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13002 Marseille, France

Department of Economics
McGill University

Montreal, Quebec, Canada
H3A 2T7

email: Russell.Davidson@mcgill.ca

Abstract

Artificial regressions are developed, based on elementary zero functions, that ex-
ploit the fact that the normal distribution is completely characterised by its first
two moments. These artificial regressions can be used as the basis of numeri-
cal algorithms for the maximum likelihood estimation of models with normally
distributed random elements, and other estimation techniques based on the op-
timisation of criterion functions. The proposed algorithms are often simpler to
program than many conventional algorithms for the optimisation of functions,
and they have the advantage that an asymptotically correct estimate of the co-
variance matrix of the parameter estimates is computed as a by-product. Specific
examples discussed include regression models with ARMA or (G)ARCH errors.

Keywords: Artificial regression, elementary zero function, estimating
equation, maximum likelihood.
JEL codes: C100, C130

This research was supported, in part, by grants from the Social Sciences and Humanities
Research Council of Canada. I am greatly indebted to James MacKinnon for numerous
helpful suggestions and comments, and to participants at the 2003 Econometric Study
Group Annual Conference in Bristol.

November 2003



1. Introduction

The point of view taken in this paper is that the basic unit of statistical information
is an elementary zero function, that is, a function of the data associated with one
observation of the sample and of parameters. The expectation of an elementary
zero function is zero when the parameters are those associated with the data-
generating process (DGP) that generated the sample. A zero function may be
informative or not about any given parameter. If the function does not depend
on a parameter, then it cannot be informative about it. Even if it does depend
on a parameter, it may still not be informative about it. Whether a zero function
is informative about a parameter, and, if so, to what extent, is measured by a
quantity that, in some circumstances, can be described as the optimal instrument
for that zero function and that parameter. If this instrument is zero, then the
function is not informative about the parameter.

In this context, instrumental variables are viewed as coefficients by which a set of
zero functions are weighted in the construction of the estimating equations, which
are equations to be solved to find an estimator of the parameters. Estimating
equations are said to be (asymptotically) optimal if the estimator they define has
minimum (asymptotic) variance in the class of estimators defined using the given
set of elementary zero functions. Optimal instruments are then the instruments
used in optimal estimating equations.

The theory of estimating functions was originally developed by Godambe (1960);
see also Godambe and Thompson (1978). In Section 2, we recall this theory, and
explore the role of elementary zero functions in formulating optimal estimating
equations. It is particularly simple to find the optimal instruments associated with
a set of elementary zero functions for given parameters if the zero functions are
homoskedastic and serially uncorrelated when evaluated at the “true” parameters,
that is, those of the true DGP.

It is well known that the multivariate normal distribution is characterised com-
pletely by its first two moments. This suggests that efficient estimation of the
parameters of models in which the random elements are multivariate normal can
be performed by basing the estimating equations on elementary zero functions
associated with the first two moments of these random elements. In Section 3, we
show that this is indeed the case, and that the asymptotically optimal estimating
equations are just the likelihood equations obtained by formulating a loglikelihood
function under the assumption of normality.

This result makes it possible to develop artificial regressions that correspond to
models with normal random elements estimated by maximum likelihood. The the-
ory of artificial regressions is set out for models estimated by ML in Davidson and
MacKinnon (1990), and in a more complete form in Davidson and MacKinnon
(2001); see also Davidson and MacKinnon (2004), Chapter 15. Artificial regres-
sions have numerous advantages; they may be used as the basis of an algorithm
for computing estimators, for computing estimates of the covariance matrices of
estimators, and for hypothesis testing. Many artificial regressions exist already for
models estimated by ML. The best known, if not the best behaved, is no doubt
the OPG artificial regression introduced by Godfrey and Wickens (1981). The
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artificial regressions proposed in Section 4, based on elementary zero functions,
have much better properties than almost all of those found in the existing liter-
ature, because the covariance matrix estimator they provide is the efficient score
estimator, that is, the inverse of the information matrix evaluated at the MLE.

It is common practice to estimate a wide variety of time-series models by maximum
likelihood, under the assumption of normally distributed errors. In many cases, it
is quite difficult to formulate the loglikelihood function correctly, and in some cases,
it appears to be impossible to do so analytically. In Section 5, it is seen that some
of these difficulties can be overcome by use of the artificial regressions developed
in Section 4. In particular, these regressions allow one to do full-information
ML estimation of regression models with ARMA errors, with no analytical effort
beyond the formulation of the stationary covariance matrix for the ARMA process
under consideration, and of its derivatives with respect to the ARMA parameters.

In Section 6, artificial regressions are developed for (G)ARCH models. These are
a little more complicated to set up than those for ARMA models, but no more so
than setting up the loglikelihood function itself along with its derivatives. Since
ML estimation of GARCH models is numerically very delicate, these artificial
regressions offer the hope of greater numerical stability than what is provided
by most currently available packages. Finally, Section 7 offers a few concluding
remarks.

2. Elementary Zero Functions

Most parameter estimators can be defined by a set of estimating equations, by
which a corresponding set of estimating functions, which depend on observed data
and the parameters to be estimated, are set equal to zero. Estimating equations
are often referred to in the econometrics literature as moment conditions. In many
cases, the estimating equations are the first-order conditions for the maximisation
or minimisation of a criterion function; obvious examples are least squares, maxi-
mum likelihood, and GMM. Estimating functions are usually zero functions, that
is, functions which, when evaluated at the true parameter values, yield random
variables of expectation zero. Estimating functions with this property are called
unbiased.

Elementary zero functions, of which estimating functions are usually linear com-
binations, play a role analogous to that of residuals in a regression model. They
depend on observed variables and on a vector of parameters, say θ. Let ft(θ, yt)
denote an elementary zero function for observation t. In general, there may well
be more than one elementary zero function for each observation.

The parameters θ are defined in the context of a model, denoted by M, which is
defined as a set of DGPs. A parameter-defining mapping associates to each DGP
µ ∈M a unique parameter θµ, often called the “true” value of θ for that DGP. It is
important to note that the uniqueness goes just one way here: A given parameter
vector θ may correspond to many DGPs, but each DGP corresponds to just one
parameter vector. The existence of a parameter-defining mapping thus assumes
that there are no problems of unidentified parameters left unsolved.
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The key property of elementary zero functions can be written as

Eµ

(
ft(θµ, yt)

)
= 0, (1)

where Eµ(·) denotes the expectation under the DGP µ, and θµ is the (unique)
parameter vector associated with µ. It is assumed that property (1) holds for all t
and for all µ ∈M.

If there are k parameters to be estimated, we need k estimating equations, and so
k estimating functions. In general, these are linear combinations of the elementary
zero functions, formed using instrumental variables as the coefficients of the linear
combinations. If there are N elementary zero functions, let the N × k matrix W
be the matrix of instruments. The estimating functions are thus the k components
of W>f(θ, y). A condition that ensures that they are unbiased is the following
predeterminedness condition:

Eµ(ft(θµ, y) |Wt) = 0, t = 1, . . . , N, (2)

where Wt is the tth row of W. The estimating equations

W>f(θ̂, y) = 0 (3)

implicitly define the estimator θ̂.

For θ̂ to be consistent, we require that

α(θ;µ) ≡ plim
n→∞

µ
1−
n
W>f(θ, y)

exists and satisfies an asymptotic identification condition. Here n denotes the
sample size. Condition (2) implies that α(θµ; µ) = 0 for all µ ∈ M, and the
needed condition is that α(θ; µ) 6= 0 for all θ 6= θµ. For asymptotic normality, we
assume that the ft are continuously differentiable in a neighbourhood of the true
parameters θµ. Performing a first-order Taylor expansion of (3) around θµ and
introducing some appropriate factors of powers of n, we obtain the result that

n−1/2W>f(θµ) + n−1W>F (θ̄)n1/2(θ̂ − θµ) = 0, (4)

where the N × k matrix F (θ) has typical element

Fti(θ) ≡ ∂ft(θ)
∂θi

,

where θi is the ith element of θ. The notation F (θ̄) in (4) is a convenient
shorthand: Row t of the matrix is the corresponding row of F (θ) evaluated at
θ = θ̄t, where the θ̄t all satisfy the inequality

∥∥θ̄t − θ0

∥∥ ≤ ∥∥θ̂t − θ0

∥∥.

The consistency of θ̂ then implies that the θ̄t also tend to θµ as n →∞.
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Asymptotic normality also needs the stronger asymptotic identification condition
that plim n−1W>F (θµ) should be nonsingular. This allows us to solve (4) to
obtain

n1/2(θ̂ − θµ) a= −
(

plim
n→∞

1−
n

W>F (θµ)
)−1

n−1/2W>f(θµ). (5)

It follows that, assuming that a central limit theorem applies to n−1/2W>f(θµ),
the asymptotic distribution of n1/2(θ̂ − θµ) is normal, with mean zero, and finite
covariance matrix.

If we assume that the elementary zero functions are homoskedastic and serially
uncorrelated, at least for a subset of interest of the DGPs in M, it is easy enough
to determine the asymptotic covariance matrix. Let f(θ,y) denote the vector of
all the elementary zero functions. Then we assume that

E
(
f(θ, y)f>(θ,y)

)
= σ2I

for the DGPs of interest. The covariance matrix of the limit of the right-hand side
of (5) can then be seem to be

σ2
(

plim
n→∞

1−
n
W>F (θµ)

)−1(
plim
n→∞

1−
n
W>W

)(
plim
n→∞

1−
n
F>(θµ)W

)−1

= σ2 plim
n→∞

(
1−
n
F>(θµ)PW F (θµ)

)−1

, (6)

where PW ≡ W (W>W)−1W> is the orthogonal projection on to the space
spanned by the instruments.

If F (θµ) is predetermined in the sense of (2), then it is clear from (6) that the
asymptotic covariance matrix is minimised by setting W = F (θµ). Since θµ is
unknown, it is necessary in practice to replace it by a consistent estimate for
practical purposes. Usually, however, F (θµ) is not predetermined. In that case,
define the matrix F̄ in terms of its typical row F̄t, and an N × k matrix V , as
follows:

F̄t ≡ E
(
Ft(θµ) |Ωt

)
and V ≡ F (θµ)− F̄, (7)

where Ωt denotes information that is predetermined with respect to the elementary
zero function ft. This implies that

plim
n→∞

1−
n
F̄>F (θµ) = plim

n→∞
1−
n
F̄>(F̄ + V ) = plim

n→∞
1−
n
F̄>F̄.

The term plim n−1F̄>V equals O because E(Vt |Ωt) = 0, and the conditional ex-
pectation F̄t belongs to the information set Ωt. A straightforward asymptotic
argument can then be used to show that setting W = F̄ minimises the asymp-
totic covariance matrix over the set of admissible instruments. Thus the optimal
instruments associated with the homoskedastic and serially uncorrelated set of
zero functions ft are the columns of the matrix F̄ , or, equivalently, of −F̄ .

– 4 –



3. Maximum Likelihood

If the parameters θ of a model M are to be estimated by maximum likelihood, one
defines a loglikelihood function as follows:

`(y, θ) =
n∑

t=1

`t(yt, θ),

where the contribution `t(yt, θ) is the log of the density of observation yt con-
ditional on observations y1, . . . , yt−1 for the DGP characterised by θ. The nota-
tion yt signifies the vector of observations y1, . . . , yt.

In regular cases, the estimating equations for ML estimation are the likelihood
equations

∂`(y, θ)
∂θi

=
n∑

t=1

∂`t(yt,θ)
∂θi

= 0, i = 1, . . . , k.

From this, it is clear that the elementary zero functions implicitly used by ML are
the derivatives ∂`t/∂θi of the loglikelihood contributions, k of them per observa-
tion. These functions are uncorrelated for different observation indices s and t,
but are contemporaneously correlated within each observation. In addition, they
are heteroskedastic. On the other hand, the instruments are just vectors with each
element equal to 1. In this section, we will see that, for a certain class of mod-
els, these same likelihood equations can be constructed along the lines of the last
section with homoskedastic and uncorrelated elementary zero functions, combined
with optimal instruments defined as in (7).

Suppose that the (scalar) observations yt, t = 1, . . . , n, are jointly normally dis-
tributed with expectations xt(θ) and n×n covariance matrix Ω(θ). The regression
functions xt(θ) may depend on exogenous explanatory variables and lagged depen-
dent variables. Then the loglikelihood function for the sample of n observations
can be written as

`(y,θ) ≡ −n−
2

log 2π − 1−
2

log det Ω(θ)− 1−
2
u>(θ)Ω−1(θ)u(θ), (8)

where u(θ) is the n--vector with typical element yt−xt(θ). Let the lower-triangular
matrix A(θ) be such that A>(θ)A(θ) = Ω−1(θ). Then (8) can be rewritten as
the sum of contributions `t(yt, θ) defined as

`t(yt, θ) = − 1−
2

log 2π + log att(θ)− 1−
2

( t∑
s=1

ats(θ)us(θ)
)2

, (9)

where ats(θ) is element (t, s) of A(θ).

The likelihood equations for estimating θ are the first-order conditions for the
maximisation of (8) with respect to θ, and they can be written in terms of the
derivatives of the contributions (9):

∂`t

∂θi
=

t∑
s=1

( ∂`t

∂us

∂us

∂θi
+

∂`t

∂ats

∂ats

∂θi

)
, i = 1, . . . , k. (10)
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The derivatives ∂us/∂θi and ∂ats/∂θi are model specific, but the derivatives of
the `t can always be written as

∂`t

∂us
= −atsvt, s ≤ t, and

∂`t

∂ats
=

δts

att
− usvt,

where δts is the Kronecker delta and

vt(θ) =
t∑

s=1

ats(θ)us(θ), (11)

or v(θ) = A(θ)u(θ) in vector notation.

Note that the vt(θ) form a set of homoskedastic, uncorrelated, elementary zero
functions. The normal distribution is completely determined by its first two mo-
ments, and so the obvious set of elementary zero functions to use for estimation
in the present case is constituted by the functions vt(θ) and (v2

t (θ) − 1)/
√

2, for
t = 1, . . . , n. It is easy to check that these functions are homoskedastic and un-
correlated, and, since the yt are assumed to be normal, it follows that, evaluated
at the true θ, vt is independent of vs for s 6= t.

The optimal instrument to use in conjunction with vt for θi is the expectation of

∂vt

∂θi
=

t∑
s=1

(
ats

∂us

∂θi
+ us

∂ats

∂θi

)
(12)

conditional on the information set Ωt, which, in addition to all exogenous variables,
may be assumed to contain the vs for s < t. In order to be able to deal with ARCH
phenomena, we wish to allow the ats to be random, but we assume that ats ∈ Ωt,
so that any random variables on which ats may depend must be predetermined at t.
Because the vt are independent, we have E(vt |Ωt) = 0. Further, ∂ut/∂θi ∈ Ωt,
since this derivative is −∂xt/∂θi.

We have u = A−1v, where A−1 is lower triangular because A is. Write this
relation as ut =

∑t
s=1 atsvs. It follows that E(us |Ωt) = us for s < t, and

E(ut |Ωt) =
∑t−1

s=1 atsvs = ut − attvt = ut − vt/att, since att = 1/att by the
lower triangularity property. The conditional expectation of (12) becomes

E
(∂vt

∂θi

∣∣∣ Ωt

)
=

t∑
s=1

ats
∂us

∂θi
+

t∑
s=1

us
∂ats

∂θi
− 1

att

∂att

∂θi
vt. (13)

The optimal instrument for (v2
t − 1)/

√
2 is

1√
2

E
(∂v2

t

∂θi

∣∣∣ Ωt

)
=
√

2 E
(
vt

∂vt

∂θi

∣∣∣ Ωt

)
. (14)
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The only term of (12) that is not in Ωt is ut∂att/∂θi, and so this is the only term
to contribute to (14), which, on noting that E(vtut) = att, can be seen to be equal
to √

2
∂att

∂θi
E(vtut) =

√
2

1
att

∂att

∂θi
. (15)

Adding vt times (13) and (v2
t − 1)/

√
2 times (15) gives the contribution from

observation t to the estimating function for θi. This contribution is

t∑
s=1

atsvt
∂us

∂θi
+

t∑
s=1

vtus
∂ats

∂θi
− 1

att

∂att

∂θi

=
t∑

s=1

atsvt
∂us

∂θi
+

t∑
s=1

(
vtus − δts

att

)∂ats

∂θi
,

which is exactly the negative of (10). We have proved the following theorem.

Theorem 1

Consider the model defined by the set of loglikelihood contributions (9),
where ut(θ) = yt − xt(θ) and xt(θ) and the ats(θ), s ≤ t, are in the
information set defined by the ys, s = 1, . . . , t − 1, and the exogenous
explanatory variables. The likelihood equations for this model are iden-
tical to the estimating equations based on the set of homoskedastic and
uncorrelated elementary zero functions vt(θ) and (vt(θ)− 1)2/

√
2, where

vt(θ) is defined by (11), in conjunction with the optimal instruments for
these zero functions, as given by (13) and (15).

4. An Artificial Regression

The result of Theorem 1 may seem rather academic, but it can be put to excellent
practical use by means of an artificial regression. This artificial regression can lead
to much simpler ML estimation than by the usual maximisation of the loglikelihood
function, and can furnish the efficient score estimate of the information matrix, and
thus an efficient estimate of the asymptotic covariance matrix of the ML estimator.

An artificial regression is a linear regression, for which the regressand and the
regressors are functions of both data and parameters. Such a regression, which
can be written as

r(θ) = R(θ)b + residuals, (16)

corresponds to a parametrised model M and to an estimator θ̂ of the parameters
of the model if the following three conditions are satisfied.

• The artificial regressand and the artificial regressors are orthogonal when
evaluated at θ̂, that is,

R>(θ̂)r(θ̂) = 0. (17)

Equations (17) are therefore estimating equations for θ̂.
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• Under any DGP µ ∈M, the asymptotic covariance matrix of θ̂ is given by

Var
(
plim
n→∞

µ n1/2(θ̂ − θµ)
)

= plim
n→∞

µ

(
n−1R>(θ̂)R(θ̂)

)−1
, (18)

where θµ is the true parameter vector for the DGP µ and n is the sample size.

• The artificial regression allows for one-step estimation, in the sense that, if
θ́ is any root-n consistent estimator of the model parameters, and b́ denotes
the vector of OLS parameter estimates obtained by running the artificial
regression with θ = θ́, then, under any DGP µ ∈M,

θ́ + b́ = θ̂ + Op(n−1). (19)

An artificial regression can be used as the basis for an algorithm of nonlinear
estimation, for the estimation of covariance matrices, and for hypothesis testing.
Specifically, the estimator θ̂ can be computed by an algorithm that uses the ar-
tificial regression as the Gauss-Newton regression is used in the computation of
nonlinear least squares estimates. A starting value is chosen for θ, the artifi-
cial variables are evaluated at this starting value, and θ is updated by adding
to the starting value the vector of OLS parameter estimates from the artificial
regression1. It is clear that, if an iterative procedure based on this updating step
converges, the value of θ at convergence satisfies the estimating equations (17).

The sort of artificial regression that interests us here has a regressand which is a
vector of homoskedastic, serially uncorrelated, zero functions, and regressors that
are the negatives of the optimal instruments for those zero functions and the model
parameters. For such artificial regressions, we can prove the following Lemma,
which is a slight specialisation of a result given in Davidson and MacKinnon (2001).

Lemma 1

Let an artificial regression of the form (16) be constructed with regres-
sand r(θ), with typical element rt(θ), such that Eµ(rt(θµ)) = 0 and
Eµ(rt(θµ)rs(θµ)) = δts for all µ ∈ M. The regressor corresponding to
the zero function rt and the parameter θi is the negative of the optimal
instrument

Rti(θ) ≡ −E
(∂rt

∂θi
(θ)

∣∣∣ Ωt

)
,

where the expectation is computed under a DGP with associated para-
meter vector θ. Let the estimator θ̂ be defined by the estimating equations
R>(θ̂)r(θ̂) = 0. Then such an artificial regression satisfies the three con-
ditions (17), (18), and (19) for the estimator θ̂.

Proof: In Appendix.

1 In practice, the OLS parameter estimates should be used to give the direction of
the update in the parameter space, but not necessarily the magnitude, which can
be found by a one-dimensional optimisation algorithm.
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For the models considered in the previous section and the ML estimator, we con-
struct an artificial regression with N = 2n artificial observations, one for each
of the elementary zero functions in the statement of Theorem 1. For each real
observation there are two artificial observations, for which the elements of the re-
gressand are vt(θ) and (v2

t (θ) − 1)/
√

2, where vt(θ) is defined in terms of data
and parameters by (11). There are k regressors, one for each parameter to be
estimated. For observation t and parameter θi, the two elements of the regressor
are the negatives of the optimal instruments (13) and (15), respectively. We may
write the regressors as

R
(1)
ti = −

t∑
s=1

ats
∂us

∂θi
−

t∑
s=1

us
∂ats

∂θi
+

1
att

∂att

∂θi
vt, and

R
(2)
ti = −

√
2

1
att

∂att

∂θi
.

(20)

It is then convenient to represent the artificial regression schematically as follows:
[

vt

(v2
t − 1)/

√
2

]
=

k∑

i=1

[
R

(1)
ti

R
(2)
ti

]
bi + residuals. (21)

Here it is understood that everything depends on the parameter vector θ, except
for the artificial parameters bi.

By Lemma 1, this artificial regression satisfies the three required conditions, and
by Theorem 1 the estimator that corresponds to it is the ML estimator θ̂. Regard-
ing condition (18), it turns out that the covariance matrix estimator R>(θ̂)R(θ̂)
provided by the artificial regression (21) is the inverse of the information ma-
trix evaluated at θ̂. This property implies that, in the neighbourhood of θ̂, the
matrix R>(θ)R(θ) is asymptotically equal to the negative of the Hessian of the
loglikelihood function.

The particular properties of the artificial regression (21) are collected in the fol-
lowing theorem.

Theorem 2

The artificial regression (21) corresponds to the model defined by the set of
loglikelihood contributions (9) and to the maximum likelihood estimator
of that model. In addition, the matrix of cross-products of the regressors
evaluated at θ̂ is the efficient score estimator of the information matrix.

Proof: In Appendix.

In order to implement the artificial regression (21), we need to be able to evaluate
the elements ats(θ), for t = 1, . . . , n and s = 1, . . . , t, and their derivatives with
respect to the model parameters. We assume that the matrix Ω(θ) is available to
us as a function of θ in analytic form. Then computing the matrix A(θ) for any
given θ is just a question of matrix inversion and the Cholesky decomposition.
For the derivatives, notice that, for i = 1, . . . , k,

∂

∂θi
(A>A) =

∂A>

∂θi
A + A>

∂A

∂θi
=

∂Ω−1

∂θi
= −Ω−1 ∂Ω

∂θi
Ω−1.
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From this, it follows that

(A>)−1 ∂A>

∂θi
+

∂A

∂θi
A−1 = −A

∂Ω

∂θi
A>. (22)

If Ω(θ) is available in analytic form, then ∂Ω/∂θi can be found analytically as
well. It follows that the right-hand side of (22) can be computed once A has been
computed. The second term on the left-hand side is lower triangular, and the first
term is its transpose. The second term can thus be constructed with its principal
diagonal equal to half that of the right-hand side, and with the triangle below
the principal diagonal equal to that of the right-hand side. Finally, ∂A/∂θ is the
result of this computation times A. Thus analytic differentiation of Ω with respect
to the parameters, along with some standard matrix manipulations, is enough to
implement (21).

5. Regression Models with ARMA errors

It is usually not very hard to write down the covariance matrix Ω of an ARMA(p, q)
process as an analytic function of the autoregressive and moving average para-
meters. It is on the other hand not at all simple to perform maximum likelihood
estimation of regression models with ARMA errors without conditioning on the
early observations in the sample, and, when there is an MA component, making
some assumptions about unobserved error terms. The artificial regression de-
scribed in the previous section makes it feasible to dispense with conditioning and
arbitrary assumptions, and to do full-information ML estimation. In addition to
formulating the (stationary) ARMA covariance matrix, the only other analytical
effort required is differentiating this matrix with respect to the parameters on
which it depends.

Our first illustration is the estimation of a model with MA(1) errors. Even for this
simple case, full-information ML estimation is usually a complicated business; see
for instance Hamilton (1994), Chapter 5. A general nonlinear regression model
can be written as

y = x(β) + u, (23)

where x(β) denotes an n--vector of regression functions that depend on exogenous
or predetermined explanatory variables, and, possibly nonlinearly, on a k--vector β
of parameters. The MA(1) error process can be written as

ut = εt − αεt−1, εt ∼ NID(0, σ2).

With this sort of model, it turns out that it is not necessary to treat the variance
parameter σ2 as an element of the overall parameter vector θ, since its ML es-
timate can be computed explicitly as a function of observed data and the other
parameters. It would of course be possible to treat σ2 in the same way as β and α,
but it would be a little more complicated for no gain.
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It is well known that the covariance matrix of the error terms ut is σ2 times a
matrix with all diagonal elements equal to 1 + α2, the elements on the first super-
and sub-diagonal equal to −α, and all other elements 0:

Ω = σ2




1 + α2 −α 0 . . . 0
−α 1 + α2 −α . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + α2


 . (24)

The only derivative of this matrix we need is that with respect to α. It is clear
that this derivative is σ2 times a matrix that has 2α on the principal diagonal, −1
on the two adjacent diagonals, and zero elsewhere.

The steps required to set up the artificial regression for given values of β, α, and σ2

are then as follows:

• Form the matrix Ω for the given α and σ2 according to (24), and compute A
by the Cholesky decomposition so that A>A = Ω−1.

• Form the matrix ∂Ω/∂α as described above, and then form the matrix
−A(∂Ω/∂α)A>, which is the right-hand side of (22) for θi = α.

• Compute ∂A/∂α as described at the end of the previous section.

• Form the vector of residuals ut(β) ≡ yt − xt(β) for the given β, and use
them to construct the zero functions vt by the relation v = Au. Form the
regressand by stacking the vector of the vt on top of the vector of the second-
moment zero functions (v2

t − 1)/
√

2.

• Form the regressors corresponding to the parameters β. The upper block
is the matrix AX(β), where X(β) is the Jacobian matrix of the regression
functions. The lower block is a zero matrix.

• The regressor corresponding to α is made up of the vector

− ∂A

∂α
u + w, where wt =

vt

att

(
∂A

∂α

)

tt

,

stacked on top of the vector with typical element −√2att(∂A/∂α)tt.

After setting up and running the artificial regression (by OLS), the parameters
β and α are updated by adding to them the corresponding artificial parameter
estimates, while σ2 is updated by the formula

σ2 =
1

n(1 + α2)

n∑
t=1

(
yt − xt(β)

)2
.

The artificial regression can then be set up again for the new parameter values, and
the whole procedure iterated until convergence. For models with MA(q) errors,
the procedure is completely analogous, but more complicated on account of there
being q MA parameters.
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Next we consider models with error terms that follow an AR(p) process, with no
MA component, since the general artificial regression (21) can be considerably
simplified in this case. As above, we illustrate the simplest case, with a vector u
of AR(1) errors defined by the autoregression ut = ρut−1 + σvt, where vt is white
noise. The model (23) with AR(1) errors can be estimated in many ways. One
traditional method is feasible generalised least squares (GLS), but this method
requires that the explanatory variables should be exogenous; lagged dependent
variables are not allowed, on pain of inconsistent estimates. A more flexible pro-
cedure is to transform the model so that the error term is σvt rather than ut,
yielding

yt = xt(β) + ρyt−1 − ρxt−1(β) + σvt. (25)

This model can then be estimated by nonlinear least squares, if one is prepared to
drop the first observation, for which the lags are not observed. The Gauss-Newton
regression (GNR) that corresponds to (25) can be written as

yt − xt(β)−ρyt−1 + ρxt−1(β) =
(Xt(β)− ρXt−1(β))bβ + (yt−1 − xt−1(β))bρ + residual, (26)

where X(β) is the n × k Jacobian matrix of the regression functions contained
in x(β), and bβ and bρ are artificial parameters that correspond to β and ρ
respectively.

The GNR (26) can be interpreted as an artificial regression for which the elemen-
tary zero functions are the residuals yt−xt(β)− ρyt−1 + ρxt−1(β) that constitute
the regressand, and the instruments are the derivatives of these zero functions with
respect to β and ρ. No second moment information is used, and no information
from the first observation. The second of these flaws may be corrected by ap-
pending an extra artificial observation to (26), which can be written schematically
as

(1− ρ2)1/2
(
y1 − x1(β)

)
= [ (1− ρ2)1/2X1(β) 0 ]

[
bβ

bρ

]
+ residual. (27)

The scaling by (1 − ρ2)1/2 serves to make the variance of the regressand the
same as that of the other elements of the regressand, under the assumption that
the AR(1) process is stationary. This is because the stationary variance of the
ut process is σ2/(1− ρ2). The regressors are minus the unconditional expectations
of the derivatives of the regressand, and are therefore optimal instruments. Note
that, since the derivative with respect to ρ is proportional to the error term, its
expectation is zero.

We now examine what information, if any, can be extracted from second moment
information. Obviously, such information must be used in order to estimate σ2.
An estimator that uses the information in all the observations is

σ̂2 = 1−
n

(
(1− ρ̂2)

(
y1 − x1(β̂)

)2 +
n∑

t=2

(
yt − xt(β̂)− ρ̂yt−1 + ρ̂xt−1(β̂)

)2)
. (28)
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Consider the second-moment zero functions (yt−xt(β)− ρyt−1 + ρxt−1(β))2−σ2

for t = 2, . . . , n. The derivative with respect to σ2 is 1, which implies that these
functions should be weighted equally in the estimating equation for σ2, as is the
case in (28). The derivatives with respect to β and ρ are all proportional to the
error terms, and so have expectations of 0. These zero functions are therefore
uninformative about β and ρ, and it is appropriate to make no use of them in the
estimation of these parameters.

The second-moment zero function is (1− ρ2)(y1 − x1(β))2 − σ2 for the first ob-
servation. The variance of this function is 2σ4. The derivatives with respect to
the elements of β still have expectations of 0, but minus the derivative with re-
spect to ρ is 2ρ(y1 − x1(β))2, with expectation 2ρσ2/(1− ρ2). When we scale the
zero function by a factor of 1/(σ

√
2), the variance of the rescaled function is σ2,

the same as the variance of the first-moment zero functions. Thus if we append
another artificial observation to the GNR (26), along with (27), as follows:

(1− ρ2)
(
y1 − x1(β)

)2 − σ2

σ
√

2
=

[
0 ρσ

√
2

(1− ρ)2

] [
bβ

bρ

]
+ residual,

then we take account of the information about ρ in the second-moment zero func-
tion for the first observation.

In order to obtain ML estimates from this augmented GNR, at each iteration we
evaluate the artificial observations at the current values of β and ρ, and run the
regression. The artificial parameter estimates are used to update β and ρ, and σ2

is updated using the formula (28). Although this procedure is not based directly
on the artificial regression (21), it is easy to show that, since (28) is the likelihood
equation for σ2, the estimates of all the parameters, β, ρ, and σ2, are ML estimates
when convergence is achieved.

A similarly augmented GNR can be developed to deal with the case of AR(p) er-
rors. In that case, the error terms ut in the regression model obey the recursion

ut =
p∑

i=1

ρiut−i + vt, vt white noise.

The information in the observations after the pth can be extracted by dropping
the first p observations and then estimating the model

yt = xt(β) +
p∑

i=1

ρi

(
yt−i − xt−i(β)

)
+ vt

by nonlinear least squares. It is easy enough to see that the second moments of
these observations are uninformative about β and ρ. For the first p observations,
it is necessary, both for the loglikelihood function and for an augmented GNR,
to formulate the unconditional covariance matrix Ωp of the first p error terms.
Under the hypothesis of stationarity, this is the covariance matrix of p consecutive
elements of the stationary distribution. One way to find this covariance matrix is
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to solve the Yule-Walker equations for an AR(p) process. These equations can be
written as

s0 −
p∑

i=1

ρisi = 1, and

ρis0 − si +
p∑

j=1,j 6=i

ρjs|i−j| = 0, i = 1, . . . , p, (29)

where s0 times σ2 is the stationary variance, and si times σ2 the stationary co-
variance of elements of the ut process separated by i periods. Equations (29) are
linear with respect to the si, i = 0, 1, . . . , p, and so can be solved without difficulty
for the si in terms of the ρi. The matrix Ωp is then given by

Ωp = σ2




s0 s1 . . . sp−1

...
...

. . .
...

sp−1 sp−2 . . . s0


 . (30)

The derivative of Ωp with respect to ρk, k = 1, . . . , p, can be computed by solving
the Yule-Walker equations differentiated with respect to ρk. These equations can
be written as

∂s0

∂ρk
−

p∑

i=1

ρi
∂si

∂ρk
= sk, and

ρi
∂s0

∂ρk
− ∂si

∂ρk
+

p∑

j=1,j 6=i

ρj

∂s|i−j|
∂ρk

= −s|i−k|, i = 1, . . . , p.

The GNR must now be augmented by 2p extra artificial observations for the first-
and second-moment zero functions for the first p observations. For p sufficiently
small, this can be done analytically, but in all cases the numerical procedure
described above allows us to evaluate the elements of the regressand and regres-
sors for these artificial observations. The procedure is likely to take less than
the usual time to compute, because the matrices are p--dimensional rather than
n--dimensional. The 2p artificial observations thus constructed are appended to
the ordinary GNR for the observations after the first p, and, when the iterations
based on the GNR converge, we have obtained the ML estimates.

The amount of work needed to set up the artificial regressions described above is
similar to what is needed to set up the loglikelihood function taking full account
of all observations. One may argue that, once the loglikelihood is available, es-
timation can safely be left to the computer. This may or may not be true. In
the past, it was thought worthwhile to devote substantial effort in order to de-
velop numerical methods for specific models that would have better properties
than general algorithms for optimising functions. For the case of a linear model
with AR(1) errors, the classical example is the paper of Beach and MacKinnon
(1978a); see also Beach and MacKinnon (1978b) for the case of AR(2) errors.
The artificial regression for these cases is distinctly simpler to program than the
Beach-MacKinnon procedures. In addition, estimation by artificial regression has
associated advantages – automatic computation of a covariance matrix estimate,
ease of performing hypothesis tests and specification tests, etc.
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6. ARCH and GARCH

Models with (G)ARCH errors are notoriously difficult to estimate accurately. Al-
though most econometrics software packages claim to perform ML estimation of
regression models with (G)ARCH errors, they cannot all be doing so correctly, as
they can give very different results with the same data; see Brooks, Burke, and
Persand (2001) for evidence on this matter. ML estimation should be relatively
trouble free given the work of Fiorentini, Calzolari, and Panattoni (1996). In their
paper, analytical expressions are given for the first and second derivatives of the
loglikelihood functions for models of this type. Thus it is possible to use Newton’s
method with analytic second derivatives, and this method is known to converge
faster than all others in the neighbourhood of the ML estimates.

Other than making Newton’s method feasible, second derivatives are needed in
order to form the Hessian estimate of the information matrix. However, artificial
regressions have their advantages. Those we consider in this paper do not need
second derivatives, and provide the efficient score information matrix estimator. A
few simulations show that they converge quite reliably, although they do not have
the built-in safeguard of ML estimation of models with ARMA errors, whereby one
cannot leave the stationarity region without crossing a singularity. A technique
that seems to work well is to watch for iterations that lead to parameter values
outside the stationarity region, and, when they occur, take a shorter step that
remains inside.

All models of this class have the form

yt = xt(β) + ut, ut ∼ N
(
0, σ2

t (β,φ)
)
, (31)

with a possibly nonlinear regression function xt(β) and skedastic function σ2
t (β, φ)

which depends on the parameters β of the regression function through lagged
squared residuals and on a set of GARCH parameters φ. Both xt(β) and σ2

t (β, φ)
belong to the information set Ωt. The simplest case is when the errors follow an
ARCH(1) process, for which

σ2
t = α + γu2

t−1(β), where ut(β) ≡ yt − xt(β), (32)

and the vector φ has the two components α and γ. Note that ut−1 is predetermined
at time t.

For any model of the form (31), the matrix A is just diag{1/σt}, a diago-
nal matrix, since (G)ARCH models introduce conditional heteroskedasticity, but
not autocorrelation. The elementary zero functions vt(β, φ) are then defined as
ut(β)/σt(β, φ). From (20), it follows that the regressors corresponding to these
zero functions take the form

R
(1)
ti = − 1

σt(β,φ)
∂ut

∂θi
(β)− ut(β)

∂σt

∂θi
(β, φ) + σt(β, φ)

∂σt

∂θi
(β, φ)

ut(β)
σt(β, φ)

= − 1
σt(β,φ)

∂ut

∂θi
(β), (33)

– 15 –



where θi is any component of either β or φ. For components of φ, the regressor (33)
is zero, since the residuals do not depend on φ. For components of β, (33) becomes
Xt(β)/σt(β, φ).

For the zero functions (v2
t − 1)/

√
2, the regressors are, again from (20),

R
(2)
ti =

√
2

σt(β, φ)
∂σt

∂θi
(β, φ) =

1
σ2

t (β,φ)
√

2
∂σ2

t

∂θi
(β,φ). (34)

A little calculation using (33) and (34) shows that the regressors for a model with
ARCH(1) errors are

R
(1)
tβ =

1
σt

Xt(β) R
(1)
tα = 0 R

(1)
tγ = 0

R
(2)
tβ = −γ

√
2

σ2
t

Xt−1(β)ut−1(β) R
(2)
tα =

1
σ2

t

√
2

R
(2)
tγ =

1
σ2

t

√
2

u2
t−1(β)

The artificial regression defined above should be run over observations 2 to n. In
order to use the information in the first observation, we can form the zero function

v1(α, β, γ) ≡ (1− γ)1/2u1(β)
α1/2

,

using the fact that the unconditional variance of the ARCH(1) process defined
in (32) is α/(1 − γ). The other zero function is, of course, (v2

1 − 1)/
√

2. The
regressors are

R
(1)
1β =

1
σ1

X1(β) R
(1)
1α = 0 R

(1)
1γ = 0

R
(2)
1β = 0 R

(2)
1α = − 1

(1− γ)σ2
1

√
2

R
(2)
1γ =

1
(1− γ)

√
2
,

where σ2
1 ≡ α/(1− γ).

Although it is perfectly in order to use these two artificial observations in order
to take account of the first observation, we do not obtain the ML estimator by
doing so. This is because the unconditional distribution of (G)ARCH errors is
not normal. It is usually possible to obtain expressions for all the moments of
these distributions, to the extent that they exist, as shown in Engle (1982) for
the case of ARCH(1), but there does not seem to exist anywhere in the literature
an expression for the density, without which the loglikelihood contribution for the
first observation cannot be constructed. One might consider using the information
in higher moments, but in many cases these do not exist.

With GARCH models, there is a further complication that we illustrate with the
celebrated GARCH(1,1) model proposed by Bollerslev (1986). The conditional
variance in this model obeys the following recursion:

σ2
t = α + γu2

t−1 + δσ2
t−1.

Since the σ2
t are not observed, even dropping observations is not enough to give

us the information needed to initialise this recursion. The various ad hoc tricks
commonly used to get around this difficulty can all be implemented with our arti-
ficial regression, about which we say no more here, since writing it down involves
complicated and unenlightening expressions.
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7. Concluding Remarks

The approach to estimation based on elementary zero functions is very general;
it is at the heart of the Generalised Method of Moments. In contrast, maximum
likelihood estimation relies on very precise assumptions about the distributions
of the random elements in a model. In this paper, it is shown that, when these
random elements are normally distributed, maximum likelihood and the elemen-
tary zero function approach yield exactly the same estimating equations. In this
case, therefore, the two approaches are not just asymptotically equivalent, but
numerically identical.

This fact has consequences useful for econometric practice. Many software pack-
ages exist that allow practitioners to perform a vast array of estimating procedures.
Many of them require a bare minimum of work on the part of the user, and so are
often treated as black boxes that turn out empirical results on demand. In all too
many cases, it has been shown that even experienced users may be led astray by
such results, since different packages give results that often differ widely with the
same data and ostensibly the same estimation method.

Other packages make more demands on their users, requiring them to formulate
loglikelihood functions and other criterion functions explicitly, sometimes along
with their derivatives with respect to the parameters to be estimated. These
packages allow users more control of what they are doing, and thus help to avoid
meaningless results. The artificial regressions studied in this paper are typically
no harder to set up than a criterion function and its derivatives. In particular,
computer algebra is just as helpful with either approach. Since artificial regressions
are linear regressions, their numerical implementation is much less subject to
numerical instability than most optimisation algorithms. In addition, they can be
used with profit in bootstrapping; see Davidson and MacKinnon (1999). Thus, in
addition to the theoretical insights yielded by the approach based on elementary
zero functions, many practical and numerical advantages also accrue from its use.

Appendix

Proof of Lemma 1

Condition (17) is just the definition of the estimator θ̂, and so is satisfied by
construction.

Since row t of the matrix R(θ) is by definition contained in the information set Ωt,
we can see, by analogy with (5), that, under the DGP µ ∈M,

n1/2(θ̂ − θµ) a= −(
n−1R>(θµ)F (θµ)

)−1
n−1/2R>(θµ)r(θµ), (35)

where element ti of the matrix F (θµ) is (∂rt/∂θi)(θµ). By the definition of the
regressor Rti(θ), it follows that

Eµ

(
Fti(θµ)

∣∣ Ωt

)
= −Rti(θµ),
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and so, by a law of large numbers,

plim
n→∞

1−
n

R>(θµ)F (θµ) = − plim
n→∞

1−
n

R>(θµ)R(θµ). (36)

Given that the elementary zero functions rt(θµ) are uncorrelated and homoskedas-
tic with variance 1, we can apply a central limit theorem to the expression
n−1/2R>(θµ)r(θµ), and conclude that

plim
n→∞

n−1/2R>(θµ)r(θµ) ∼ N
(
0, plim

n→∞
n−1R>(θµ)R(θµ)

)
.

It follows that

plim
n→∞

n1/2(θ̂ − θµ) ∼ N
(
0, plim

n→∞
(n−1R>(θµ)R(θµ))−1

)
,

and so we see that condition (18) is satisfied, since plim θ̂ = θµ.

The OLS estimates from running the artificial regression (16) with variables eval-
uated at a root-n consistent estimate θ́ is

b́ = (Ŕ>Ŕ)−1Ŕ>ŕ,

where Ŕ ≡ R(θ́) and ŕ ≡ r(θ́). Because θ́ is root-n consistent, it follows readily
from this that

n−1R0
>R0 n1/2b́ = n−1/2Ŕ>ŕ + Op(n−1/2) (37)

with R0 ≡ R(θµ). By Taylor expansion, we may write

n−1/2Ŕ>ŕ = n−1/2R0
>r0 + n−1R0

>F0n1/2(θ́ − θµ) + Op(n−1/2),

with r0 ≡ r(θµ) and F0 ≡ F (θµ). Thus

n−1/2Ŕ>ŕ = n−1/2R0
>r0 − n−1R0

>R0 n1/2(θ́ − θµ) + Op(n−1/2). (38)

But, from (35) and (36), we know that

n−1/2R0
>r0 = n−1R0

>R0 n1/2(θ̂ − θµ) + Op(n−1/2). (39)

Assembling (37), (38), and (39) shows that

n−1R0
>R0

(
n1/2b́ + n1/2(θ́ − θµ)− n1/2(θ̂ − θµ)

)
= Op(n−1/2).

Since n−1R0
>R0 = Op(1), the above equation is equivalent to (19).
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Proof of Theorem 2

That the artificial regression (21) corresponds to the model defined by the set of
loglikelihood contributions (9) and to the maximum likelihood estimator of that
model follows immediately from Theorem 1 and Lemma 1.

By the term “efficient score estimator of the information matrix”, we mean the
estimator of which element ij is defined by the equation

Îij =
n∑

t=1

It
ij(θ̂) ≡

n∑
t=1

Eθ

(∂`t

∂θi
(θ)

∂`t

∂θj
(θ)

∣∣∣ Ωt

)∣∣∣∣∣
θ=θ̂

. (40)

Since the regressors R
(1)
ti (θ) and R

(2)
ti (θ) are by definition the negatives of the

optimal instruments, it follows by the work leading to Theorem 1 that

∂`t

∂θi
(θ) = vt(θ)R(1)

ti (θ) +
v2

t (θ)− 1√
2

R
(2)
ti (θ).

Since R
(i)
ti (θ) ∈ Ωt, i = 1, 2, and since the elementary zero functions vt(θ) and

(v2
t (θ)−1)/

√
2 all have variance 1 and are mutually uncorrelated, we can calculate

that
Eθ

(∂`t

∂θi
(θ)

∂`t

∂θj
(θ)

∣∣∣ Ωt

)
= R

(1)
ti (θ)R(1)

tj (θ) + R
2)
ti (θ)R(2)

tj (θ).

Since
n∑

t=1

R
(1)
ti (θ)R(1)

tj (θ) + R
2)
ti (θ)R(2)

tj (θ) =
(
R>(θ)R(θ)

)
ij

,

we see that R>(θ̂)R(θ̂) is equal to the efficient score estimator defined by (40).
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