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1. Introduction

The last decade has seen considerable use and development of statisti-
cal theory for inferring the dominance of one distribution (of income,
wealth, wages, etc.) over another. Various welfare criteria have been
applied, such as first- and second-order stochastic dominance, Lorenz
dominance, “transfer-sensitivity” dominance, and comparisons of “poverty
deficit curves” (Beach and Davidson (1983), Bishop, Formby and Thistle
(1992), Howes (1993), Beach, Davidson and Slotsve (1994)). All such crite-
ria involve quite general principles of anonymity, efficiency, and equity (see,
for instance, Shorrocks (1983) and Davies and Hoy (1994)). The compar-
isons typically seek to establish inequality and social welfare rankings using
independently-drawn samples from the relevant populations.

We extend these developments to the measurement of redistribution,
progressivity, and horizontal inequity. More generally, we establish the
asymptotic sampling distribution of general functions of quantile-based es-
timators computed from samples that are not necessarily independent. De-
pendent samples may be due, for instance, to the correlation between gross
and net income distributions, or to the correlation of incomes across time
when panel data are used. The results thus provide the statistical frame-
work within which to assess the progressivity of taxes and benefits, and
the changes, in the inequality of income, or in the ranking of individuals
with respect to income, which they may cause. Similarly, one can readily
obtain the sampling distributions of a number of popular or recent mea-
sures of progressivity, horizontal inequity, and redistribution (see Musgrave
and Thin (1948), Suits (1977), Reynolds and Smolensky (1976), Kakwani
(1977), Atkinson (1979), Plotnick (1981), Pfahler (1987), Aronson et al.
(1994), and Lerman and Yitzhaki (1995)). The results can also be applied
to the impact on poverty indices of a tax and benefit system, or of other
socio-economic phenomena, when such poverty indices depend on estimated
population quantiles!. They furthermore encompass as special cases most
of the previous statistical inference results for the measurement of inequal-
ity and social welfare. Our results are distribution-free in the sense that
they do not require a specification of the population distributions from
which the samples are drawn.

1 For instance, the poverty line may be half of median income, or the weights
on the incomes of the poor in the poverty index may depend on their ranking
in the income distribution.
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2. The Measurement of Progressivity, Horizontal Inequity,
and Redistribution

Consider a population of households indexed by w € 2. Let X (w) denote
the gross income of household w, T'(w) the tax burden of the household, and
M(w) = X(w) — T'(w) its income net of taxes. We write the distribution on
2 as F(w), so that mean gross income, px, is defined as

px = /QX(w) dF(w).

The mean tax burden, ur, and mean net income, 7, are defined similarly.
The Lorenz curve Lx(p) for gross income is defined as

1
Lﬂm=ﬁgéamwﬂwmnxwwwwx

where the indicator function Iyx ()<} is defined by

1 if X(w) <
I{X(w)gx}(w) - {() otherwise,

and where y(p) is defined implicitly by the relation

p= /QI{X(w)<y(p)}(w) dF (w), (1)

that is, y(p) is the p—quantile of the distribution of the random variable X.
The concentration curves Ljy; and Ly for net income and taxes are, respec-
tively:

mwﬁjiéqmﬁmmwawﬂw

and )
Le) = o [ Tixorsuon @) T() dF).
Hr Jo
The Lorenz curve for M is defined as:
. 1
L'0) = o [ Tty on @) M) dF),
“yM Jo

where y*(p) is defined as in (1) as the p—quantile of the distribution of M.
Lx(p), Ly (p), L7(p) and L*(p) are the basis for much of the theory of the
measurement of inequality, progressivity, horizontal inequity, and redistri-
bution. For instance, it is well known that, if and only if L*(p) dominates
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Lx(p), inequality under X will be greater than under M for all inequality
measures that satisfy

P : symmetry (or anonymity), mean independence, and the strict Dalton-
Pigou principle of transfers.

Another well-known result is that a progressive tax which does not
rerank individuals necessarily causes Lp(p) to be dominated by Lx(p),
and Lys(p) and L*(p) to dominate Lx(p) (Jakobsson (1976)). Measure-
ments of progressivity have thus naturally been based both on the distance
between Lx (p) and Ly (p) and on the distance between Ly (p) and Lx (p),
yielding indices based on what are called the tax redistribution (TR) and
income redistribution (IR) views, respectively (see Pfahler (1987)). A tax
T is TR progressive if and only if Lx dominates Ly, and a tax T is IR pro-
gressive if and only if Lj; dominates Lx?2. The farther is Ly from Lx, or
Lx from Lj;, the more TR or IR progressive is a tax>.

Testing whether a tax 75 is more TR progressive than a tax 77, we
would then need to check whether Ly, dominates Lr,; similarly, testing
whether T is more IR progressive than 7 involves inferring whether Ly,
dominates Lys,, where M; = X —T;,1=1,2.

The distance between Ljs(p) and L*(p) can be used as an indication
of the presence of reranking in the redistributive process of moving from X
to M, and, under some interpretations, of horizontal inequity — see Plotnick
(1982) and Feldstein (1976), p.83. It is well known that Ly (p) > L*(p)
for all p, with strict inequality somewhere, if and only if there is reranking,
and the greater the distance between Lj; and L*, the greater the extent of
reranking.

In order to perform statistical inference on the incidence, in the form of
redistribution, progressivity, and horizontal inequity, of taxes and benefits,
we will establish in the next section the joint sampling distribution of Lx,
Lys, Ly, and L*. This will enable us to

a) test whether Lx dominates Lz, or whether Lj; dominates Ly, to
determine whether T'(X) is TR or IR progressive;

2 A benefit B is, however, TR progressive if and only if its concentration curve
Lp dominates Lx.

There is some debate as to which of the IR and TR views is more appropri-
ate as a basis for the measurement of progressivity (for an overview of this
debate, see, for instance, Lambert (1993), ch.7). In the absence of reranking
and when comparing two taxes yielding the same average tax rate, the two
views are equivalent and yield the same ordering (Formby et al. (1990)). In
general, however, the IR view is more closely linked to the income redistri-
bution effected by a tax.
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b) test whether Ly, is dominated by Ly, , or whether Lj;, dominates Lyy,,
to infer whether T} is more TR or IR progressive than T5;

c) test the distance between Lj; and L* to assess the presence of reranking
and horizontal inequity;

d) determine whether T is redistributive and inequality reducing by test-
ing whether L*(p) dominates Lx (p).

By knowing the joint sampling distributions of Lx, Lys, L7, and L*, we
can also derive the sampling distributions of several commonly used indices
and measures — see Duclos (1993). When performing comparisons across
time using panel data, our methods are directly applicable. For instance,
two Lorenz curves Ly (p) obtained at two different times can be treated
as dependent Lorenz curves obtained from paired observations. Finally,
quantile-based poverty comparisons and indices can be seen as special cases
of the above when the focus is put upon the lower portions of the income
distributions (see Atkinson (1987) and Howes (1993)).

3. Asymptotic Distribution of Quantile-Based Estimators

Consider two jointly distributed random variables Y and Z, and let F
denote the cumulative distribution function (c.d.f.) of the marginal distri-
bution of Z. We are interested in estimating expectations of ¥ conditional
on Z being smaller than the p—quantile of its distribution, that is, expec-
tations like v, = E(Y | F(Z) < p). Formally:

P =pE(Y |Z<G(p) =EY Ipcu)(2)), (2)

where G is the inverse of F'. Here the indicator function satisfies

1 ifY €0,y
Iip (V) = { Y
0.51(Y) 0 otherwise.

If Y = Z, we note that py, yields the generalised Lorenz curve of Y
(Shorrocks (1983)), for which Beach and Davidson (1983) first derived the
asymptotic sampling distribution.

Consider also a second set of two jointly distributed random variables
V and W, and let F* denote the c.d.f. of the marginal distribution of W.
Analogously to (2), we may define the conditional expectation 6, by

pop, = pE(V | W < G*(p)) = E(V i+ () (W)), (3)

where G* is the inverse of I'*.



Suppose that N independent drawings have been made from the joint
distribution of Y and Z; write them as (Y;,Z;), i = 1,..., N. An obvious
estimator of py, is then given by

N
A -1
PYp = N Z Y; I[O,@(p)](zi) (4)
i=1

where G’(p) is the sample estimate of the p—quantile of Z. We may define

pd, as an estimate of pd, from a sample of N independent drawings (V;, W;)
in exactly the same way.

We now show that the estimators 4, and Sp are root-N consistent and
asymptotically normal, with an asymptotic covariance matrix that can be
estimated consistently without knowledge of the population distribution
from which our sample was drawn. Our first result gives the asymptotic
covariance between p¥, and p’ Sp/ for arbitrary 0 <p<land 0 <p' < 1.

Theorem 1: Let the population second moments of Y and V
conditional on Z and W be finite, and let the first moments be
continuously differentiable in Z and W. Further, let the marginal
cumulative distribution functions of Z and W be strictly monotonic
and continuously differentiable. Then the asymptotic covariance of
PYp and p’ Sp/, as defined by (4) and its analogue for d,/, is given by

lim Ncov(pﬁp,p’gp/) = E(YV I[O,G(p)](z) I[O,G*(p’)](W))

N—oo

—E(Y|Z =G(p)) E(V Ijp.cen(Z) Lo,gx@y(W)) (5)
—E(VIW =G"(0)) E(Y Ip.c)(Z) To,c+ (W)
+ E(Y|Z=G@p) E(VIW =G*(0)) E(I,c)(Z) 0,6+ )] (W))

(s P17 = 600 50 B0 = 6700 )

Proof: See Appendix. |1

Remarks and Corollaries:

(1) Everything in (5) can be estimated consistently in a distribution-free
manner: 7y, and 8,/ by 4, and d,/, G(p) and G*(p') by G(p) and G*(p'), that
is, the sample p and p’ quantiles of Z and W respectively. The unconditional
expectations are readily estimated by their sample equivalents; thus for
E(YV Iy a1 (Z) Ip,g+ ) (W)), for instance, we may use the estimate

N
-1
N1 DYV T ) (Z0) Tio gy (W),

=1
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in which the sum is effectively over only those drawings ¢ for which Z; is less
than or equal to the p—quantile of the sample distribution of Z, and W; is
less than or equal to the p’—quantile of the sample distribution of W. The
conditional expectations are a little less obvious, but various forms of kernel
estimation can be used under the regularity conditions of the theorem.

(2) The expression (5) gives explicitly only the covariance of p, and p'd, .
However, the covariance of p¥j, and p’4, can be obtained directly from
(5), by replacing d6,/, V', W, and G* by 4,/, Y, Z, and G respectively. This
procedure leads to certain simplifications, as seen in the following Corollary.

Corollary 1 Under the conditions of Theorem 1, the asymptotic
covariance between p¥, and p'4,/, for p <p’, is given by
]\}E)nOON cov (pf?pap/’?p’) =p <¢p - 7;2)
+(1-p)(BE(Y1Z = G0) =) (E(V1Z = G0)) — )

) -
H(EW1Z=60) =) Oy =), )

where
pop = E(Y? Ipp cpy(2))- (7)

If p > p’, the asymptotic covariance is obtained from (6) by inverting
the roles of p and p’. Setting p = p’ yields the variance of py,.

Proof: Making the replacements given above in (5), noting that, for p < p/,

Io,c)(Z) L, (Z) = 1,6 (Z),

and making use of the definition (7 ) ields the following expression for the
asymptotic covariance of py, and p'¥

p(gbp—va(Y\ 7=G) —wE(Y|Z = GW))
+E(Y|Z=G(p)) E(Y|Z=G())

(- E(V12=GW)) (v — B(V1Z = G(p'>)))-

This can readily be seen to be equal to the right-hand side of (6), the
algebraic form of which is the same as that of similar expressions in Beach
and Davidson (1983). The last statement in the enunciation of the Corollary
follows from the symmetry of the covariance matrix of 4. |
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(3) It is immediately clear that the asymptotic covariance of pgp and p/ Sp/

has exactly the same form as (6), with 7, and 7,/ replaced by 4, and 6,,

Y and Z replaced by V and W, G replaced by G*, and ¢, replaced by
D = E(V2 I[O,G* (p)] (W))

(4) If Z and W are the same variable, then the covariance of p9, and p’ Sp/
simplifies in the same way as the covariance in (6).

(5) In some cases, the variable Y may be the same as Z, or may be a
deterministic function of Z. Or V may be a deterministic function of W.
In such cases, one or more of the conditional expectations in expressions (5)
or (6) become trivial to evaluate. For instance, if 0, = E(X|X < G(p)),
then in our general notation, the variables Z, W, and V are all equal to X,
and we would have

E(V|Z=G(p)) = E(X|X =G(p)) = G(p).

This quantity can be directly estimated as G (p). The results of Beach and
Davidson (1983), and of Beach, Davidson, and Slotsve (1994) then follow
as special cases of the results presented here.

(6) One may legitimately wonder to what extent the results of the above
Theorems and Corollaries are affected by the presence of measurement er-
ror. It is, after all, perfectly reasonable to suppose that things like in-
comes, taxes, and transfers are incorrectly reported in the available data
sets, whether deliberately or otherwise. This matter merits further study.

Consider a set of K probabilities, p;, © = 1,..., K, such that
O<pr <p2<...<prg <1

Then let the K-vector « be given by v = [yp, - - - Vpx] ', and similarly for 8.
We may define the following measure of the distance between the expecta-

tions 7, and d,:
Y Op
Ly=p(— — =), 8
F (71 51> (®)
where v, and §; are just the expectations of Y and V respectively. We

write I' = [I}y, ... I}, ]", and
O = [plf)/plv"'7pK’ypK7717p15p17"'7pK5pK751:|T-

We already have estimators with known asymptotic properties for all
the components of @; let us write the 2(K + 1)-vector of these estimators
as @. The obvious estimator of I' is

. g . 2 T
. 4 0. o )
F:pl(ﬂ—pl p<PK_:DK>

~

< PR ~
4! (51 4! 51

: (9)
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whose distribution can be obtained naturally from the joint distribution of
the components of the @. For its covariance matrix, define the K x2(K +1)
Jacobian J of the K-vector I' with respect to the components of @ as
follows:

J= [gﬂ —(S() ¢ -S()]

where the K x (K + 1) matrices S(v) and S(d) are given generically by
the formula

. b1
1/0(1 : __2p1

S(a) =

1/&1 pKapK

We can now use a standard result of Rao (1973, pp.388-9) to state that:

Theorem 2: N'/2(I'-T), as given by (9), has a K-variate normal
limiting distribution with mean zero and covariance matrix J$2J.
Here {2 is the asymptotic covariance matrix of the vector O, as
given by Theorem 1 and its corollaries.

Proof: Standard. N

We have seen that all elements of J2J 7 can be estimated consistently
in a distribution-free manner, that is, without specifying an a priori func-
tional form for the population distribution. We can then use the results
of Theorem 2 to perform statistical inference on population progressivity,
horizontal inequity, and the amount of redistribution effected by various
taxes and benefits. We illustrate this in the following section.

4. Illustration: the Canadian Tax and Benefit System

Depending on whether we are interested in the measurement of progressiv-
ity, horizontal equity, or redistribution, 7, and J,, in (8) are chosen to take
the following forms:

IR Progressivity:
Ww=EM|X<G(p) &=EX[X<Gp):
Comparisons of IR Progressivity:

Vo = E(M1 | X < G(p)) op = E(M2 | X < G(p));



TR Progressivity:

Ww=EX|X<Gp) &=E(T]|X<Gp)
Comparisons of TR Progressivity:

w=E(|X<Gp) &=E(T]X<Gp);
Horizontal Inequity:

Ww=EM|X<Gp) &=EM]|M=<G(p);
Redistribution:

v =E(M|M<G*(p) 6,=FE(X|X<G(p).

We illustrate this using micro-data from the 1981 and 1990 Canadian Sur-
veys of Consumer Finances. The distribution of income in Canada was
subjected to a number of shocks between these two years, a feature shared
with many other countries. The Canadian fiscal system was also signifi-
cantly altered in that decade.

The 1981 and 1990 Surveys contain, respectively, 37,779 and 45,461
observations on the distributions of incomes, income taxes, and a num-
ber of cash transfers. Families with negative gross or net incomes were
removed. We use these data to compute gross incomes and the levels of
personal income taxes and benefits. Combining taxes and benefits, we ob-
tain the net effect of the entire system.*. The conditional expectations of
the variables Y and V in (5) were estimated using robust Gaussian kernel
estimation (Silverman (1986), p.45). To test whether curve A dominates
curve B, we reject the null hypothesis of non-dominance in favour of the
alternative hypothesis of dominance only if each point of curve A is found
to be statistically greater than the corresponding point on curve B at a 5%
level of significance. This procedure, defended by Howes (1993), ensures
that the probability of type I errors is never greater than 5%.

Figure 1 shows the IR progressivity of taxes and benefits, measured
as the distance between Lj;(p) and Lx(p) as a function of p, for both
1981 and 1990. The graphs show the distance for each decile, with error
bars of twice the estimated asymptotic standard error (not always visible
if the estimated standard error is small enough). Since the 1981 and 1990
samples are independently distributed, the asymptotic standard errors of
the differences across years in the IR progressivity ordinates at each decile
are straightforward to calculate from the standard errors of each ordinate.’

4 Detailed information on these transfers can be found, for instance, in Health
and Welfare Canada (1992).

® If panel data were available, the standard errors would be based on the joint
distribution obtained from paired observations.
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It is clear from the figure that IR progressivity was significantly greater in
1990 than in 1981 after the second decile for taxes, and for all deciles for
benefits.

If we wish to compare the progressivity of taxes and benefits for a given
year, the comparison is complicated by the fact that the different ordinates,
being estimated from the same sample, are therefore not independent. The
comparisons, with appropriate standard errors that reflect this fact, are
shown in Table 1. It is clearly possible here to declare income taxes statis-
tically less IR progressive than the combination of benefits. The difference
in IR progressivity is also statistically greater in 1990 than in 1981.

Next, we consider the differences among the Lorenz curves for gross
and net incomes, and the concentration curve for net income, for each of
the years 1981 and 1990. This allows us to measure the extent of the
redistribution effected by the tax and benefit system, and the degree of
reranking of after-tax incomes relative to pre-tax incomes. Figure 2, in
which Lps(p) — L*(p) is plotted as a function of p, contains the information
on reranking. The extent of reranking is precisely estimated, and reaches
its maximum at the first decile. Information on redistribution is found in
Figure 3, which plots the differences between the Lorenz curves for gross
and net incomes as functions of p. The redistributive impact of the tax and
benefit system is visibly highly significant: the inequality of net incomes
is unambiguously lower than that of gross incomes. Redistribution is at
its highest around the fifth decile, at which point 8.3% of total income is
transferred in 1990 from the richer (than the fifth decile) to the poorer part
of the population. Note also that the tax and benefit system raises almost
eightfold the total income share of the poorest 10% of the population.

The curves for the two years, since they are based on independent
samples, can be directly compared on the basis of the error bars. We find
that the distribution of gross incomes in 1981 is unambiguously and signifi-
cantly more equal than in 1990. The distribution of net incomes in 1981 is,
however, almost unambiguously more unequal than the distribution of net
incomes in 1990 (the difference at the ninth decile is not significant). Thus
the 1990 tax and transfer system almost succeeds in making net incomes in
1990 unambiguously more equal than in 1981. It is therefore not surprising
to find that the redistributive change in the inequality of incomes effected
by the 1990 system is significantly greater than the change achieved by the
1981 system. At each of the deciles between the fourth and the eighth, for
instance, 2% more of total income is redistributed from richer to poorer
under the 1990 system than under the 1981 system, with a standard error
of around 0.1%. Finally, it can easily be checked that reranking in 1990 is
significantly greater than in 1981 at all deciles but the ninth.

~10 -



5. Conclusion

We have established the asymptotic sampling distribution of quantile-based
estimators computed from samples which need not be independent. The
results are particularly useful for the measurement of progressivity, redistri-
bution and horizontal inequity, and for the measurement and comparisons
of inequality, welfare, or poverty that make use of estimated quantiles from
possibly dependent samples. They also generalise most of the previous
statistical inference results for the measurement of inequality and social
welfare, and provide the statistical basis for the use of a number of popular
indices.

Our illustrative application using the Canadian tax and benefit sys-
tem shows that personal taxes and benefits are progressive, and that the
separate tax and benefit components of the 1990 system are generally more
progressive than those in 1981. Taxes are clearly statistically less progres-
sive than benefits. Gross incomes are more equal in 1981 than in 1990, but
net incomes are generally more equal in 1990 than in 1981. This is consis-
tent with the finding that redistribution is significantly greater in 1990 than
in 1981, with an associated increase in the extent of reranking, particularly
at lower incomes.

Appendix

Proof of Theorem 1:° Let the joint cumulative distribution function
of Z and Y be denoted as H(z,y), that is:

H(z,y) :Pr(Z§ zandng).

As in the text, I’ denotes the c.d.f. of Z, supposed to be strictly monotonic
and continuously differentiable, with inverse G. The quantity 7, of (2) can
then be characterised by

G(p) poo )
mp=/ / yd H(z,y),
0 0

where the integral from 0 to G(p) applies to z, and that from 0 to oo to y.
The estimate 4, of (4) is similarly given by

A G(p) poo -
Py = / / y PH(zy), (10)
0 0

where G is defined as before as the sample quantile function for Z, and H
is the empirical distribution of Z and Y jointly.

6 This proof is based on that found in the Appendix of Beach, Davidson, and
Slotsve (1994), but extends it considerably.
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The integral in (10) can be split up into an integral (over z) from 0
to G(p) and another from G(p) to G(p). The first is easy to deal with, as
it can be written as a sum of i.i.d. variables:

G(p) 2 iy .
/ /yd (2,) ZYIOG(Z?) Zy). (11)

The second integral is of order N—1/2

lows:

, and it can be approximated as fol-

&(p) Glp) oo
/ / y d*H(y, 2 / / y d*H(y,z) + O(N~ 1)
G(p) G(p) JO

G(p)
:/ E(Y|z) dF(z) + O(N™1).

G(p)

The first equality follows from the root-N consistency of H for H, and the
second from the definition of the conditional expectation E(Y|z). Since we
assume that this conditional expectation is a smooth function of z, we have

for z € [G(p), G(p)] that
E(Y|z) =E(Y|Z =G(p)) + O(N~/?).
Thus, approximately with error of order only N !, the second integral is

G(p)

E(Y|Z= G(p))/ dF(z),

G(p)

(using the root-N consistency of F), which can be rewritten as
~E(Y]Z = G(p) (F(G) - )

G(p) .
BY1Z=6w) - [ B(YIZ=6Ww)dFe). (12)

The expressions in (11) and (12) can be added together to obtain an asymp-
totic approximation for (10). To leading order,

G(p)
Pis = pE(Y|Z = G(p / | (o= B(12 =6) *Aitn)
—pE(Y|Z G(p

+N" 12( E(Y|Z = GW®))) To.am(Z%). (13)
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The expectation of py, can readily be calculated from (13). To leading
order:

Ewiy) =pE(Y|Z = G) + E(Y = E(YZ = G() Toc(2))
=pE(Y|Z =G(p)) +py —pE(Y]Z = G(p))
= PV
which demonstrates the consistency of the estimator. Similarly, the fact
that (13) and its analogue for pd, are sums of independent identically dis-

tributed random variables with finite second moments leads immediately
to their asymptotic normality by the central limit theorem.

The covariance structure can now be obtained by simple calculation,
based once more on the structure of (13) as a sum of i.i.d. variables. We
have

Jim N cov (Pips D0yt ) =
E((Y ~ B(Y|Z = G(®) ) p.o (%)
(v-BWVIW= G*(p’))>I[O,G*(p,)](W))
—E(Y ~E(Y|Z=G(p)) I[ng(p)](Z)> (14)

E(V = E(VIW = G*()) Ty (W)).
Now by the definitions of vy, and ¢, we have

B(Y = BE(Y|Z = G0)) loco(2)) = p(7 — E(Y]Z = G(p))) and

E(v —E(V|W =G()) I[OG*@,)](W)) - (5,,, —E(V|W = G*(p/))>.

Thus the last term on the right-hand side of (14) equals the last term on
the right-hand side of (5). The first term on the right-hand side of (14),
when expanded, yields the other terms on the right-hand side of (5).
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Table 1

COMPARISONS OF IR PROGRESSIVITY
FOR 1981 AND 1990 TAXES AND BENEFITS

asymptotic standard errors in italics

Deciles 1 2 3 4 5 6 7 8 9
Benefits  ws | 0.0268 | 0.0339 | 0.0342 | 0.0323 | 0.0290 | 0.0247 | 0.0188 | 0.0124 | 0.0044
Income taxes

1981 0.0006 | 0.0006 | 0.0007 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0008 | 0.0004
Benefits  ws | 0.0314 | 0.0434 | 0.0469 | 0.0464 | 0.0423 | 0.0366 | 0.0275 | 0.0176 | 0.0061
Income taxes

1990 0.0004 | 0.0007 | 0.0009 | 0.0008 | 0.0007 | 0.0008 | 0.0008 | 0.0007 | 0.0005
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