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1. Introduction

The bootstrap provides a popular way to perform inference that is more re-
liable, in finite samples, than inference based on conventional asymptotic theory.
In certain circumstances, the bootstrap will yield exact tests. Even when it does
not, it will often yield tests that are very close to being exact. If n is the num-
ber of observations, the rejection probability for a bootstrap test should never, in
regular cases, be in error by more than O(n−1), and it will often be in error by
only O(n−3/2) or O(n−2); see Davidson and MacKinnon (1996) for discussion and
references. Thus there is good reason to believe that inferences based on bootstrap
tests will generally be very accurate.

Although modern computer hardware has greatly reduced the cost of imple-
menting the bootstrap, situations frequently arise in which each bootstrap replica-
tion involves nonlinear estimation, and this can often be costly. In this paper, we
propose approximate bootstrap methods that achieve the accuracy of bootstrap
inference without the need for repeated nonlinear estimation.

Most nonlinear estimation procedures involve a sequence of steps. Existing
theoretical results, to be reviewed in the next section, tell us that these steps
converge at rates that depend on the sample size, n. Since the bootstrap is nor-
mally accurate only up to some order described by a negative power of the sample
size, it is enough to achieve the same order of accuracy in the computation of the
bootstrap test statistic as is given by the bootstrap itself. Thus, if there are B
bootstrap replications, it is only necessary to perform one nonlinear estimation,
instead of B +1. The remaining B nonlinear estimations would be replaced either
by mB Newton steps or by mB OLS estimations of artificial regressions, where m
is a small integer. In most cases, one nonlinear estimation plus mB Newton steps
or mB OLS regressions will be less costly than B + 1 nonlinear estimations.

In the next section, we review some results from the theory of nonlinear esti-
mation, which imply that a finite, usually small, number of steps can yield approx-
imations accurate to the same order as the bootstrap itself. Then, in Section 3,
we describe in detail how approximate bootstrap tests may be implemented for all
of the classical testing procedures: Lagrange Multiplier, Likelihood Ratio, C(α),
and Wald. In Sections 4 and 5, we examine the accuracy of these approximate
tests in the context of the tobit model and tests of common factor restrictions,
respectively.

2. Approximate Nonlinear Estimation

Most of the methods used for performing nonlinear estimation in econometrics
are based on Newton’s method, which is sometimes referred to as the Newton-
Raphson method; for a discussion of these methods, see Quandt (1983). Because
of its property of quadratic convergence, Newton’s method is particularly effective
in the neighborhood of the optimum of the criterion function, which may be a
loglikelihood function, a sum of squared residuals, or a more general quadratic
form, as in the case of GMM estimation.

Unfortunately, Newton’s method, in its pure state, requires knowledge of the
Hessian matrix, that is, the matrix of second derivatives of the criterion function,
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and these may be difficult or troublesome to obtain. Consequently, other methods
that use only first derivatives are in common use. These quasi-Newton methods
may be thought of as linearizations of the models being estimated. They employ
various approximations to the Hessian instead of the Hessian itself, and they are
frequently implemented by means of artificial regressions.

Robinson (1988)1 provides a number of results concerning the rates of conver-
gence of Newton’s method and quasi-Newton methods in the stochastic context.
Suppose that we wish to maximize or minimize a random criterion function Qn(θ),
computed using a sample of n observations, with respect to the k−vector of par-
ameters θ. It is assumed that Qn(θ) = Op(1) as n → ∞. Let the vector which
maximizes Qn be denoted θ̂. If we denote the starting point for a Newton step,
that is, one iteration of Newton’s method, by θ, then the step leads to the point

θ́ ≡ θ − (
Hn(θ)

)−1
gn(θ),

where the k−vector gn(θ) denotes the gradient and the k × k matrix Hn(θ)
denotes the Hessian of Qn at θ. Suppose the starting point for Newton’s method,
which we denote by θ(0), is such that θ(0) − θ̂ = Op(n−1/2). Then, if θ(i) is the
result of i iterations of Newton’s method, one of Robinson’s results shows that

(1) θ(i) − θ̂ = Op(n−2i−1
).

This result simply expresses the quadratic convergence of Newton’s method in the
context of random functions. The regularity needed for (1) is the existence of third
partial derivatives of Qn(θ) that are Op(1) in a neighborhood of θ̂.

When a quasi-Newton method is used, the Hessian is generally approximated
with an error that is of order n−1/2 in probability. In this case, under the same
regularity conditions, Robinson shows that, if θ(0) − θ̂ = Op(n−1/2) as before,

(2) θ(i) − θ̂ = Op(n−(i+1)/2).

Thus using a quasi-Newton method means that convergence is no longer quadratic.
For large values of i, the difference between (1) and (2) can be very great. Even
so, (2) implies that one gains an order of n−1/2 at each step of the procedure.

It is quite easy to see how the result (2) arises when estimation is based on
an artificial regression. As above, the criterion function Qn(θ) is Op(1) as n →∞,
and θ is a k−vector. The artificial regression may be written as

(3) r(θ) = R(θ)b + residuals.

Here the regressand, r(θ), is a column vector, and the matrix of regressors, R(θ),
is a matrix with k columns. The length of the vector r(θ) will often be n, but
sometimes it will be an integer multiple of n. “Residuals” is used here as a neutral
term to avoid any implication that (3) is a statistical model.

1 We are grateful to Joel Horowitz for drawing our attention to this paper
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Our discussion generalizes the theory of artificial regressions, which was de-
veloped for models estimated by maximum likelihood in Davidson and MacKinnon
(1990), to the case of M -estimation. We suppose that the ‘true” parameter vector
is θ0. By this it is meant that θ0 maximizes or minimizes plimn→∞Qn(θ). The
artificial variables r(θ) and R(θ) must satisfy the following conditions:
(i) n−1R>(θ)r(θ) = ±gn(θ)
(ii) if θ(0) − θ0 = Op(n−1/2), then n−1R>(θ(0))R(θ(0))±Hn(θ0) = Op(n−1/2).
The choice of sign depends on whether Qn is maximized (+), or minimized (−).

The one-step estimator θ(1) defined by the artificial regression (3) with θ(0)

as starting point is obtained by running (3) with the variables evaluated at θ(0),
obtaining the artificial OLS estimates b(0), and setting θ(1) = θ(0)+b(0). Denoting
R(θ(0)) and r(θ(0)) by R(0) and r(0) respectively, we have

(4) b(0) =
(
n−1R(0)

>R(0)

)−1
n−1R(0)

>r(0),

from which it is clear from (i) and (ii) above that the artificial regression imple-
ments a quasi-Newton step.

Now write H(0) = H(θ(0)) and g(0) = g(θ(0)). Then, since g(θ̂) = 0 by the
first-order conditions for an optimum, a short Taylor expansion gives

g(0) = −(
H(0) + Op(θ(0) − θ̂)

)
(θ(0) − θ̂).

By (i) and (ii) above, whichever sign is used, this can be written as

(5) n−1/2R(0)
>r(0) =

(
n−1R(0)

>R(0) + Op(n−1/2)
)
n1/2(θ̂ − θ(0)).

But (4) can be written as

(6) n−1/2R(0)
>r(0) =

(
n−1R(0)

>R(0)

)
n1/2b(0).

Subtracting (5) from (6), and recalling that n−1R(0)
>R(0) = Op(1), we find that

θ(1) − θ̂ = θ(0) + b(0) − θ̂ = Op

(
n−1/2(θ(0) − θ̂)

)
= Op(n−1).

Thus we see that one step, from θ(0) to θ(1), has led to a gain of order n−1/2.
Repeating the argument with θ(0) replaced by θ(i) at step i shows that every step
yields a gain of order n−1/2. This is a special case of the result (2) that was proved
by Robinson.

For the approximate bootstrap procedures to be considered in the next sec-
tion, we actually need something slightly different from the closeness in probability
to some order of the approximants θ(i) to θ̂. The accuracy of bootstrap probabil-
ities, or P values, is measured by the probability that a statistic, which could be
computed as a function either of θ̂ or of θ(i), is in some specified rejection region.
Thus, what we wish to ensure is that the probabilities computed with θ̂ and the
probabilities computed with θ(i) be close to the desired order.
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This problem is briefly considered by Robinson, in the context of what he
calls “higher-order efficiency comparisons”. In Theorem 7 of Robinson (1988), it
is shown that, if θ(i) − θ̂ = Op(n−(i+1)/2), a sufficient condition for the rejection
probabilities of statistics based on θ(i) and θ̂ to differ only at order n−(i+1)/2 is
that n1/2(θ̂ − θ0) admit a density uniformly bounded for large n, and that

lim
n→∞

ni/2 Pr
(
n(i+1)/2 log n

∥∥θ(i) − θ̂
∥∥ ≥ 1

)
= 0.

This condition can be guaranteed, as Robinson shows, if n(i+1)/2(θ(i) − θ̂) has
uniformly bounded moments of sufficiently high order, but also under other sorts
of conditions. We will not investigate this matter further here. We simply assume
that rejection probabilities differ at the same order as the order in probability of
the difference between the statistics themselves.

3. Approximate Bootstrapping

Consider a parametrized model for which the parameter vector θ can be
partitioned as θ = [θ1

.... θ2], where θ1 is a k1−vector, θ2 is a k2−vector, and
k1 + k2 = k. Suppose, without loss of generality, that the null hypothesis we
wish to test is that θ2 = 0. To test it, a wide variety of tests is available— see,
for instance, Davidson and MacKinnon (1993) and Newey and McFadden (1994).
Here we will consider likelihood ratio (LR) tests, Lagrange multiplier (LM) tests,
C(α) tests, and Wald tests, all of which are available for models estimated by
maximum likelihood, and most of which are available more generally. Most of
these tests have numerous variants, distinguished by the use of different estimators
of the asymptotic covariance matrix, and, perhaps, by different parametrizations
of the model. All of these tests may be bootstrapped in order to improve their
finite-sample properties.

While there are several procedures that may be used for bootstrapping test
statistics, our preferred procedure is to compute a bootstrap P value corresponding
to the observed value of a test statistic. Let this value be τ̂ , and suppose for
simplicity that we want to reject the null when τ̂ is sufficiently large. For the class
of models that we are discussing here, the bootstrap procedure works as follows:

1. Compute the test statistic τ̂ and a vector of parameter estimates θ̃ ≡ [θ̃1
.... 0]

that satisfy the null hypothesis.
2. Using a bootstrap DGP based on the parameter vector θ̃, generate B boot-

strap samples, each of size n. Use each bootstrap sample to compute a boot-
strap test statistic, say τ∗j , for j = 1, . . . , B, in the same way as τ̂ was com-
puted from the real data.

3. Calculate the estimated bootstrap P value p̂∗ as the proportion of bootstrap
samples for which τ∗j exceeds τ̂ . If a formal test at level α is desired, reject
the null hypothesis whenever p̂∗ < α.

At step 2, various different bootstrap DGPs can be used in various contexts. A
parametric bootstrap is usually appropriate if we are using ML estimation, because
then a DGP is completely characterized by a parameter vector, and so we can
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simply draw from the DGP characterized by θ̃. With other estimation methods,
such as least squares or GMM, a nonparametric bootstrap involving resampling
will usually be used, but the bootstrap DGP will generally depend on θ̃ to some
extent.

The bootstrap procedure we have just described is remarkably simple, and it
often works remarkably well; see Davidson and MacKinnon (1996) and Sections 4
and 5 below for evidence on this point. Of course, other procedures are also
perfectly possible and also work well; see, for example, Horowitz (1994).

The easiest theoretical analysis of the bootstrap assumes that B is infinite.
In practice, when B is finite, the performance of the bootstrap will fall short of its
theoretical performance, for two reasons. First, the estimated bootstrap P value
p̂∗ will not equal the true bootstrap P value p∗. Second, there will be some loss
of power. Both of these issues have been dealt with in the literature on Monte
Carlo testing; see Davidson and MacKinnon (1997) for discussion and references.
If B is to be chosen as a fixed number, which is the easiest but not the most
computationally efficient approach, it should be chosen so that α(B + 1) is an
integer for any level α that may be of interest, and so that it is not too small.

The three-step procedure laid out above requires the computation of B boot-
strap test statistics, τ∗j , j = 1, . . . , B. If nonlinear estimation is involved, this may
be costly. In the remainder of this section, we show how computational cost may
be reduced by using approximations to the τ∗j based on a small number of steps
of Newton’s method or a quasi-Newton method. We discuss LM, LR, C(α), and
Wald tests in that order.

Bootstrapping LM tests

For a classical LM test, the criterion function is the loglikelihood function, and
the test statistic is based on the estimates obtained by maximizing it subject to
the restrictions of the null hypothesis, that is, θ2 = 0. However, the test statistic
is expressed in terms of the gradient and Hessian of the loglikelihood of the full
unrestricted model. One form of the statistic is

(7) LM = −g>(θ̃)H−1(θ̃)g(θ̃),

where g(θ̃) and H(θ̃) are, respectively, the gradient and Hessian of the unrestricted
loglikelihood, evaluated at the restricted estimates θ̃. Note that the g and H of
Section 2 would be the quantities in (7) divided by n, since, in order to have a
criterion function that is Op(1) as n →∞, we must divide the loglikelihood by n.
Here and subsequently, we use the more intuitive notation of (7).

Even in the ML context, there are numerous variants of (7) which replace
−H(θ̃) by some other consistent estimator of the information matrix. For in-
stance, if an artificial regression satisfying (i) and (ii) of the preceding section
were used, the test statistic would be

(8) r>(θ̃)R(θ̃)
(
R>(θ̃)R(θ̃)

)−1
R>(θ̃)r(θ̃).

More generally, g can be the gradient of whatever criterion function is used to esti-
mate θ, and H or −H will be some appropriate estimate of the covariance matrix
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of this gradient. The details of the construction of the LM statistic have no bearing
on the approximate bootstrap procedure, although some variants of the statistic
will have better finite-sample properties than others, even after bootstrapping.

Bootstrapping the LM statistic is conceptually straightforward, but in step 2
it involves estimating the model B additional times under the null hypothesis.
We propose to replace the nonlinear estimation by a predetermined, finite, usually
small, number of Newton or quasi-Newton steps, starting from the estimates given
by the real data. The justification of such a scheme is as follows. It has been known
for some time that bootstrap tests will not be exact, on account of the difference
between the bootstrap DGP, say µ̃, and the true unknown DGP, say µ0, that
actually generated the data. A key paper is Beran (1988); see Hall (1992) for
a full treatment and references to earlier work. The rejection probability for the
bootstrap test at any given level α will be distorted by an amount that depends on
the joint distribution of the test statistic and the (random) level-α critical value for
that statistic under the bootstrap DGP µ̃; see Davidson and MacKinnon (1996)
for a full discussion. It is usually possible to determine an integer l such that the
rejection probability for the bootstrap test at nominal level α differs from α by
an amount that is O(n−l/2); typically, l = 3 or l = 4. This being so, the same
order of accuracy will be achieved even if there is an error that is Op(n−l/2) in the
computation of the bootstrap P values.

The “true” value of the parameters for the bootstrap DGP is θ̃ = [θ̃1
.... 0]. If

we denote the fully nonlinear estimates from a bootstrap sample by θ̃∗1 , then, by
construction, we have that θ̃∗1 − θ̃1 = Op(n−1/2). Thus θ̃1 is a suitable starting
point for Newton’s method or a quasi-Newton method applied to the restricted
model. Notice that the gradient and Hessian involve derivatives with respect to
the components of θ1 only. If the exact Hessian is used, then, by the result (1),
the successive estimates θ̃∗1(i), i = 0, 1, 2, . . . , satisfy

(9) θ̃∗1(i) − θ̃∗1 = Op(n−2i−1
).

If an approximate Hessian is used, then, by (2), they instead satisfy

(10) θ̃∗1(i) − θ̃∗1 = Op(n−(i+1)/2).

The successive approximations to the LM statistic are defined by

(11) LM(θ̃∗(i)) ≡ −g>(θ̃∗(i))H
−1(θ̃∗(i))g(θ̃∗(i)),

where the functions g and H are the same as the ones used to compute the actual
test statistic, and where θ̃∗(i) = [θ̃∗1(i)

.... 0]. For instance, if an artificial regression
corresponding to the unrestricted model is used, then it can be seen from (8) that
LM(θ̃∗(i)) is the explained sum of squares, or n times the R2, from this regression;
see Davidson and MacKinnon (1990) for details.

At this point, a little care is necessary. Recall that the statistic (7) is defined
in terms of functions that are not Op(1). We therefore rewrite (11) as

(12)
(
n−1/2g>(θ̃∗(i))

)(−n−1H−1(θ̃∗(i))
)(

n−1/2g(θ̃∗(i))
)
,
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where each factor in parentheses is Op(1). We have

(13)
n−1H(θ̃∗(i)) = n−1H(θ̃) + Op(θ̃∗(i) − θ̃), and

n−1/2g(θ̃∗(i)) = n−1/2g(θ̃) + n1/2Op(θ̃∗(i) − θ̃).

Note that n−1/2g(θ) = Op(1) whenever n1/2(θ − θ̂) = Op(1), where θ̂ maximizes
the unrestricted loglikelihood, so that g(θ̂) = 0. Substituting (13) into (12), we
find that

(14) LM(θ̃∗(i)) = LM(θ̃) + n1/2Op(θ̃∗(i) − θ̃).

This is the key result for LM tests.
For Newton’s method, when (9) applies, we see from (14) that the difference

between LM(θ̃∗(i)) and LM(θ̃) is of order n−(2i−1)/2. For the quasi-Newton case,
when (10) applies, it is of order n−i/2. After just one iteration, when i = 1, the
difference is of order n−1/2 in both cases. Subsequently, the difference diminishes
much more rapidly for Newton’s method than for quasi-Newton methods. In
general, if bootstrap P values are in error at order n−l/2, and we are using Newton’s
method with an exact Hessian, the number of steps needed to achieve at least the
same order of accuracy as the bootstrap, m, should be chosen so that 2m − 1 ≥ l.
Thus, for l = 3, the smallest suitable m is 2, and for l = 4, it is 3. If we are using
a quasi-Newton method, we simply need to choose m so that m ≥ l.

Let us now recapitulate our proposed procedure for bootstrapping an LM test
without doing any nonlinear estimations for the bootstrap samples. The procedure
is a variant of the general procedure discussed above, and steps 1 and 3 need no
further explanation. Step 2 becomes
2a. Draw B bootstrap samples of size n from a bootstrap DGP characterized

by θ̃. Choose the number of Newton steps, m, as a function of the integer l
that characterizes the order of the error of the bootstrap P value. If Newton’s
method is used, m ≥ log2(l + 1); if a quasi-Newton method, m ≥ l.

2b. For each bootstrap sample, say the j th, perform m Newton steps for the
restricted model starting from θ̃∗1(0) = θ̃1 in order to obtain the iterated
estimates θ̃∗1(m).

2c. Compute the bootstrap LM statistic τ∗j (m) = LM(θ̃∗(m)) using (11).

Bootstrapping LR tests

Likelihood Ratio tests are particularly expensive to bootstrap, because two
nonlinear optimizations must normally be performed for each bootstrap sample.
However, both of these can be replaced by a small number of Newton steps, starting
from the restricted estimates θ̃ = [θ̃1

.... 0]. Under the null, this is done exactly
as in step (2b) above for an LM test. Under the alternative, the only difference
is that the gradient and Hessian correspond to the unrestricted model, and thus
involve derivatives with respect to all components of θ. The starting point for
the unrestricted model may well be the same as for the restricted model, but
it is probably preferable to start from the endpoint of the restricted iterations,
θ̃∗(m) = [θ̃∗1(m)

.... 0]. This endpoint contains possibly relevant information about
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the current bootstrap sample, and the difference between it and the unrestricted
bootstrap fully nonlinear estimate θ̂∗ is Op(n−1/2), as required.

In the classical ML context, the criterion function to be maximized may be
taken as twice the loglikelihood function. The LR statistic is then the differ-
ence between the unconstrained maximum with respect to θ and the constrained
maximum with respect to θ1 only, with θ2 = 0. In more general contexts, test
statistics are often available which can be expressed as the difference between the
unconstrained and constrained maxima or minima of a criterion function. A well-
known example is Hansen’s J statistic for overidentifying restrictions; see Hansen
(1982). To avoid confusion with the Op(1) criterion function Qn of Section 2, we
will let `(θ) denote the value of the loglikelihood function; g(θ) and H(θ) will
denote respectively the gradient and the Hessian of `(θ).

For each bootstrap sample, we can compute a bootstrap LR statistic. The
true value of this statistic is 2

(
`(θ̂∗)− `(θ̃∗)

)
. Consider replacing θ̂∗ by an ap-

proximation θ́ such that θ́ − θ̂∗ = Op(n−1/2). Since g(θ̂∗) = 0 by the first-order
conditions for maximizing `(θ), a Taylor expansion gives

`(θ̂∗)− `(θ́) = − 1−
2

(
θ́ − θ̂∗

)>H(θ̄)
(
θ́ − θ̂∗),

where θ̄ is a convex combination of θ́ and θ̂∗. Since H is Op(n), it follows that

(15) `(θ̂∗)− `(θ́) = nOp

(
(θ́ − θ̂∗)2

)
.

The above result is true for both the restricted and unrestricted loglikelihoods,
and is therefore true as well for the LR statistic.

Now recall the results (1) and (2), which give the rate of convergence for
Newton’s method and quasi-Newton methods, respectively. From (1) and (15), we
see that, if Newton’s method is used,

(16) `(θ̂∗)− `(θ̂∗(i)) = n−2i+1.

From (2) and (15), we see that, if a quasi-Newton method is used,

(17) `(θ̂∗)− `(θ̂∗(i)) = n−i.

These results imply that, for both Newton and quasi-Newton methods when l = 3
and l = 4, the minimum number of steps m for computing θ̂∗(m) and θ̃∗(m) needed
to ensure that the error in the LR statistic is at most of order n−l/2 is just 2.

The results (16) and (17) suggest that, for a given number of steps, the
approximation will be better for LR statistics than for LM statistics. The reason
for this, of course, is that the loglikelihood functions, restricted and unrestricted,
are locally flat at their respective maxima, and hence they are less sensitive to slight
errors in the point at which they are evaluated than is the LM statistic, which
depends on the slope of the unrestricted loglikelihood function at the restricted
estimates.
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The result that m = 2 is always sufficient to ensure that the approximation
error for the LR statistic is of no higher order than the size distortion of the
bootstrap test is a striking one. Simulation evidence to be presented in Sections 4
and 5 suggests that it does hold in at least some interesting cases. In contrast,
for quasi-Newton methods, LM tests will often require m = 4. Therefore, when
the approximate bootstrap is used, it may be no more expensive to bootstrap LR
tests than to bootstrap LM tests.

Bootstrapping C(α) tests

It can sometimes be convenient to use C(α) tests when maximum likelihood
estimation is difficult. All that is needed for a C(α) test is a set of root-n consistent
estimates of the parameters of the null hypothesis, which we may denote as θ́ =
[θ́1

.... 0]. These tests were introduced by Neyman (1959); further discussion can be
found in Smith (1987) and Dagenais and Dufour (1991). They were extended to
the GMM context in Davidson and MacKinnon (1993), where it was shown that
they may be computed by artificial regression. Quite generally, a C(α) statistic
can be expressed, in the notation of (7), as

C(α) = −g>(θ́)H−1(θ́)g(θ́) + g1
>(θ́)

(
H11(θ́)

)−1
g1(θ́),

where g1(θ) is the gradient of the criterion function with respect to θ1 only, and
H11(θ) is the corresponding block of the Hessian. As with LM tests, there are
numerous variants of C(α) tests available, depending on how H is estimated.

Bootstrapping C(α) tests clearly requires no Newton steps, since the criterion
function is not optimized. However, it is desirable to take at least one Newton or
quasi-Newton step for the restricted model, since θ́1 is not in general an asymp-
totically efficient estimator of θ1. The one-step estimator θ́1(1) is asymptotically
efficient, and it is therefore preferable to base the bootstrap DGP on it rather than
on θ́1.

As long as the procedure for obtaining the initial root-n consistent estimate
θ́1 is not too computationally demanding, bootstrapping a C(α) test will generally
be less time-consuming than bootstrapping an LM or LR test.

Bootstrapping Wald and Wald-like tests

Wald tests tend to have poor finite-sample properties, in part because they
are not invariant under nonlinear reparametrizations of the restrictions under test;
see, among others, Gregory and Veall (1985, 1987) and Phillips and Park (1988).
This suggests that it may be particularly important to bootstrap them.

Although the Wald test statistic itself is based entirely on the unrestricted
estimates θ̂, estimates that satisfy the null hypothesis must be obtained in order
to generate the bootstrap samples. For this purpose, it is probably best to use the
restricted estimates θ̃. However, since the Wald test is often used precisely because
θ̃ is hard to compute, it is desirable to consider other possibilities. Estimation of
the unrestricted model gives parameter estimates θ̂ ≡ [θ̂1

.... θ̂2], and θ̂1 is a vector
of root-n consistent, but inefficient, estimates of the parameters of the restricted
model. One possibility is thus to proceed as for a C(α) test, using θ̂1 in place of θ́1
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in the procedure discussed above. Thus the bootstrap samples would be generated
using one-step efficient estimates with θ̂1 as starting point.

If we compute a C(α) test based on θ̂1 as the initial root-n consistent estimates
of the restricted model, we obtain a test that may be thought of as a “Wald-like”
test. However, it may be difficult to obtain such root-n consistent estimates when
it is not easy to partition the parameter vector so as to make all the restrictions
zero restrictions. In such cases, it may be easier to bootstrap one of the variants of
the Wald test itself. Whether one uses a C(α) Wald-like test or a true Wald test,
bootstrapping requires us to obtain the unrestricted estimates for each bootstrap
sample, or approximations to them based on Newton’s method.

The number of steps needed for a given degree of approximation to a Wald
statistic can be determined by considering the case in which the restrictions take
the form θ2 = 0. In that case, the Wald statistic can be written as

(18) W (θ̂) = (n1/2θ̂2)>V̂ −1(n1/2θ̂2),

where V̂ is a consistent estimate, based on θ̂, of the asymptotic covariance matrix
of n1/2θ̂2. V̂ is thus Op(1). It may be obtained from any suitable estimate
of the information matrix, including the one provided by an artificial regression
corresponding to the unrestricted model. If (18) is approximated by W (θ́), then,
by the same arguments as those leading to (14), the approximation error is clearly
of order n1/2Op(θ́ − θ̂). Thus the number of Newton or quasi-Newton steps needed
to obtain a given degree of accuracy for (18) is the same as for an LM test.

In the next two sections, we provide some simulation evidence on how well
the procedures proposed in this paper actually perform in finite samples. Sec-
tion 4 deals with the tobit model, and Section 5 deals with tests of common factor
restrictions.

4. Bootstrap Testing in the Tobit Model

The simulations discussed in this section concern tests of slope coefficients in
a tobit model (Tobin, 1958; Amemiya, 1973). The tobit model is an interesting
one to study for several reasons. It is a nonlinear model, which means that boot-
strapping is not cheap, but it has a well-behaved loglikelihood function, so that
bootstrapping is not prohibitively expensive either. The model can be estimated
by Newton’s method and by at least two different quasi-Newton methods, and all
of the classical tests are readily available.

The model we study is

y′t = X1tβ1 + X2tβ2 + ut, ut ∼ N(0, σ2),
yt = max(0, y′t),

where yt is observed but y′t is not, X1t is a 1 × k1 vector of observations on
exogenous regressors, one of which is a constant term, and X2t is a 1× k2 vector
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of observations on other exogenous variables. The loglikelihood function for this
model is

(19)
∑
yt=0

log
(
Φ
(
− 1−σ

(
X1tβ1 +X2tβ2

)))
+

∑
yt>0

log
(

1−σ φ
(

1−σ
(
yt−X1tβ1−X2tβ2

)))
,

where φ(·) and Φ(·) denote the standard normal density and cumulative standard
normal distribution functions, respectively. Since σ has to be estimated, the total
number of parameters is k1 + k2 + 1. The null hypothesis is that β2 = 0.

We consider five different test statistics. The first is the LR statistic, which
is twice the difference between (19) evaluated at (β̂1, β̂2, σ̂) and at (β̃1,0, σ̃). The
second is the efficient score (ES) form of the LM statistic, which uses the true in-
formation matrix evaluated at the restricted estimates. Orme (1995) has recently
proposed an ingenious, but rather complicated, double-length artificial regression
for tobit models; when it is evaluated at the restricted estimates, its explained
sum of squares (ESS) is equal to the ES form of the LM statistic. The third test
statistic is the outer product of the gradient (OPG) form of the LM test, which
may also be computed via an artificial regression. The regressand is a vector of
1s, the tth element of each of the regressors is the derivative with respect to one
of the parameters of the term in (19) that corresponds to observation t, and the
test statistic is the ESS; see Davidson and MacKinnon (1993, Chapter 13). The
fourth test statistic is a Wald test, using minus the numerical Hessian as the co-
variance matrix. Because it is based on the standard parametrization used above,
we call it Wβ . The fifth test statistic, which we call Wγ , is based on an alternative
parametrization in which the parameters are γ ≡ β/σ and δ ≡ 1/σ. This alterna-
tive parametrization was investigated by Olsen (1978), and our program for ML
estimation of tobit models uses it. Computer programs (in Fortran 77) for tobit
estimation and for all of the test statistics are available via the Internet from the
following Web page: http://www.econ.queensu.ca/pub/faculty/mackinnon.

In most of our experiments, each of the exogenous variables was independently
distributed as N(0, 1). We did try other distributions, and the results were not
sensitive to the choice. Since, under the null hypothesis, it is only through the
subspace spanned by X1 and X2 jointly that the exogenous variables in X2 affect
the test statistics, there is no loss of generality in assuming that the two sets of
exogenous variables are uncorrelated with each other. We consider six different
pairs of values of k1 and k2: (2, 2), (2, 5), (2, 8), (5, 5), (5, 8), and (8, 2). For any
value of k1, each DGP is characterized by a constant term βc, a slope coefficient βs,
which is the same for elements 2 through k1 of β1, and a variance σ2. Depending
on the sample size, k1, k2, and the parameter values, it is possible for there to be
so few nonzero values of yt that it is impossible to obtain ML estimates, at least
under the alternative. Samples for which the number of nonzero yt was less than
k1 + k2 + 1 were therefore dropped. We tried to design the experiments so that
this would not happen very often.

The initial experiments were designed to see how well the five tests perform
without bootstrapping and how their performance depends on parameter values.
It turns out that the value of σ is particularly important. Figure 1 plots the
performance of all five tests against σ for the case in which k1 = 5 and k2 = 8,
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with n = 50, βc = 0, and βs = 1. We chose n = 50 for this experiment because it
is the smallest sample size for which we did not have to drop very many samples.
The vertical axis shows the fraction of the time that an asymptotic test at the
nominal .05 level actually leads to rejection. The tests that perform worst are the
OPG form of the LM test and the Wβ test, and the test that performs best is the
ES form of the LM test.

[Figure 1 about here]

Figure 1 deals with only one case. Figures 2 and 3 plot the performance of
the LR test and the ES LM test, respectively, for all six cases. Note the different
scales of the vertical axis. In contrast to the LR test and the other tests, the
ES LM test performs much less well in the case k1 = 8, k2 = 2 than in the case
k1 = 5, k2 = 8. Nevertheless, it is always the test that performs best in these
experiments. Figures 2 and 3 suggest that Monte Carlo experiments in which
either k1 or k2 is always small may yield very misleading results about the finite-
sample performance of asymptotic tests in the tobit and related models.

[Figure 2 about here]

[Figure 3 about here]

We also experimented with changing the constant term, βc, and the slope
coefficient, βs. All of the tests tend to overreject more severely as βc falls and the
number of zero observations consequently increases. Increasing βs is essentially
equivalent to reducing σ and shrinking βc towards zero in such a way that βc/σ
remains constant, and the results were therefore predictable.

Figure 4 shows how the rejection frequencies for all the tests at the nominal
.05 level vary with n, for k1 = 5, k2 = 8, βc = 1, βs = 1, and σ = 1. We used
βc = 1 because we would have had to omit a great many samples for the smaller
values of n if we had used βc = 0. It is clear from the figure that all the tests
approach their asymptotic distributions quite rapidly.

[Figure 4 about here]

The remaining experiments are concerned with the performance of bootstrap
tests. In all cases, we used 399 bootstrap samples. This is the smallest value
that we would recommend in most cases; see Davidson and MacKinnon (1997).
The first question we investigate is whether approximate bootstrap procedures
based on small values of m will actually yield estimated approximate bootstrap P
values p̌∗ that are very close to the estimated bootstrap P values p̂∗, as the theory
suggests. Three different iterative procedures were used: Newton’s method using
the (γ, δ) parametrization, a quasi-Newton method based on the OPG regression,
and one based on the artificial regression of Orme (1995). We performed a number
of experiments, each with 1000 replications, and calculated several measures of
how close p̌∗ was to p̂∗. Results for some of the experiments are reported in
Table 1; results for the other experiments were similar. The table shows the
average absolute difference between p̌∗ and p̂∗. We also calculated the correlation
between p̌∗ and p̂∗ and the maximum absolute difference between them; all three
measures always gave very similar results. When the average absolute difference is
less than about 0.001, the maximum absolute difference is usually less than 0.01,
and the squared correlation is usually greater than 0.9999. Thus we believe that
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most investigators would regard an average absolute difference of less than 0.001
as negligibly small.

[Table 1 about here]

Several results are evident from Table 1. First of all, the OPG regression
works dreadfully for the LR test. The approximate bootstrap P values are often
far from the true ones, and they are sometimes farther away after two steps than
after one step. The OPG regression also works poorly for the other tests, of course.
The reason is simply that the OPG regression is apparently a very poor way to
estimate tobit models. In contrast, the Orme regression works quite well, and,
as the theory of Section 2 predicts, Newton’s method works even better. As the
theory of Section 3 predicts, m steps of Newton’s method always perform better
for the LR test than for the LM and Wald tests, and m = 2 appears to be adequate
in all cases for the LR test. Perhaps surprisingly, m = 2 is often adequate for the
other two tests as well.

Unfortunately, although it works very well, the approximate bootstrap pro-
cedure is not quite as useful in this case as these results may suggest. The reason
is that Newton’s method converges very rapidly, just as (1) says it should. For
the middle case in Table 1, the average numbers of steps needed to obtain the
restricted and unrestricted estimates when n = 50 are only 3.87 and 4.06, respec-
tively. These numbers decline to 3.67 and 3.81 for n = 100 and to 3.42 and 3.40 for
n = 200. The restricted estimates are used as starting values for the unrestricted
estimation, and this undoubtedly makes the number of steps for the latter lower
than it would otherwise be. Thus, although using the approximate bootstrap with
m = 2 does save a considerable amount of CPU time, the savings are not really
dramatic.

[Figure 5 about here]

The technique of this paper would not be of interest if bootstrap tests did
not work well. For the tobit model, they seem to work very well indeed. Figure 5
shows P value discrepancy plots for all five bootstrap tests for six of the roughly
twenty experiments that we ran. The level of the test is plotted on the horizontal
axis, and the difference between the actual rejection frequency and the level is
plotted on the vertical axis. For a test that performed perfectly, the plot would
be a horizontal line at zero, plus a little experimental noise; see Davidson and
MacKinnon (1998). Because all the tests performed so well, it was necessary to
use a great many replications in order to distinguish between genuine discrepancies
and experimental noise. All of the experiments therefore used 100,000 replications,
each with 399 bootstrap samples.

It is clear from Figure 5 that the bootstrap tests work well, but not quite
perfectly. For the case of k1 = 2 and k2 = 8, in panels A and B, all the tests work
very well, although their performance does deteriorate a bit when σ is increased
from 0.1 to 5.0. For the case of k1 = 5 and k2 = 8, in the remaining four panels,
the deterioration as σ increases is much more marked. All the tests underreject
noticeably when σ = 5.0, while the OPG LM test overrejects slightly when σ = 0.1.
The worst case is shown in panel E. In contrast, panel F, which has the same
parameter values but with n = 100, shows that all the tests except the OPG LM
test work essentially perfectly, and even the OPG LM test improves dramatically.
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We also ran experiments for several other cases. In the (2, 5) case, bootstrap tests
always worked better than in the (2, 8) case of panels A and B. In the (5, 5) and
(8, 2) cases, they worked less well than in the (2, 8) case, but generally better
than in the (5, 8) case of panels C through F. Based on the results in Table 1,
we computed true bootstrap P values for experiments with n = 50 but used the
approximate bootstrap with m = 2 for experiments with n = 100. There is nothing
in panel F to suggest that this harmed the performance of the bootstrap in any
way.

Although some size distortions are evident in Figure 5, it is important to
remember that all the bootstrap tests always perform dramatically better than the
corresponding asymptotic tests. For example, at the .05 level, the worst bootstrap
test (OPG LM) rejects 3.91% of the time for the (5, 8) case shown in panel E of
Figure 5, while the corresponding asymptotic test rejects 25.75% of the time. Even
the best asymptotic test, the ES LM test, rejects more than 12.5% of the time
at the .05 level in some of our experiments (see Figure 3). In contrast, the worst
performance we observed for the bootstrap version of this test was a rejection rate
of 4.77% in the case k1 = 8, k2 = 2, σ = 5.0.

5. Tests of Common Factor Restrictions

In order to provide some evidence on the performance of approximate boot-
strap tests in a time-series context, we study their application to tests of common
factor restrictions in linear regression models. Consider the model

(20) yt = Xtβ + ut, ut =
p∑

j=1

ρjut−j + εt, εt ∼ IID(0, σ2),

in which yt is an observation on a dependent variable, Xt is a 1 × k vector of
observations on exogenous regressors, β is a k−vector of parameters, and ut is an
error term that follows an AR(p) process with coefficients ρj and innovations εt.
If we drop the first p observations, (20) can be rewritten as

(21) yt = Xtβ +
p∑

j=1

ρjyt−j −
p∑

j=1

ρjXt−jβ + εt.

It is easy to see that (21) is a special case of the linear regression model

(22) yt = Xtβ +
p∑

j=1

ρjyt−j +
p∑

j=1

Xt−jγj + εt,

where the γj are k−vectors of parameters. We can obtain (21) from (22) by
imposing the common factor restrictions

(23) γj = −ρjβ, j = 1, . . . , p.

There appear to be pk restrictions. However, when Xt includes a constant term,
trend terms, seasonal dummy variables, a lagged dependent variable, or more
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than one lag of the same independent variable, the number of restrictions will be
less than pk, because the unrestricted model (22) will not be identified without
further restrictions. For an elementary exposition, and references, see Davidson
and MacKinnon (1993, Section 10.9).

It is important to test the common factor restrictions (23), because many
types of misspecification can give rise to the appearance of serial correlation. A
natural way to do so is to estimate (21) by nonlinear least squares and (22) by
ordinary least squares, in order to obtain the restricted and unrestricted sums
of squared residuals, respectively, and then compute an ordinary F test. How-
ever, this F test will not be exact in finite samples, even if the εt are normally
distributed, because (21) is nonlinear and because both it and (22) are dynamic
models. It is therefore natural to bootstrap the F test. We do this by using the
parametric bootstrap. The bootstrap samples are generated from (20), under the
assumption that the errors are normally distributed, using the estimated para-
meters from NLS estimation of (21). The condition that the ut be stationary is
imposed when generating the bootstrap data. If the estimated ρj do not satisfy
the stationarity conditions (a very rare event in our experiments), they are shrunk
proportionately until they do satisfy them.

Instead of an F test, it would be possible to use an LR test based on the
same two regressions or an LM test based on a Gauss-Newton regression for the
unrestricted model evaluated at the restricted estimates. In the bootstrap context,
there is no point considering either of these tests, however. It is well known
that LR and F tests for slope coefficients in regression models are monotonically
related; see Davidson and MacKinnon (1993, Section 13.4). In this case, because
the Gauss-Newton regression for the LM test must have the same sum of squared
residuals as regression (22), the LM test is also monotonically related to the F
test. Therefore, even though these three tests may have very different finite-sample
properties, bootstrapping them must yield identical bootstrap P values.

For a common factor test, only the restricted model (22) requires nonlinear
estimation. We estimate it using the Gauss-Newton regression, a quasi-Newton
method that is easy to implement and seems to work well for this type of model.
When the iterative procedure is terminated after only a few steps, the restricted
sum of squared residuals will be somewhat too large. As a consequence, the boot-
strap test statistic τ∗j will be too large, so that too many of the τ∗j will exceed
τ̂ , and the estimated bootstrap P value will therefore tend to be too large. This
means that an approximate bootstrap test will reject the null hypothesis less fre-
quently than a genuine bootstrap test. Thus we can see how well the approximate
bootstrap procedure works simply by comparing the rejection frequencies of the
approximate and genuine bootstrap tests.

For our Monte Carlo experiments, Xt consisted of a constant term and 3
other regressors, which were generated from independent AR(1) processes with
parameter 0.5. Preliminary work showed that the F test always worked quite
well, but by no means perfectly, that the LR test rejected more often than the F
test, frequently much more often, and that the LM test rejected less often than
the F test, frequently much less often. The F test overrejected in some cases
and underrejected in others. For the bootstrapping experiments, we selected two
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cases, one for which the F test overrejected and one for which it underrejected. In
case 1, p = 1, ρ1 = 0.9, and there were 3 restrictions. In case 2, p = 2, ρ1 = −0.3,
ρ2 = 0.1, and there were 6 restrictions. We did 11 experiments for each case, with
sample sizes 20, 25, 30, . . ., 70. Each of the experiments involved 399 bootstrap
samples and 100,000 replications. These experiments required a great deal of
CPU time, but the large number of replications was essential to obtain reasonably
accurate results.

[Figure 6 about here]

[Figure 7 about here]

Figures 6 and 7 show rejection frequencies as a function of the sample size for
cases 1 and 2, respectively. In Figure 6, we see that the F test always overrejects.
In contrast, the bootstrap test overrejects slightly for the smallest sample sizes,
but it seems to perform very well (allowing for experimental error) for n ≥ 40. The
approximate bootstrap test with m = 2 always underrejects noticeably, although
its performance is quite acceptable for n ≥ 50. The approximate bootstrap test
with m = 3 underrejects much less severely, and it is essentially indistinguishable
from the genuine bootstrap test for n ≥ 35.

In Figure 7, we see that the F test always underrejects, as does the bootstrap
test for small values of n. The approximate bootstrap tests never underreject as
severely as the F test, however, and the one that uses m = 3 performs very well
for n ≥ 40. Although the approximate bootstrap test with m = 2 does underreject
noticeably for all sample sizes, its performance is quite acceptable for n ≥ 50.

[Figure 8 about here]

Because the estimation method used here is a quasi-Newton method, the gains
from using the approximate bootstrap are greater than the ones observed for the
tobit model. Figure 8 shows the numbers of steps needed to obtain restricted
parameter estimates that are accurate to 4 or 5 digits, as a function of the sample
size, for cases 1 and 2. As can be seen from the figure, the computational savings
from using a small, fixed number of steps are substantial, especially in case 2.

6. Final remarks

We have shown that the cost of bootstrap testing for nonlinear models can be
reduced by using a small number of steps of an iterative procedure based either on
Newton’s method or on a quasi-Newton method that uses an artificial regression,
when computing the bootstrap test statistics. The theory implies that just 2 steps
of the iterative procedure should be sufficient for likelihood ratio tests, while 2,
3, or 4 steps will be needed for Lagrange multiplier and Wald tests. For a given
number of steps greater than 1, the approximate bootstrap P values that result
should be more accurate when Newton’s method is used than when a quasi-Newton
method is used.

Of course, since these results are based on asymptotic theory, they may or
may not provide a good guide in any actual case. It is always possible that the
sample size may be too small for a given iterative procedure to work sufficiently
well for the theory to apply. However, it is much more likely that such a procedure
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will work well in the bootstrap context than in the context of real data, because
the bootstrap data are generated from the model that is being estimated, and
because the starting values, which are the parameters used to generate the data,
are guaranteed to be distant from the bootstrap estimates by an amount that is
Op(n−1/2) in the sample size n. Thus we believe that the techniques proposed in
this paper will often be useful in practice. They appear to work well for the two
examples that we studied, namely, tests of slope coefficients in tobit models and
tests of common factor restrictions.
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Table 1

Average absolute differences between p̌∗ and p̂∗

n m LR (OPG) LR (Orme) LR (N) LM (N) Wγ (N)
k1 = 5, k2 = 8, σ = 0.1
50 1 0.1678 0.0617 0.0023 0.0149 0.0252
50 2 0.2735 0.0011 0.0000 0.0004 0.0004

100 1 0.1527 0.0215 0.0008 0.0055 0.0060
100 2 0.1811 0.0001 0.0000 0.0000 0.0000
200 1 0.0866 0.0098 0.0003 0.0023 0.0022
200 2 0.0546 0.0000 0.0000 0.0000 0.0000
k1 = 5, k2 = 8, σ = 1.0
50 1 0.1699 0.0512 0.0044 0.0159 0.0487
50 2 0.2744 0.0014 0.0000 0.0005 0.0014

100 1 0.1317 0.0182 0.0013 0.0058 0.0163
100 2 0.1201 0.0002 0.0000 0.0001 0.0001
200 1 0.0580 0.0082 0.0005 0.0027 0.0068
200 2 0.0368 0.0001 0.0000 0.0000 0.0000
k1 = 5, k2 = 8, σ = 5.0
50 1 0.1606 0.0403 0.0047 0.0125 0.0604
50 2 0.2365 0.0015 0.0001 0.0005 0.0023

100 1 0.0846 0.0146 0.0013 0.0045 0.0219
100 2 0.0575 0.0002 0.0000 0.0001 0.0002
200 1 0.0272 0.0064 0.0006 0.0019 0.0093
200 2 0.0164 0.0001 0.0000 0.0000 0.0000

Note: In columns 3 through 7, the heading indicates which test is being boot-
strapped and, in parentheses, the method used for iteration: “OPG” means the
OPG regression, “Orme” means the artificial regression proposed by Orme (1995),
and “N” means Newton’s Method.
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Figure 1. Rejection frequencies for all tests at .05 level, n = 50, k1 = 5, k2 = 8
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Figure 2. Rejection frequencies for LR tests at .05 level, n = 50

– 21 –



0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................

.................... k1 = 2, k2 = 2


..........................................................................................................................................................................................

................................................................................................................................................................. k1 = 2, k2 = 5

....
.........

.....................................................................................
........

........... k1 = 2, k2 = 8



..........................................................k1 = 5, k2 = 5



............................................................ k1 = 5, k2 = 8



................................................................................ k1 = 8, k2 = 2

σ

Figure 3. Rejection frequencies for ES LM tests at .05 level, n = 50
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Figure 4. Rejections at .05 level as a function of sample size
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Figure 5. P value discrepancy plots for bootstrap tests
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Figure 6. Rejection frequencies for common factor tests at .05 level, case 1
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Figure 7. Rejection frequencies for common factor tests at .05 level, case 2
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Figure 8. Number of steps for restricted estimation
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