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Abstract

A major contention in this paper is that scientific models can be viewed as virtual real-
ities, implemented, or rendered, by mathematical equations or by computer simulations.
Their purpose is to help us understand the external reality that they model. In economics,
particularly in econometrics, models make use of random elements, so as to provide quan-
titatively for phenomena that we cannot or do not wish to model explicitly. By varying the
realisations of the random elements in a simulation, it is possible to study counterfactual
outcomes, which are necessary for any discussion of causality.

The bootstrap is virtual reality within an outer reality. The principle of the bootstrap is
that, if its virtual reality mimics as closely as possible the reality that contains it, it can be
used to study aspects of that outer reality. The idea of bootstrap iteration is explored, and
a discrete model discussed which allows investigators to perform iteration to any desired
level.
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1 Introduction

The use of models, explicit or implicit, is universal in scientific disciplines. It is by studying
models that science helps us to understand the world, or, if we are more ambitious, the
universe. Scientific theories are embodied in models, and the structure of theoretical
models is such that they yield explanations of that aspect of the world or universe that
they model. In this paper, I develop the idea that models, of all sorts, can be viewed as
virtual realities that mimic, as best they can, those properties of the external reality of
the world that are the domain of the theory.

Explanation usually takes the form of laying out the causal relations among observed
events. I discuss the nature of causality, distinguishing necessary and sufficient causality,
and pointing out that, in econometrics, it is only sufficient causality that is a useful concept.
It is not possible to give meaning to the idea that something causes something else without
being able to consider what might have happened if things were different, that is, by
considering counterfactual scenarios. The role of a model in discussions of causality is to
define precisely what these counterfactual scenarios are in any particular context, and to
delimit the extent to which they may diverge from observed reality.

My major research preoccupation, now and for the past nearly twenty years, is the boot-
strap, and its applications to econometrics. The bootstrap can be viewed as virtual reality.
As with models more generally, its purpose is to mimic an enclosing reality, which may be
either another virtual reality or external reality itself. For the purposes of statistics, the
virtual reality of the bootstrap can be thought of as an estimate of the enclosing reality,
and used to obtain estimates of interesting properties of it.

Since virtual realities can exist within other virtual realities, one can conceive of boot-
strapping the bootstrap, that is, mimicking what the bootstrap does in mimicking its
containing reality. Although it is a known fact that thinking about this sort of thing can
make one’s head spin, it is quite possible to define formally what is meant by bootstrap
iteration, as I do in this paper. I believe that this concept is potentially enormously useful
in econometrics, and in statistics more generally.

In the next section, I develop the idea of models as virtual reality, with particular discussion
of economic models. Section 3 explores how models interact with notions of causality, and
discusses how counterfactual situations can be defined and used in econometric analyses.
Section 4 provides a short discussion of parallel computing, and points out analogies with
the parallel universes that are postulated in some versions of modern quantum theory.
Then, section 5, I discuss the bootstrap, beginning with a formal statement of the bootstrap
principle. The so-called Golden Rules of bootstrapping, for the purposes of statistical
inference, are then enunciated, and this leads to the definition of bootstrap iteration. Some
recent work of mine is outlined in section 6. This work exploits the fact, mentioned in
section 2, that digital computers treat everything as discrete, by making use of a discrete,
and finite, setup in which it is possible to study bootstrap iteration without running into
the insuperable computational difficulties encountered in previous work on the topic.



2 Scientific Models as Virtual Reality

The capacities of modern computers have made virtual reality something that we can
experience in new ways, enabled by new technology. We hear of flight simulators, and the
younger generation seems to spend a lot of time in the virtual reality of computer games.
But people have been inventing virtual realities for as long as there have been scientists.

In most scientific disciplines, models play an essential role. Scientific models are often
mathematical, but they need not be so. A mathematical model does, however, make
clear the sense in which a model is a sort of virtual reality. Mathematics is nothing if
not an abstract discipline; so much so that some have claimed that mathematics, pure
mathematics anyway, has no meaning or substantive content. What is true, though, is
that we can give mathematical constructions interpretations that imply much substantive
content. This is just as true in economics as it is in physics.

Why is this? The aim of science is not only to acquire knowledge of the world, although
the etymology of the word “science” — from the Latin scire, to know — implies knowledge
only, but to understand the world. Science provides such understanding by explaining our
experiences. Science advances when it provides better explanations. What constitutes an
explanation? Well, a theory. That’s just terminology, and so the question has merely been
reformulated as: What constitutes a theory?

A theory is embodied in a model, and the model constitutes a virtual reality. But not all
models count as theories, as I will explain later. However, we can conclude at present that
virtual realities can give us understanding of the world, through the explanations that they
may embody. Of course, some models mimic external reality, as we observe it, better than
others, and so they provide better explanations. Scientific controversies are about which
explanations are better.

What is there about a theory that provides an explanation? Think, if you will, of Keynes’s
celebrated General Theory. The theory implies a model of the macroeconomy, the macro-
economy in virtual reality, and within this model, there are relationships among the macro-
economic variables — relations that can be expressed mathematically, and are justified by
the arguments that Keynes makes, showing that these relations mimic what we observe of
the macroeconomy. When we observe that interest rates fall, the Keynesian model explains
the economic mechanisms that led to this fall.

Not every economist is convinced by Keynesian explanations! The opponents of Keynes’s
model, or his view of the world, if we are to pay any attention to them, must construct
rival virtual realities, and argue that the relations that these entail better describe external
reality than the Keynesian ones.

The fact that virtual reality is possible is an important fact about the fabric of reality. It
is the basis not only of computation, but of human imagination and external experience,
science and mathematics, art and fiction.

David Deutsch, The Fabric of Reality

The heart of a virtual-reality generator is its computer.
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I don’t think Keynes ever had anything to do with a digital computer, although it seems
likely that, on account of his friendship with Alan Turing, he was acquainted with analogue
computers. If I am wrong, since Keynes died in 1946, it would have had to be a very early
sort of computer, nothing at all like what we mean by the word nowadays. As an aside,
while the Manhattan project was being pursued at Los Alamos during World War 11, a
“computer” was a person, not a machine, as indeed was a “typewriter” * As another aside,
when Claude Shannon, the founder of modern information theory, was asked whether
machines could think, his answer was yes, because, he said, “We are machines and we
think, don’t we?” (Quoted in Moses (2005).)

Deutsch is making a different point about virtual reality, namely the physical possibility of
rendering it, and so I won’t go on with his idea of it. Mathematics can constitute virtual
reality as well as computers can. But, as our computers have become more powerful, so our
models depend more and more on computer implementations. There are deep philosophical
questions concerning whether we, as humans, can really understand something produced
by computation rather than logical and mathematical reasoning, especially if one looks
forward to what quantum computers may one day be able to do, and can do, in principle,
according to the physical theories we have today.

But one thing we can easily say about models implemented on the computer is that every-
thing must be digital, and so also discrete. That this is no real problem for practical
things is evident from the extent we use digital sound recording, digital cameras and so
on, and especially digital typography, one of the greatest boons for anyone writing books
or papers, like this one. I call it a “paper”, although it need never be printed on paper
at all. What exists in the real world is an implementation in virtual reality of a hardcopy
paper. Similarly, we all speak of the “slides” for a presentation, although they are just as
virtual.

There is in fact no consensus at the present time among theoretical physicists whether
space-time is continuous, as I think it’s safe to say is assumed by most current physical
models, or rather discrete - quantised, like everything else in quantum mechanics. I take
from this that there is no harm in letting our virtual realities be discrete — whether or not
they are digital — and, as I hope to show later on, there may be considerable benefits.

Models in Economics

Just as in physics, many economic models assume that space and time are continuous,
although in econometrics, for obvious reasons, time, at least, is usually treated as a discrete
variable. Unlike many physical models however, econometric models invariably incorporate
random elements.

There is a considerable philosophical difficulty that arises when we wish to impart any sub-
stantive meaning to the mathematics of probability and random variables, if we also wish
to adhere to a deterministic world view. This is so because, in conventional interpretations
of probability, events that have occurred, are occurring, or will (certainly) occur have a
probability of one, and events that never occur have a probability of zero. If, as follows

* T am indebted to Samuel Hollander for the information about the typewriter.
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from a deterministic view, any event at all either does occur or does not, the mathematics
of probability becomes trivial.

But we use probabilistic notions all the time, and not trivial ones either. What in the
external world is it that we want to mimic by using randomness? We can all agree that
many things in our lives appear to us to be random, but there are many philosophers who,
while granting this appearance of randomness, still think that, at some fundamental level,
the world is deterministic. This leads to a somewhat deeper question. Why are there such
seemingly random events? To that question, I think the best answer is that we model such
events as realisations of random variables because we do not and cannot know everything.
Even more to the point, we cannot explain everything. Whenever we cannot, or do not
wish to, explain events which have an impact on the main objects of interest in our models,
we model them as realisations of random variables. That at least is my view of what we
do as econometricians, although I suspect that many other econometricians would either
disagree or else express things quite differently.

It is not enough to wave our hands and say that we use random elements in our models.
We need more than that if we want to consider a model as a virtual reality, probably one
to be rendered by the computer. I think the best way to formulate this is to define a model
as a set of data-generating processes, or DGPs, each of which constitutes a unique virtual
reality. I like to go further, and specify that a DGP is something that can be simulated on
the computer, or that provides a unique recipe for simulation. In this way, I am tying the
virtual realities of economic models more closely to the computer, just as Deutsch would
have it.

What has been missing and now must be introduced is the distribution of the random ele-
ments. Computers have random-number generators, or RNGs, and what they generate are
sequences of independent realisations from the uniform distribution on the interval [0, 1].
(Or nearly so — I'm not going to talk about that; see Knuth (1997), Volume 2, Chapter 3,
for an authoritative discussion.) These random numbers can be transformed into realisa-
tions from other distributions we may want to specify; see Devroye (1986). Thus we can
indeed incorporate any desired form of randomness that we can specify into the DGPs of
a model.

Another feature of economic models is that they involve parameters. A model normally
does not specify the numerical values of these parameters; indeed a purely parametric
model is a set rather than a singleton because the DGPs that it contains may differ in the
values of their parameters. Models that are not purely parametric allow the DGPs that
they contain to differ also in the stochastic specification, that is, the distribution of the
random elements.



3 Causal Explanations

Suppose that we have a model of an economic phenomenon that we wish to study. Suppose,
too, that it seems to correspond well to what we observe in external reality. Does that
mean that we have explanations, complete or partial, of what we are studying? Not
necessarily. Some models are purely descriptive. A statistical model, for instance, might
specify the probabilistic properties of a set of variables, and nothing more. But that may
be enough for us to do forecasting, even if our forecasts are not based on any profound
understanding. Half a century ago, most physicists thought of quantum mechanics that
way, as a mathematical recipe that could be used to predict experimental results. The
“interpretations” of quantum mechanics that were then current were very counter-intuitive,
and today physicists still argue not only about what interpretation is to be preferred, but
about whether any interpretation meaningful to the human brain is possible.

However, the positivist approach that has held sway in physics for so long is finally giving
way to a thirst for explanations. Perhaps theoretical physics does give better agreement
with experimental data than any other discipline, but, some physicists are now asking,
does it constitute a true theory? A theory must explain, by proposing a mechanism, or in
other words a causal chain.

What is a cause?

This subsection draws heavily on the insights in Chapter 3 of Dennett (2003). Consider
two events, A and B. An intuitive definition of the proposition that A causes B is:

(i) A and B are real, or true;
(ii) If A is not real or true, then neither is B; and
(iii) A precedes B in time.
This definition raises a number of issues. What do we mean by an “event”? There are
several admissible answers: an action, a fact of nature, among others. A fact is true or

not, and action is performed (it is real) or not. Our tentative definition is general enough
to allow for various different possibilities.

In order to steer clear of some trivial cases, we want to suppose that the events A and B are
logically independent. Thus we don’t want to say that the conclusion of a mathematical
theorem is caused by the premisses of the theorem.

It is important to distinguish between causal necessity and causal sufficiency. Necessity
means that:

not A (written as =A) implies —B.

In words, without A, there can be no B. Logically, the condition is equivalent to the condi-
tion that B implies A; that is, A is a necessary condition for B. This is our condition (ii).

Sufficiency means that:
A implies B, or =B implies —A.

In words, every time that A holds, unavoidably B holds as well; that is, A is a sufficient
condition for B. Sufficiency is logically quite distinct from necessity. Necessity leaves open
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the possibility that A holds without B. Sufficiency leaves open the possibility that B holds
without A.

It is easy enough to see how we might study these two types of causality when the events
A and B are repeated, as with coin tosses or the roulette wheel, where we don’t a priori
expect to find any causality at all, or when an experiment is undertaken in which both A
and —A can occur, and possibly also B and —B.

But if A and B are unique, not repeated, events, what sense can we make of the assertion
that A caused B? I suppose here that condition (i) is satisfied, so that A and B both
occurred. In order to make any sense of the statement about causality, we have to admit
to our discussion imaginary worlds or even universes. We call such worlds or universes
counterfactual. Without considering them, it is impossible to know what might have
occurred if A did not, or if B did not occur.

But this remark gives rise to as many problems as answers. What is the set of universes
that these counterfactual universes inhabit? How can we delimit this set? Let’s denote
the set by X. Then we have a number of reasonable choices:

(a) X is the set of logically possible universes, that is, all universes that are not logically
self-contradictory;

(b) X is the set of universes compatible with the laws of physics, as we know them;

(c) X is the set of logically and physically admissible universes that are sufficiently similar
or close to the real world.

The last choice is no doubt the best, but, in order to implement it, what topology can we
use to define a neighbourhood of the real world?

Causality in econometrics

In all scientific disciplines, progress comes from the result of an experiment, or an ob-
servation, that leads us to reject a hypothesis. It is therefore important to be able to
demonstrate non-causality, that is, the absence of any relation of cause and effect between
two events, or types of events.

In econometrics, most of the time we deal with continuous variables, which means that the
event B (the effect) must be replaced by a quantitative measure of one or more variables.
Similarly for the cause, A. This makes it simpler to define what we mean by non-causality.
We say that a variable X does not cause another variable Y if the earlier values of X have
no influence on the later values of Y. This sort of causality is called Granger causality,
having been introduced by Granger (1969). A similar related approach is due to Sims
(1972).

The random elements, shocks, disturbances, in an econometric model allow us to intro-
duce the required neighbourhood of circumstances (worlds, universes) that surround the
observed trajectories of X and Y. We no longer need to invent imaginary trajectories that
might have existed in the real world. It is enough to vary the realisations of the random
elements in order to create, within a virtual reality, all the relevant circumstances needed
to reject causal sufficiency.
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Why not causal necessity? We said that A is a necessary cause of B if B implies A. In
propositional logic,
B=A & AV B,

of which the negation is
-(AV -B) & -ANB.

Causal necessity is rejected if B occurs in the absence of A. If we translate this into econo-
metric terminology, it would mean that the variable Y (associated with the event B) varies
without any variation of X (associated with A). But normally Y has several determinants,
which implies that Y can perfectly well vary with no change in the value of X. This is
enough to reject causal necessity.

This seems too easy. In economic theory, we often say ceteris paribus, other things being
equal, toutes choses gales par ailleurs. In virtual reality, we can arrange things so that all
the other variables, and also the realisations of the random elements, do not vary. This is
a way to restrict the set of circumstances we consider for the purpose of establishing the
existence or the non-existence of a causal link. However, if nothing but the two variables
X and Y can move, then there is a deterministic functional relation between the two
variables. In that case, we would never be able to reject causal necessity. Conclusion:
causal necessity is not a useful concept in econometrics.

Causal sufficiency is the proposition that A implies B. Propositional logic tells us that the
negation of this proposition is =B A A. Translating this, we see that this means that X
varies without producing the effect of a variation of Y. Once again, then, we can reject
causal sufficiency if, ceteris paribus, Y takes on the same value whatever the value of X.
This would mean that the deterministic relation between the two variables introduced by
the ceteris paribus assumption admits one and only one value for Y.

This has finally led us to a testable proposition. The null hypothesis specifies a no doubt
complicated relation among the full set of variables considered relevant for the model,
along with a set of random elements. This specification has the property that, for any
configuration of the variables other than X and Y, and for any realisation of the random
elements, the value of Y is uniquely determined, whatever the value of X. The alternative
hypothesis allows the value of X to have an influence on that of Y.

In econometrics, causality is most frequently studied in the context of VAR models, where
“VAR” stands for “vector autoregression”. In a model of this type, the current values of a
set of endogenous variables are determined by the lagged values of the same set of variables
and by the realisations of a set of random elements. In the current state of the art, one
almost always postulates a linear relation among the variables. Here is an illustrative
example that makes use of the household consumption function.

ct = a1+ Brici—1 + Biayi—1 + w1,
Yr = ag + Parci—1 + Boayi—1 + Usa.

The two variables are ¢, household consumption, or, more likely, the logarithm of household
consumption, and y, disposable income of households, or its log. This is a macroeconomic
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relation. The variables ¢ and y are aggregate variables, and they represent flows. The
time index t refers to a period of some given duration, typically a year, a quarter, or a
month. The random elements u;; and uss are realisations of a bivariate distribution with
zero expectation. We may wish to suppose that the pair (u;1,us2) is independent of all
other pairs (us1,us2), with s # t. The quantities denoted by «;, f5i;, 7,5 = 1,2, are the
model parameters, which are treated as deterministic constants.

If the parameter values are known, along with the bivariate distribution of the random
elements, we can undertake a stochastic simulation — virtual reality — if we have the initial
condition (e1,y1). This amounts to specifying a DGP, a unique recipe for simulation, and
that is enough for us to be able to study all the statistical properties of the variables that
the DGP can generate.

According to elementary macroeconomic theory, disposable income causes consumption.
Normally, except for some sophisticated models, we don’t imagine that consumption causes
income. This hypothesis corresponds formally to the hypothesis that $2; = 0, and we have
several ways in which we could test this hypothesis. We would refer to this hypothesis as
that of Granger non-causality.

Although the concept of Granger causality and its implementation by means of VAR
models allows us to formulate hypotheses of non-causality, and possibly to reject them,
it does not, or not always, satisfy our desire for understanding and explaining economic
mechanisms by means of causal chains. For that, it is necessary to base the models used
for estimation and inference on economic theory. Granger’s approach has come in for very
little criticism on this ground however, because Granger always maintained that the goal
of his methodology is to help economic forecasting. To the extent that this goal is attained,
the methodology must be justifiable on some level.

But econometricians have always had a preference for structural models, in which the
relation between the formal model and the underlying economic theory is clear. This pref-
erence led to the seminal work of the Cowles Commission. Historically, this work led to
models that were often thoroughly incompatible with the data, and the realisation of this
led to a great many advances in econometric theory. In particular, since statistical models
with little or no explanatory power often gave much better fits than models supposedly
based on economic theory, econometricians became more concerned with testing the sta-
tistical reliability of their models, and less concerned with the relation of these models to
economic theory.

But it is probably fair to say that structural models returned as the main focus of interest
of many econometricians with the advent of the twenty-first century. Problems associated
with the identification of such models and of their parameters assumed considerable im-
portance, and stimulated much work intended to elucidate the nature of these problems,
and ways of solving them. However, whether a model is structural or not makes little
difference to how we can perform inference about causal sufficiency. The essential element
is to be able to set up counterfactual situations by means of the model.



Counterfactual econometrics

In biostatistics and medicine, emphasis is often put on randomised trials, in which two
groups of subjects are treated differently. One usually speaks of a control group, the
members of which are not treated, and a treatment group, for which a particular treatment
is prescribed. After some definite period, the members of both groups are examined for
some particular property, which is thought of as the effect of being treated or not. Clearly,
the idea is to be able to see whether the treatment causes the effect, and, perhaps, to reject
the hypothesis that it does so. Here, if one can select the members of the two groups quite
randomly, in a way totally unrelated to the treatment or the effect, then the distribution
of effects within each group serves as the counterfactual distribution for the other.

Even in medicine, a truly randomised trial can be difficult to achieve, for both practical
and ethical reasons. In econometrics, it is even more difficult, although not completely
impossible. However, “natural experiments” can arise for which an econometrician may
be able to identify two groups that are “treated” differently, perhaps by being subject
to some government program, and to measure some effect, such as wages, that might be
affected by the treatment. This can be fruitful, but, naturally enough, it requires the use
of sophisticated statistical and econometric techniques.

In a polemical essay, Heckman (2001) maintains that econometrics has suffered as a result
of too great an application of the methodology of mathematical statistics. He says that

Statistics is strong in producing sampling theorems and in devising ways to describe
data. But the field is not rooted in science, or in formal causal models of phenomena,
and models of behavior of the sort that are central to economics are not a part of
that field and are alien to most statisticians.

This is a strong statement of what I have called the preference of econometricians for
structural models.

Whether or not they go along completely with Heckman on this point (and I believe that
I do), econometricians, even sometimes in company with statisticians, have developed
techniques for getting indirectly at information about counterfactual worlds. Of these, the
method called difference in differences is probably the best known and the most used;
an early example in the econometrics literature is Ashenfelter and Card (1985). Since
counterfactual worlds are never realised, some assumptions must always be made in order
to invent a virtual reality in which they can be rendered. Often, an assumption is made
implying constancy in time of some relations; other times the assumption might be, as
with randomised trials, that two or more groups are homogeneous. To say that we always
need some assumption(s) is to say that there must always be a model, rich enough in its
explanatory power to render credible counterfactual, and so virtual, realities.

One development of this sort is found in Athey and Imbens (2006). They extend the
idea behind the difference-in-differences method to a method called change-in-changes.
The name does not make clear what I regard as the chief virtue of their method, namely
that, instead of limiting attention to awverage treatment effects, it considers the entire
distribution of these effects. Average effects may be enough for biostatisticians; not for
econometricians.



4 Parallel Computing; Parallel Universes

We will all have heard that the future of computing lies in parallel computing, now that
Moore’s Law is reaching the end of its useful life, as computer chips come up against the
quantum nature of the physical world. With parallel computing, a computer program
makes use of several CPUs, or cores, simultaneously. This is what we call Concurrent
Programming, which lets computers perform concurrent processing.

Is there a counterpart in the external world to parallel or concurrent processing in the
virtual reality of computers? That depends on which physicist you talk to! Some, like
David Deutsch (1997), believe that the quantum theory implies the existence of what
he calls “parallel universes”, which together make up the “multiverse”. Others find it
unnecessary to suppose anything of the sort, but then they are obliged to abandon a
deterministic world view, and assume that there really is some irreducible randomness in
nature. If I understand him correctly, Deutsch maintains a deterministic world view, but
only at the level of the whole multiverse, not in any universe that we might live in and
observe.

Recall that (mathematical) probability originated in human thought as an idealisation of
the notion of the frequency with which a repeated action or experiment yields the different
results of which it is capable. Another aside: Jakob (or Jacques, or James) Bernoulli lived
from 1655 to 1705; Thomas Bayes from 1701 to 1761, and anyway he wasn’t a Bayesian!

Deutsch’s view is that, in quantum mechanics at least, the probability of the different
results that an observation may yield is indeed a frequency, or, more precisely, the pro-
portion of universes in the multiverse in which that result is found. And this corresponds
exactly with what happens in a computer simulation that makes use of random numbers.
Whether the program that implements the simulation is run sequentially or concurrently,
the same code is run many times with different random inputs, and, at the end of the
simulation, we estimate the theoretical probabilities that are defined in our virtual reality
by the frequencies, or proportions, of the repetitions that gave the various outcomes.

If we adopt my point of view about why there are random elements in economic models,
then we see why it is of interest to perform simulations with random numbers. Yes, the goal
of our models is to understand through explanation, and calling things random explains
nothing, but, even so, models with random elements can help us understand economic
phenomena by giving partial explanations of economic mechanisms. Another conclusion
from this reasoning is that some virtual realities may be quite imperfect renderings of the
real world. Maybe flight simulators are pretty good these days, but they weren’t always,
and video games don’t even try to mimic the real world.

5 The Bootstrap

A virtual reality may be contained in, or contain, other virtual realities. The bootstrap
is an example of this. Within the context of a model (the outside virtual reality), for
which we do not know the specific DGP that may have generated the data we wish to
analyse, we create another virtual reality, often called the “bootstrap world”, in order to
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test hypotheses or construct confidence sets. The bootstrap has other uses, but I won’t
discuss them here; see for instance Davison and Hinkley (1997).

The bootstrap makes no use of asymptotic considerations, but, as with much econometric
theory, current bootstrap theory relies heavily on asymptotics. This is an undesirable
state of affairs, if for no other reason than that the choice of an asymptotic construction
is inevitably somewhat arbitrary.

Asymptotic arguments rely on sequences of random variables that converge, in probability
or in distribution, to some desirable limit. Since bootstrap inference is exact only in rare
instances, any justification of it must also rely on some sequence of random variables with
a desirable limit.

The approach I outline here involves the convergence or otherwise of a sequence of boot-
strap P values obtained by iterating the bootstrap. The first iterate, called the double
bootstrap, is in many cases feasible; when it is, it is presumed that it can provide more
reliable statistical inference than either conventional asymptotics or the single uniterated
bootstrap.

It is certainly tempting to suppose that the only barrier to still more reliable inference via
bootstrap iteration is computational infeasibility. Here I discuss some preliminary work
that shows that bootstrap iteration can indeed improve reliability of inference. In order
to do so, a procedure of discretisation is used, by means of which the model under test is
described by a finite three-dimensional array of probabilities.

Definitions and notations

Recall that what I mean by a model is a collection of DGPs. Let M denote a model. Then
M may also represent a hypothesis, namely that the true DGP, p say, belongs to M. I
denote by My the set of DGPs that represent a null hypothesis we wish to test, using a test
statistic 7. It is conventional to suppose that 7 is defined as a random variable on some
suitable probability space, on which a different probability measure is defined for each
different DGP. Rather than using this approach, I define a probability space ({2, F, P),
with just one probability measure, P. Then the test statistic 7 is treated as a stochastic
process the index set of which is the set M. We have

T : MxQ—R (1)

Since we are in virtual reality, the probability space can be taken to be that of a random
number generator. A realisation of the test statistic is therefore written as 7(u,w), for
some € M and w € (.

This approach, rather than the conventional one, corresponds precisely to what we do in
a simulation experiment. The random elements of the simulation all come, directly or
indirectly, from the random number generator, and the DGP takes the form of a part of
the computer program, in which data are generated by deterministic transformations of
the random numbers and the parameters that correspond to that DGP. It is sometimes
possible, and sometimes essential, to use the same random numbers in combination with
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different specifications of the DGP, and this is captured quite precisely by the notation
defined in (1).

For notational convenience, we suppose that the range of 7 is the [0, 1] interval rather
than the whole real line, and that the statistic takes the form of an approximate P value,
which thus leads to rejection when the statistic is too small. Let Ry : [0,1] — [0, 1] be the
cumulative distribution function (CDF) of 7 under any DGP p € M:

Ro(a, p) = P{w € Q| 7(p,w) < a}.

For y € My, the random variable Ro(7(u,w), pt) follows the uniform distribution U(0,1) if
its distribution is continuous on [0, 1]. This property is what allows the Monte Carlo tests
of Dwass (1957) to give exact inference when 7 is pivotal with respect to My, by which is
meant that the random variable 7(u,w) has the same distribution for all u € M. See also
Dufour and Khalaf (2001) for more information on Monte Carlo tests.

Bootstrap Principle

The principle of the bootstrap is that, when we want to use some function or functional
of an unknown DGP pu, we use an estimate ji in place of u. The DGP pu could be either
external reality or an outer virtual reality. The estimate i, which is called the bootstrap
DGP, is a virtual reality embedded in whatever reality contains .

Suppose that we have a statistic computed from a data set that may or may not have
been generated by a DGP € My. Denote this statistic by t. We define the DGP-valued
process

6 : M x Q— Mo.

The bootstrap DGP that serves as the estimate of p is b = S(u,w), where w is the same
realisation as in ¢t = 7(u,w), since both ¢ and b are computed using the same data set.
Then, following the bootstrap principle, we define the bootstrap P value, expected to
follow the U(0,1) distribution approxzimately, to be Ro(t,b) = Ro (T(,u, w), B(,u,w)).

The bootstrap is a very general statistical technique. The properties of the true unknown
DGP that one wants to study are estimated as the corresponding properties of the boot-
strap DGP. In practice, although not in principle, these properties have to be studied by
means of a simulation experiment.

The Golden Rules of Bootstrapping

My “Golden Rules” for bootstrapping, extensions and reformulations of “guidelines” for
bootstrap hypothesis testing found in Hall and Wilson (1991), are these:

Golden Rule 1:

The bootstrap DGP b must belong to the model M that represents the null
hypothesis.

This is because what we want for a test is an estimate of the distribution of the test statistic
under the null hypothesis. The power of a test is related to how different the distribution
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of the statistic is under the null and alternative hypotheses. One expects serious loss of
power if the realised statistic is compared to distribution under the alternative.

Golden Rule 2:

Unless the test statistic is pivotal for the null model My, the bootstrap DGP
should be as good an estimate of the true DGP as possible, under the assumption
that the true DGP belongs to M.

Although some econometricians still have doubts about the last part of the statement of
this rule, fearing that it may lead to loss of power, it makes sense to exploit the fact that
imposing the restrictions of a true null leads to greater efficiency of estimation. Further,
under local alternatives, it is shown in Davidson and MacKinnon (2006) that there is no
power loss by estimating the bootstrap DGP imposing the restrictions of the null.

Inference

If 7 is not pivotal, exact inference is no longer possible, because the true DGP p is unknown.
The bootstrap principle tells us to replace it by an estimate, namely the bootstrap DGP b,
and obtain the bootstrap P value R((¢,b). In order to estimate it by simulation, we make
the definition

A 1
l{O<(X7/L) = j§

J

B
I(T(,u, w;) < a),
—1

where the w are independent. Each w} can be thought of as a set of those random numbers
needed to generate a realisation of the statistic. Then, as B — oo, fm’o(a, 1) tends almost
surely to Ro(a, i1). Accordingly, we estimate the bootstrap P value by Ry(t,b), for some
suitable choice of B, the number of bootstrap repetitions.

Bootstrap Iteration

The bootstrap P value Ry(t,b) is a realisation of a random variable p; (i, w), where the
new function p; : Ml x Q — [0, 1] is defined as follows:

]71<lL;UJ) = }20(7_(1L7°u)7[3(1L7°U))'

We denote the CDF of pq(u,w) by Ry(-, ). The random variable Ry (pl(,u,w),,u) is, by
construction, distributed as U(0,1). But this fact is not enough to allow exact inference,
because the actual u that generates the data is unknown outside the context of a simulation
experiment.

However, the bootstrap principle can again be applied, and the unknown g replaced by
the estimate b. This leads to the double bootstrap, of which the P value, for realisations

t and b, can be written as
}%1(}%O(t7b)7b)7

where Ry can be estimated just like Ry, but by means of a much costlier simulation
experiment.
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Under the assumption that p € My, the double bootstrap P value is the probability mass
in the distribution of the single bootstrap statistic to the left of Ry(¢,b). Expressed as a
random variable, it is

D2 (N? w) = Rl (RO(T(M7 w)v 5(:“’ CU)), 5(:“’ w))

If we write the right-hand side above as R (pl(u,w),ﬁ(u,w)), we see that the double
bootstrap effectively bootstraps the single bootstrap P value.

From that observation, it is clear that we can define iterated bootstraps as follows. For
r=0,1,2,..., we define

Rr(anu) = P{w € ’pr(u’w) < Oz},
pT—|—1(,U,W) = R, (pT(:uvw)a B<H7w>)7

where we initialise the recurrence by the definition po(u,w) = 7(p,w). Thus pr41(u,w)
is the bootstrap P value obtained by bootstrapping the r*® order P value p,(u,w). It
estimates the probability mass in the distribution of the r*" order P value to the left of its
realisation.

In order for bootstrap iteration to be useful, it is necessary for the sequence {p,(u,w)}
of iterated bootstrap P values to converge as r — oo, and the limit of the sequence to
be distributed as U(0,1) for all 4 € M. Note that it is possible to have convergence to
a distribution quite different from U(0,1). Indeed, this is necessary for test power when
1 & Mo.

With a resampling bootstrap, since with high probability each resample does not contain
some of the observations of the original sample, repeated iteration leads to iterated boot-
strap DGPs that have only one observation out of the original sample, repeated as many
times as the original sample has observations. That is one reason for which our notation
has so far implicitly assumed that all distributions are absolutely continuous.

6 Discrete Bootstrap Iteration

This section attempts to summarise some very recent work, as yet available only as a
working paper, Davidson (2015), on bootstrap iteration. My aim is not so much to be able
to handle conventional resampling bootstraps, but to find a setup in which I can overcome
the immense computational cost of iterating the bootstrap past the first few iterations. It
was the idea that everything is necessarily discrete when a virtual reality is rendered by
a computer that made me consider going the whole way, and starting from a discrete and
finite representation of the bootstrap.

I assume that the statistic, in approximate P value form, can take on only the values
i/n, i =0,1,...,n. Further, I assume that there are only m possible DGPs in the null
model. Thus I can let the outcome space 2 consist of just m(n + 1) points, labelled by
two coordinates (i,75),7=0,1,...,n, j =1,...,m. Golden Rule 1 requires the bootstrap
DGP to satisfy the null hypothesis, and so any DGP p we consider is represented by k,
say, with k=1,...,m.
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We can then write

7(k, (5,9)) =i/n, Bk, (i,7)) = J,
where the DGP p is represented by k, and the outcome w by (7, ). In this way, the model
is completely characterised by the probabilities py;;, k,7 = 1,...,m,¢=0,1,...,n, where

Prij = P[7(k, (i,5)) = i/n and B(k, (i, 7)) = j].
We have, for all k£ =1,...,m, that
ZZPW =1,
i=0 j=1

and we make the definitions
1—1 m
akij:ZPku and Akizzakij i=0,...,n+1.
=0 j=1

Then ay;; is the probability under DGP k that 7 is less than i/n and that b = j, while Ay,
is the marginal probability under k that 7 < i/n. Thus we may write

RO<05, k) = Ak,[an]+l~

Note that aro; = Ago = 0 for all k,j = 1,...,m. Further, Ay, 1) =1 and ay(,41); is the
marginal probability under k that 8 = j, forall k =1,...,m.

With this setup, it can be shown that the pattern of bootstrap iteration is follows. Things
are initialised by:

po(k, (i,7)) = Agi =1i/n; q?(a) = |na| independent of j.

It turns out that Aj; is the bootstrap P value for the realisation (7, j). In the context of
bootstrap iteration, it is now denoted as AjlZ The subsequent steps of the iteration are as
follows. At step r, we have

Dr (k7 (27.7)) = A;w

i=1,...,
q,(Ay;) =4, and (2)
Rr(a7 k) - Zaqu(a)j

j=1

The recurrence is then implemented by a trip across the plane defined by k:
r+1
AT =) angrag); = Re(Ap k).
j=1
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The bootstrap discrepancy is defined, for a given DGP p, and a given significance level «,
as the difference between the rejection probability of the bootstrap test for DGP p and
level o and « itself. It is therefore equal to Ri(a, ) — «, in the notation used for the
continuous case. For iterated bootstraps, the definition is the same: at level r, the order-r
discrepancy is R, (a, pu) — .

Suppose that the recurrence (2) converges, in the sense that, for given k and 1,

q;‘Ll(AZ;H) =q;(Ay;) foralj=1,....,m.
Then A} * = A%, and q§+s(A2js) = qj (A},) for all j and for all positive integers s. Since
R.(A}, k)= A};;rl = A}, it follows that the bootstrap discrepancy is zero for significance
level A}, if k is the DGP and 7 = i/n. If there is convergence for all i = 0,1,...,n, the
bootstrap discrepancy is zero unconditionally for DGP k for levels Aj,.

Discussion

The most important advantage of this discrete approach is that it eliminates conventional
bootstrapping based on a simulation experiment. In exchange, it is necessary to conduct
the probably costly simulation experiment needed in order to estimate the py;;. However,
once that experiment is carried out, it serves as a fixed overhead for arbitrary levels of
bootstrap iteration. And, as we would expect, the experiment lends itself ideally to con-
current processing. It thus becomes feasible to examine the convergence or otherwise of
the sequence of iterated bootstrap P values.

In the discrete case, convergence of the sequence of iterated bootstraps is probably guar-
anteed. It remains to be seen whether this can be proved, and, if so, under what regularity
conditions. However, this need not imply that exact inference is possible at any chosen
level, because there is only a finite set of levels for which the bootstrap discrepancy is
necessarily zero after convergence. It can turn out that these levels are all equal or close
to zero or one.

If we abstract from the simulation noise in the estimation of the py;;, the discrete model
is quite nonrandom. We are, in effect, working simultaneously with every point in the
outcome space. Convergence, therefore, is to be understood in the ordinary sense of
convergence of a sequence of real numbers. In the continuous case, of course, we have to
speak of stochastic convergence, which may perhaps be almost sure, or in probability.

If this discrete approach were to be used with real data, it would be necessary to use these
data to compute realisations of the quantity being bootstrapped and of the bootstrap
DGP, and then to discretise them according to the plan of discretisation in use. If the
realised quantity is indexed by ¢ and the realised bootstrap DGP by j, then, for the
r-tuple bootstrap, the bootstrap P value is A7,.

It would be immensely useful to find ways of discretising the set of bootstrap DGPs used
in situations that are not purely parametric. While it is easy enough to replace the use of
a discrete empirical distribution for resampling by a continuous version, thus avoiding the
problem inherent in iterating a conventional resampling bootstrap, it is not obvious how to
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make discrete the set of bootstrap DGPs that would be obtained in this way. I conjecture
that, when bootstrapping an approximately pivotal statistic, it may be possible to cover
the set of bootstrap DGPs rather coarsely and still achieve satisfactory results. How best
to do so remains to be seen.

The double bootstrap was introduced by Beran (1987) and (1988). He refers to “pre-
pivoting”, meaning making some quantity more close to being pivotal for a model by
bootstrapping it, and then bootstrapping the result. This interpretation clearly applies
to higher orders of bootstrap iteration. In some sense, the iterative procedure serves to
project the original statistic into a space of pivotal statistics. It would be desirable to
formalise this intuition. It is also necessary to see to what extent this “projection” may
adversely affect the power of a test. Of course, power is not uniquely defined when a non-
pivotal statistic is used; see Horowitz and Savin (2000), and Davidson and MacKinnon
(2006). But if an iterated bootstrap P value follows the uniform U(0, 1) distribution, it is
by definition a pivot.

In discussing bootstrap “validity”, it is conventional to make use of an appropriate asymp-
totic construction in order to show that the limiting distribution of the quantity considered
is the same as the limiting distribution of its bootstrap counterpart. This is of course a
very weak requirement. A somewhat better justification for the bootstrap comes from
any refinements that can be demonstrated by an asymptotic argument, as in Hall (1992),
where he uses Edgeworth expansion — still an asymptotic technique, of course.

It seems to me that convergence of the sequence of iterated bootstrap P values to the
uniform distribution is a much richer and more satisfactory means of justifying or validating
the bootstrap. No asymptotic argument is involved, so that the potential arbitrariness of
the choice of an asymptotic construction is avoided. To the extent that the approach
outlined here can be made operational for problems of interest, the approach carries its
validity along with it.

Further, the new proposed criterion for validity is by no means equivalent to asymptotic
validity. An example of this is when a regression model, the disturbances of which are not
necessarily Gaussian, is bootstrapped using a bootstrap DGP that imposes Gaussianity.
Under very weak conditions on the asymptotic construction, this bootstrap is asymptoti-
cally valid. But it certainly is not, by the criterion of convergence of iterated P values to
U(0,1), for any DGPs in the model the disturbances of which are in fact not Gaussian.

7 Concluding Remarks

This paper has journeyed from some vaguely philosophical notions concerning scientific
modelling, virtual reality, computation with digital computers, discreteness, simulation,
and the nature of randomness, to a discussion of the bootstrap and bootstrap iteration. It
is argued that viewing much scientific endeavour as involving virtual reality or realities can
be very fruitful. The bootstrap can readily be interpreted as a form of virtual reality, and
this interpretation leads naturally to the idea of bootstrap iteration. It is my hope that
the discrete model I propose for the study of bootstrap iteration will lead to significant
advances in both the theory and the practice of the bootstrap.
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