of f;; (the index i is omitted since we have assumed
that p = 1), and o041, is defined by (41) with g in place of f. Since p =1, £2; is
just a scalar, equal to one, since the covariance matrix of g is the identity matrix.
Putting all this together gives as the estimating equation

Sy (e [y ) venea = w

t=1 s=1

The notation is intended to indicate that the conditional expectation of df;/0¢;
must be estimated in some manner — we need not specify details, since many
procedures exist. The result (43) is standard in the estimating functions literature,
and can be found, for instance, in Godambe (1960) and Godambe and Thompson
(1989).

All of the results of this section can be extended quite simply to the sort of
model usually found in the context of the generalised method of moments. Such
models are still defined in terms of elementary zero functions f;(y%, @), but the
requirement that these have zero mean is strengthened so as to require that their
means conditional on some set of random variables be zero.

More formally, let F;, ¢t = 1,..., be a nested set of sigma-algebras, with
Fi—1 C JF;, and such that Y* € F,. Then the condition on the zero functions
becomes

Ey(fu(Y",6) ’ Fi-1) =0,

where as usual 8p = 6(¢), t = 1,..., and i = 1,...,p. An equivalent way of
expressing the condition is to require that, for all random variables h;_ 1 € F;_1,
the unconditional expectation of h;_1 f1;(6g) be zero. Lemma 5 can be applied to
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all of these new zero functions, and it follows that (40) and (41) are now true with
the expectations conditional on F;_; rather than just on Y1

In addition, Theorem 2 continues to hold with the o4;; defined by the modi-
fied (41). This result is most often expressed in terms of the optimal instruments
for GMM estimation — see for instance Davidson and MacKinnon (1993), Chap-
ter 17.

6. The Linear Regression Model

Despite its simplicity, the linear regression model (18) can be used to illustrate
most of the theory of the preceding section. The elementary zero functions, one
per observation, are given by

fi(ye, B) = ye — X4 B. (44)

In order to use (41), we compute 0f;/08; = —X;; Thus, if the f; are homoskedas-
tic, and provided that X;; € JF;_y, it follows from Theorem 2 that solving the
estimating equations

Zth(yt_Xt/B)zoa j:]-v"'7k7
t=1

yields an asymptotically efficient estimator, namely the OLS estimator, as required
by the Gauss-Markov theorem. In case of heteroskedasticity, if F((y, — X;3)?) =
TE, the estimating equations are

n

1
Z ﬁth (yt - Xt/B) =0,

t=1 't

and they yield the Aitken GLS estimator. If the explanatory variables X; are en-
dogenous and do not belong to F;_1, then the estimating equations are, assuming
homoskedasticity,

N E(Xy | Foon) (3 - XuB) = 0.
t=1

In simultaneous equations models, the expectations of endogenous explanatory
variables can be expressed in terms of exogenous instrumental variables: the equa-
tion above then defines an instrumental variables estimator with optimal instru-
ments.

It is clear that, if the model M includes heteroskedastic as well as homoskedas-
tic DGPs, then there will be no estimator that is at the same time robust with
respect to the whole model and efficient at every DGP in the model, unless there is
a way of consistently estimating the variances 72. This will be the case whenever
feasible GLS can be used, but not more generally.

In section 4, it was seen that, in regression models in which the error density
is specified, the OLS estimator is efficient only if that density is normal. It is of
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interest to see if an efficiency gain with respect to OLS can be realised when the
density is not normal, but is nonetheless of unknown form. We will now derive an
estimator that can be used with homoskedastic errors, is robust against nonnormal
error densities, and is more efficient than OLS in some cases of nonnormality. This
estimator, which was recently proposed by Im (1996) using arguments somewhat
different from those here, can be derived directly using the theory of the preceding
section.

We rename the zero function (44) as u:(y¢, 3), and introduce a new zero
function and a new parameter by the relation

vt(yta/677-2) = u?(?/t?/g) - 72’

where the homoskedasticity assumption is made explicit in terms of the error
variance 72. It will also be assumed that the v; are homoskedastic, and that the
expectation of u;v; does not depend on t. If this last assumption does not hold,
the estimator we are about to derive is still robust, but is no longer efficient.

Analogously to (39), tangents that span the efficient space for the present
model can be defined by the contributions

Oy = Qi + byivg, 1=1,...,k, and
t1 t1 Ut t1 Ut (45)

Otr = Q7 Ut + by,

where ay;, by, ar, and by, are exogenous or predetermined at ¢. Now by (40) we

have 9
E(oyu) = —FE (8?) = Xy,
5vt
E(O-tivt> =—-F 85 = 2E(Xmut) == 0,
8ut
E(atTut) =—F (m) = 0, and
T
0
E(JtTvt> =—-F (8—:;) = 1.

Thus, on substituting the definitions (45) into the above, we obtain the following
equations for the a;, etc.:
auT? + by = Xui;
at;y + bk = 0;
7% + by = 0;
agry + bk = 1,

where v = FE(u}) and k = E(u}) — 7* are independent of ¢ by assumption, and

equal 0 and 27% under normality. Letting § = 72 — ~2 /k, we find that
5(1152‘ = Xti; (5th = _(V/K')Xtia 5@157- = _P)///‘f, 5(7757- = T2//-£,

4

Thus, according to Theorem 2, the estimating equations for 3 are
- 2
ZXm‘ <Ut - E(U% - 7'2)> = 0, (46)
t=1
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If v is known to be zero, that is, if the error density is not skewed, these equa-
tions give the OLS estimator. Otherwise, v can be consistently estimated by
n 1Y 0 4f, and k by n=t 3" | af — 7%, where 4; and 72 can be obtained by, for
example, OLS.

The procedure suggested by Im (1996) makes use of the artificial regression
v = X8 + (42 — 7%)0 + residual,

where 6 is an auxiliary parameter. A little algebra shows that the OLS esti-
mate of B from this is the solution of (46). Im shows, both theoretically, and by
Monte Carlo simulation, that his estimator, which he calls RALS, for Residuals
Augmented Least Squares, is more efficient than OLS when the error terms are
skewed. In fact, he goes further, and, by introducing a third zero function

wt(ytaﬂa7_27’y) = utg(yhﬂ) - 3T2ut -7,

in which v, as defined above, becomes an explicit parameter, shows that further
efficiency gains relative to OLS are available if the errors have nonnormal kurtosis.
The approach of the preceding paragraph can again be used to derive the explicit
form of this estimator. As Im points out, estimators of this sort are constructed
in the spirit of adaptive estimation — see for instance Newey (1988).

7. Concluding Remarks

In this paper, geometrical characterisations have been given of efficiency and ro-
bustness for estimators of model parameters, with special reference to estimators
defined by the method of estimating functions and/or the generalised method of
moments. It has been shown that, when a parametrised model is considered as
a Hilbert manifold in an underlying space of DGPs, the tangent space at any
DGP of the model can be expressed as the direct sum of three mutually orthogo-
nal subspaces. Consistent estimators of the model parameters all have the same
component in one of these subspaces, which is finite-dimensional, with dimension
equal to the number of parameters. This space contains the asymptotically ef-
ficient estimator. Inefficient estimators also have a non-vanishing component in
the orthogonal complement of the tangent space to the model, and they thus lose
efficiency by including random variation in directions excluded by the specification
of the model.

Information about parameters is represented geometrically by tangents that
lie within the tangent space to the model. There is a unique tangent in the finite-
dimensional efficient subspace that corresponds to the variation of each parameter,
and the tangent to any curve along which that parameter alone varies is the sum of
this unique tangent and a component in the tangent subspace in which the model
parameters do not vary. These information tangents form a basis of the efficient
subspace that is dual to that provided by the efficient estimators.

Efficient estimating equations for model parameters can be obtained by
projecting arbitrary root-n consistent estimators on to the efficient subspace.
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Lemma 5 provides a simple method of performing this sort of projection. As seen
in the example of the RALS estimator, the projection can often be implemented
by an artificial regression. More generally, as shown in Davidson and MacKinnon
(1990) in the context of fully parametrised models, artificial regressions can be
used in many one-step efficient estimation procedures that are equivalent to pro-
jection on to the efficient subspace. The theory of this paper suggests that artificial
regressions can be developed to perform such projections in greater generality.

One-step estimators of a seemingly different sort have been proposed recently
by Imbens (1997), and it is claimed that their finite-sample properties are substan-
tially better than those of conventional, asymptotically efficient, GMM estimators.
Although these estimators are not implemented by artificial regression, they are
of course the result of implicit projection on to the efficient subspace. Another
asymptotically efficient estimation method with finite-sample properties different
from those of GMM has been proposed by Kitamura and Stutzer (1997), based
on minimisation of the Kullback-Leibler information criterion. It seems probable
that this minimisation is another asymptotically equivalent way of projecting on
to the efficient subspace.

It is hoped that the geometrical construction laid out in this paper will serve
as a unified framework for the discussion of asymptotic efficiency and robustness.
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