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1. Introduction

In the study of income distribution, it is more common to adopt a distribution-free ap-
proach than to impose a parametric functional form on the cumulative distribution function
(CDF) of the distribution. Income distributions often have a heavy right-hand tail, and,
when this is so, distribution-free approaches can lead to very unreliable inference. There
are some theoretical reasons for this, one of which was explained long ago in a paper by
Bahadur and Savage (1956) that is still not very widely known. Although parametric
models can perform better in the presence of heavy tails, they too can have problems.

The Earth is finite, and so it is in principle impossible for any income distribution not to
be bounded above; this is a fortiori true for any observed sample of incomes. However,
it is sometimes true that the best-fitting models of income distributions imply the non-
existence of some moments, sometimes including the variance, or even the expectation
itself. For instance, the three-parameter Singh-Maddala distribution – Singh and Maddala
(1976) – lacks some moments, just which ones depending on the parameter values. It is
therefore pertinent to take account of the possible non-existence of moments in the study
of income distribution.

In this paper, I review work in which it is seen that heavy tails pose problems, and in which
some efforts are made to avoid these problems. In the next section, I state the main theorem
of the previously cited paper of Bahadur and Savage, and give a concrete example of the
impossibility result of the theorem. It is pointed out that the problem arises in models
where the mapping from the set of distributions that constitute the model to the moment
of interest is not continuous. Section 3 reviews some recent work of mine on the Gini index,
where it appears that heavy tails undermine reliability of inference. There, the bootstrap
turns out to be useful in at least mitigating this difficulty. In Section 4, a suggestion made
in Davidson and Flachaire (2007) is reviewed, whereby a conventional resampling bootstrap
can be combined with a parametric bootstrap in the right-hand tail. This bootstrap works
well with distributions similar to those in developed countries, but its performance degrades
when the second or somewhat higher moment of the distribution does not exist. Then, in
Section 5, I sketch so-far unpublished recent work by Adriana Cornea and me, available as
the discussion paper Cornea and Davidson (2008), in which we propose a purely parametric
bootstrap for distributions in the domain of attraction of a non-Gaussian stable law. This
bootstrap works reasonably well provided that the distribution has a moment higher than
the first (the variance never exists) and is not too skewed.

Sections 6 and 7 deal with methods based on quantiles. For obvious reasons, these are
much less disturbed by heavy tails than methods based on moments. Section 6 presents a
family of measures of goodness of fit, based on a measure of distribution change proposed
by Cowell (1985) – see also Cowell, Flachaire, and Bandyopadhyay (2009) – but adapted to
use quantiles instead of moments. The bootstrap turns out to give very reliable inference
with this new measure in circumstances that made inference for the Gini index unreliable.
Finally, in Section 7, I discuss some speculative work in which the wild bootstrap is applied
to quantile regression.
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2. The Result of Bahadur and Savage

The paper of Bahadur and Savage (1956) (BS) contains a number of impossibility results
about inference on the expectation of a distribution based on an IID sample drawn from
it. The thrust of all the results is that, unless some restrictions, over and above the mere
existence of the expectation of the distribution, are placed on the class of distributions
that constitute the model, such inference is impossible. Impossible in the sense that the
size of a test of a specific value for the expectation is independent of the significance level,
and that no valid confidence intervals exist.

The model for which these impossibility results hold must be reasonably general, and the
precise regularity conditions made by Bahadur and Savage are as follows. Each DGP of the
model is characterised by a CDF, F say. The class F of those F that the model contains
is such that

(i) For all F ∈ F , µF ≡ ∫∞
−∞ xdF (x) exists and is finite;

(ii) For every real number m, there is F ∈ F with µF = m;

(iii) F is convex.

Let Fm be the subset of F for which µF = m. Then Bahadur and Savage prove the
following theorem.

Theorem 1

For every bounded real-valued function φ defined on the sample space (that is,
Rn for a sample of size n), the quantities infF∈Fm Eφ and supF∈Fm

Eφ are inde-
pendent of m.

From this, the main results of their paper can be derived. The argument is based on the
fact that the mapping from F , endowed with the topology of weak convergence, to the real
line, with the usual topology, that maps a CDF F to its expectation µF is not continuous.1

Rather than work at the high level of generality of BS’s paper, I present a one-parameter
family of distributions, all with zero expectation. If an IID sample of size n is drawn from
a distribution that is a member of this family, one can construct the usual t statistic for
testing whether the expectation of the distribution is zero. I will then show that, for any
finite critical value, the probability that the t statistic exceeds that value tends to one as
the parameter of the family tends to zero. It follows that, if all the DGPs of the sequence
are included in F , the t test has size one.

1 Actually, Bahadur and Savage use a seemingly different topology, based on the metric of
absolute-variational distance, defined for two CDFs F and G as

δ(F,G) = sup
φ∈Φ

|EFφ− EGφ|,

where Φ is the set of real-valued functions of the sample space taking values in the interval
[0, 1].
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Each distribution in the family is characterised by a parameter p with 0 < p < 1. A
random variable from the distribution can be written as

U = Y/p2 + (1− Y )W − 1/p (1)

where W ∼ N(0, 1) and

Y =

{
1 with probability p
0 with probability 1− p,

W and Y being independent. It is evident that EpU = 0.

Now consider a sample of IID drawings Ut, each from the above distribution for given p.
Let N be

∑n
t=1 Yt. The value of N is thus the number of drawings with value (1− p)/p2.

We see that
Pr(N = 0) = (1− p)n. (2)

The t statistic for a test of the hypothesis that EU = 0 can be written as

T =
µ̂

σ̂µ
, where µ̂ = 1−

n

n∑
t=1

Ut, and σ̂2
µ =

1

n(n− 1)

n∑
t=1

(Ut − µ̂)2.

Conditional on N = 0, µ̂ = −1/p+W̄ , where W̄ = n−1
∑

Wt is the mean of the Wt. Thus
the conditional distribution of n1/2µ̂ is N(−n1/2/p, 1). Then, since Ut − µ̂ = Wt − W̄ if
N = 0, the conditional distribution of nσ̂2

µ is χ2
n−1/(n − 1). Consequently, the condi-

tional distribution of T is noncentral tn−1, with noncentrality parameter −n1/2/p. We can
compute as follows for c > 0:

Pr(|T | > c) > Pr(T < −c) > Pr(T < −c and N = 0) = Pr(N = 0)Pr(T < −c |N = 0).
(3)

Now
Pr(T < −c |N = 0) = Fn−1,−n1/2/p(−c), (4)

where Fn−1,−n1/2/p is the CDF of noncentral t with n− 1 degrees of freedom and noncen-

trality parameter −n1/2/p.

For fixed c and n, let p → 0. Then from (2) we see that Pr(N = 0) → 1. From (4), it
is clear that Pr(T < −c |N = 0) also tends to 1, since the noncentrality parameter tends
to −∞, which means that the probability mass to the left of any fixed value tends to 1.
It follows from (3) that the rejection probability tends to 1 whatever the critical value c,
and so the test has size 1 if DGPs characterised by random variables distributed according
to (1) are admitted to the null hypothesis. A similar, more complicated, argument shows
that a test based on a resampling bootstrap DGP delivers a P value that, in a sample of
size n, tends to n−(n−1) as p → 0, and so the size of this bootstrap test tends to 1−n−(n−1),
regardless of the significance level.

Since the distribution (1) has all its moments finite for positive p, imposing conditions
on the existence of moments does not prevent all the distributions characterised by (1)
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from being present in the null model, with the unfortunate consequences predicted by the
theorem of BS. As remarked above, the problem is essentially due to the fact that the
expectation is not a continuous function of the distribution with the usual topologies. In
the example with the distributions given by (1), we see that for p > 0, the first moment is
zero. In the limit, however, it is infinite.

If valid inference is to be possible, we must impose a restriction that excludes the distribu-
tions (1) with small p. We are therefore led to consider a uniform bound on some moment
of order at least 1. Such a bound implies a bound on the absolute first moment as well, but
it seems necessary to bound a moment of order strictly greater than 1. We want to show
that such a bound renders the mapping from F to the expectation continuous. Suppose
then, that F is restricted so as to contain only distributions such that, for some θ > 0,
E|U |1+θ < K, for some specified K. The proof of Lemma 1 in the Appendix shows that
this restriction is enough to make the mapping continuous. Note, however, that in order
to compute the size of a test about the expectation, the actual, numerical, values of K
and θ must be known.

3. Illustration with the Gini Index

Most of this section is borrowed from one of my recent papers, Davidson (2009), in which
I develop methods for performing inference, both asymptotic and bootstrap, for the Gini
index. The methods rely on the assumption that the estimation error of the sample Gini,
divided by its standard error, is asymptotically standard normal. In order to see whether
the asymptotic normality assumption yields a good approximation, simulations were un-
dertaken with drawings from the exponential distribution, with CDF F (x) = 1− e−x,
x ≥ 0. The true value G0 of the Gini index for this distribution is easily shown to be
one half. In Figure 1, graphs are shown of the EDF of 10,000 realisations of the statistic
τ = (Ĝ−G0)/σ̂G, using the bias-corrected version of Ĝ and the standard error σ̂G derived
in Davidson (2009), for sample sizes n = 10 and 100. The graph of the standard normal
CDF is also given as a benchmark.

It can be seen that, even for a very small sample size, the asymptotic standard normal ap-
proximation is good. The greatest absolute differences between the empirical distributions
of the τ and the standard normal CDF were 0.0331 and 0.0208 for n = 10 and n = 100
respectively.

The exponential distribution may well be fairly characteristic of distributions encountered
in practice, but its tail is not heavy. Heavy-tailed distributions are notorious for causing
problems for both asymptotic and bootstrap inference, and so in Figure 2 we show empirical
distributions for the standardised statistic τ with data generated by the Pareto distribution,
of which the CDF is FPareto(x) = 1 − x−λ, x ≥ 1, λ > 1. The second moment of the
distribution is λ/(λ − 2), provided that λ > 2, so that, if λ ≤ 2, no reasonable inference
about the Gini index is possible. If λ > 1, the true Gini index is 1/(2λ− 1). Plots of the
distribution of τ are shown in Figure 2 for n = 100 and λ = 100, 5, 3, 2. For values of λ
greater than about 50, the distribution does not change much, which implies that there is
a distortion of the standard error with the heavy tail even if the tail index is large.
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Figure 1. Distribution of the standardised statistic; exponential distribution
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Figure 2. Distribution of the standardised statistic; Pareto distribution, n=100

Table 1 shows how the bias of τ , its variance, and the greatest absolute deviation of its
distribution from standard normal vary with λ. It is plain from the table that the usual
difficulties with heavy-tailed distributions are just as present here as in other circumstances.
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λ Bias Variance Divergence from N(0,1)

100 -0.1940 1.3579 0.0586

20 -0.2170 1.4067 0.0647

10 -0.2503 1.4798 0.0742

5 -0.3362 1.6777 0.0965

4 -0.3910 1.8104 0.1121

3 -0.5046 2.1011 0.1435

2 -0.8477 3.1216 0.2345

Table 1. Summary statistics for Pareto distribution

The lognormal distribution is not usually considered as heavy-tailed, since it has all its
moments. It is nonetheless often used in the modelling of income distributions. Since
the Gini index is scale invariant, we consider only lognormal variables of the form eσW ,
where W is standard normal. In Figure 3 the distribution of τ is shown for n = 100 and
σ = 0, 5, 1.0, 1.5. We can see that, as σ increases, distortion is about as bad as with the
genuinely heavy-tailed Pareto distribution. The comparison is perhaps not entirely fair,
since, even for the worst case with λ = 2 for the Pareto distribution, G = 1/3. However,
for σ = 1, the index for the lognormal distribution is 0.521, and for σ = 1.5 there is a great
deal of inequality, with G = 0.711.
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Figure 3. Distribution of τ ; lognormal distribution, n=100

We end this section with some evidence about the behaviour of the bootstrap. In Table 2,
coverage rates of percentile-t bootstrap confidence intervals are given for n = 100 and for
nominal confidence levels from 90% to 99%. The successive rows of the table correspond,
first, to the exponential distribution, then to the Pareto distribution for λ = 10, 5, 2, and
finally to the lognormal distribution for σ = 0.5, 1.0, 1.5. The numbers are based on 10,000
replications with 399 bootstrap repetitions each.
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Level 90% 92% 95% 97% 99%

Exponential 0.889 0.912 0.943 0.965 0.989

λ = 10 0.890 0.910 0.942 0.964 0.984

λ = 5 0.880 0.905 0.937 0.957 0.982

λ = 2 0.831 0.855 0.891 0.918 0.954

σ = 0.5 0.895 0.918 0.949 0.969 0.989

σ = 1.0 0.876 0.898 0.932 0.956 0.981

σ = 1.5 0.829 0.851 0.888 0.914 0.951

Table 2. Coverage of percentile-t confidence intervals

Apart from the expected serious distortions when λ = 2, and when σ = 1.5, the coverage
rate of these confidence intervals is remarkably close to nominal. It seems that, unless
the tails are very heavy indeed, or the Gini index itself large, the bootstrap can yield
acceptably reliable inference in circumstances in which the asymptotic distribution does
not.

4. Measures of Inequality

In this section, largely borrowed from Davidson and Flachaire (2007), we consider a boot-
strap DGP which combines a parametric estimate of the upper tail with a nonparametric
estimate of the rest of the distribution. This approach is based on finding a parametric
estimate of the index of stability of the right-hand tail of the income distribution. The
approach is inspired by the paper by Schluter and Trede (2002), in which they make use of
an estimator proposed by Hill (1975) for the index of stability. The estimator is based on
the k greatest order statistics of a sample of size n, for some integer k ≤ n. If we denote
the estimator by α̂, it is defined as follows:

α̂ = H−1
k,n; Hk,n = k−1

k−1∑

i=0

log Y(n−i) − log Y(n−k+1), (5)

where Y(j) is the jth order statistic of the sample. The estimator (5) is the maximum
likelihood estimator of the parameter α of the Pareto distribution with tail behaviour of
the CDF like 1 − cy−α, c > 0, α > 0, but is applicable more generally; see Schluter and
Trede (2002). Modelling upper tail distributions is not new in the literature on extreme
value distribution, a good introduction to this work is Coles (2001).

The choice of k is a question of trade-off between bias and variance. If the number of
observations k on which the estimator α̂ is based is too small, the estimator is very noisy,
but if k is too great, the estimator is contaminated by properties of the distribution that
have nothing to do with its tail behaviour. A standard approach consists of plotting α̂ for
different values of k, and selecting a value of k for which the parameter estimate α̂ does not
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vary significantly, see Coles (2001) and Gilleland and Katz (2005). Experiments with this
graphical method for samples of different sizes n = 100, 500, 1000, 2000, 3000, 4000, 5000,
led us to choose k to be the square root of the sample size: the parameter estimate α̂
is stable with this choice and it satisfies the requirements that k → ∞ and k/n → 0
as n → ∞. The observations in the experiments were drawn from the Singh-Maddala
distribution, with CDF

F (y) = 1− 1

(1 + ayb)c
(6)

and parameter values a = 100, b = 2.8, c = 1.7, a choice that closely mimics the net income
distribution of German households, apart from a scale factor. Note that the automatic
choice of k is an area of active research; for instance Caers and Van Dyck (1999) proposed
an adaptive procedure based on a m out of n bootstrap method.

Bootstrap samples are drawn from a distribution defined as a function of a probability
mass ptail that is considered to constitute the tail of the distribution. Each observation of
a bootstrap sample is, with probability ptail, a drawing from the distribution with CDF

F (y) = 1− (y/y0)
−α̂, y > y0, (7)

where y0 is the order statistic of rank n(1 − ptail) of the sample, and, with probability
1 − ptail, a drawing from the empirical distribution of the sample of smallest n(1 − ptail)
order statistics. Thus this bootstrap is just like the ordinary resampling bootstrap for all
but the right-hand tail, and uses the distribution (7) for the tail. If α̂ < 2, this means that
variance of the bootstrap distribution is infinite.

Suppose that we wish to perform inference on some index of inequality that depends
sensitively on the details of the right-hand tail. In order for the bootstrap statistics to
test a true null hypothesis, we must compute the value of the index for the bootstrap
distribution defined above. Indices of interest are functionals of the income distribution.
Denote by T (F ) the value of the index for the distribution with CDF F . The estimate of
the index from an IID sample is then T (F̂ ), where F̂ is the empirical distribution function
of the sample. The CDF of the bootstrap distribution can be written as

Fbs(y) =
1

n

n(1−ptail)∑

i=1

I(Y(i) ≤ y) + I(y ≥ y0)ptail
(
1− (y/y0)

−α̂
)
,

where I is the indicator function, and Y(i) is order statistic i from the sample. From this
the index for the bootstrap distribution, T (Fbs), can be computed.

It is desirable in practice to choose ptail such that nptail is an integer, but this is not
absolutely necessary. In our simulations, we set ptail = hk/n, for h = 0.3, 0.4, 0.6, 0.8,
and 1.0. Results suggest that the best choice is somewhere in the middle of the explored
range, but a more detailed study of the optimal choice of ptail remains for future work.
The bootstrap procedure is set out as an algorithm below.
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Semiparametric Bootstrap Algorithm

In order to test the hypothesis that the true value of the index is equal to T0:

1. With the original sample, of size n, compute the index of interest, T̂ , and the t-type
statistic

W = (T̂ − T0)/[V̂ (T̂ )]1/2, (8)

where V̂ (T̂ ) denotes a variance estimate, usually based on asymptotic theory.

2. Select k with graphical or adaptive methods, select a suitable value for h, set
ptail = hk/n, and determine y0 as the order statistic of rank n(1 − ptail) from the
sample.

3. Fit a Pareto distribution to the k largest incomes, with the estimator α̂ defined in (5).
Compute the true value of the index, T ∗

0 , for the bootstrap distribution as T (Fbs).

4. Generate a bootstrap sample as follows: construct n independent Bernoulli vari-
ables X∗

i , i = 1, . . . , n, each equal to 1 with probability ptail and to 0 with probability
1−ptail. The income Y ∗

i of the bootstrap sample is a drawing from the distribution (7)
if Xi = 1, and a drawing from the empirical distribution of the n(1 − ptail) smallest
order statistics Y(j), j = 1, . . . , n(1− ptail), if Xi = 0.

5. With the bootstrap sample, compute the index T̂ ?, its variance estimate V̂ (T̂ ?), and
the bootstrap statistic W ? = (T̂ ? − T ∗

0 )/[V̂ (T̂ ?)]1/2.

6. Repeat steps 4 and 5 B times, obtaining the bootstrap statistics W ?
j , j = 1, . . . , B.

The bootstrap P -value is computed as the proportion of W ?
j , j = 1, . . . , B, that are

smaller than W.
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In Figure 4, the errors in rejection probability (ERPs) in the left-hand tail are plotted for
tests at a nominal significance level of 5%; the asymptotic test, the standard percentile-t
bootstrap, the m out of n bootstrap, and the semi-parametric bootstrap just described,
with h = 0.4. The index used was Theil’s index

T (F ) =

∫
y

µF
log

( y

µF

)
dF (y).

Figure 5 shows comparable results for the right-hand tail.
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Figure 5. ERPs in right-hand tail

Some rather straightforward conclusions can be drawn from these Figures. In the trouble-
some left-hand tail, the m out of n bootstrap provides some slight improvement over the
standard percentile-t bootstrap, notably by converting the overrejection for small sample
sizes to underrejection. For larger samples, the performances of the standard and m out
of n bootstraps are very similar. The semi-parametric bootstrap, on the other hand, pro-
vides a dramatic reduction in the ERP for all sample sizes considered, the ERP never
exceeding 0.033 for a sample size of 50. In the much better-behaved right-hand tail, both
them out of n and semi-parametric bootstraps perform worse than the standard bootstrap,
although their ERPs remain very modest for all sample sizes. This less good performance
is probably due to the extra noise they introduce relative to the standard bootstrap.

Heavier tails

Although the bootstrap distribution of the statistic W of (8) converges to a random dis-
tribution when the variance of the income distribution does not exist, it is still possible
that at least one of the bootstrap tests we have considered may have correct asymptotic
behaviour, if, for instance, the rejection probability averaged over the random bootstrap
distribution tends to the nominal level as n → ∞. We do not pursue this question here.

Finite-sample behaviour, however, is easily investigated by simulation. In Table 3, we
show the ERPs in the left and right-hand tails at nominal level 0.05 for all the procedures
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considered, for sample size n = 100, for two sets of parameter values. These are, first,
b = 2.1 and c = 1, with index of stability α = 2.1, and, second, b = 1.9 and c = 1, with
index α = 1.9. In the first case, the variance of the income distribution exists; in the
second it does not.

asymptotic std bootstrap m out of n semi-parametric

b = 2.1, c = 1 0.41 0.24 0.15 0.16

-0.03 -0.04 -0.03 0.04

b = 1.9, c = 1 0.48 0.28 0.20 0.18

-0.03 -0.04 -0.02 0.06

Table 3. ERPs for very heavy tails: left above, right below

Although the variance estimate in the denominator of (8) is meaningless if the variance
does not exist, we see from the Table that the ERPs seem to be continuous across the
boundary at α = 2. This does not alter the fact that the ERPs in the left-hand tail are
unacceptably large for all procedures.

5. A Parametric Bootstrap for the Domains of Stable Laws

This section is borrowed from Cornea and Davidson (2008). In that paper, we develop
a procedure for bootstrapping the mean of distributions in the domain of attraction of a
stable law. We show that the m out of n bootstrap is no better in this context than in that
of the preceding section, and that subsampling barely helps. The formal results that show
that both of these procedures are asymptotically valid seem to apply only for exceedingly
large samples; beyond anything in our simulations.

The stable laws, introduced by Lévy (1925), are the only possible limiting laws for suitably
centred and normalised sums of independent and identically distributed random variables.
They allow for asymmetries and heavy tails, properties frequently encountered with finan-
cial data. They are characterised by four parameters: the tail index α (0 < α ≤ 2), the
skewness parameter β (−1 < β < 1), the scale parameter c (c > 0), and the location par-
ameter δ. A stable random variable X can be written as X = δ + cZ, where the location
parameter of Z is zero, and its scale parameter unity. We write the distribution of Z as
S(α, β). When 0 < α < 2, all the moments of X of order greater than α do not exist.

Suppose we wish to test the hypothesis δ = 0 in the model

Yj = δ + Uj , E(Uj) = 0, j = 1, . . . , n. (9)

We suppose that the disturbances Uj follow a distribution in the domain of attraction of
a stable law cS(α, β) with location parameter 0. When 1 < α ≤ 2, the parameter δ in
model (9) can be consistently estimated by the sample mean. A possible test statistic is

τ = n−1/α
n∑

j=1

Yj . (10)
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By the Generalised Central Limit Theorem, the asymptotic distribution of τ is the stable
distribution cS(α, β). If α, c, and β are known, then we can perform asymptotic inference
by comparing the realisation of the statistic τ with a quantile of the stable distribution
cS(α, β). The asymptotic P value for a test that rejects in the left tail of the distribution
is

P = cS(α, β)(τ).

Unless the Yi actually follow the stable distribution, rather than a distribution in the
domain of attraction, inference based on this P value may be unreliable in finite samples.

It was shown by Athreya (1987) that, when the variance does not exist, the conventional
resampling bootstrap of Efron (1979) is not valid, because the bootstrap distribution of
the sample mean does not converge to a deterministic distribution as the sample size
n → ∞. This is due to the fact that the sample mean is greatly influenced by the extreme
observations in the sample, and these are very different for the sample under analysis and
the bootstrap samples obtained by resampling, as shown clearly by Knight (1989).

Now suppose that, despite Athreya and Knight, we bootstrap the statistic τ using the
conventional resampling bootstrap. This means that, for each bootstrap sample Y ∗

1 , ..., Y
∗
n ,

a bootstrap statistic is computed as

τ∗ = n−1/α
n∑

j=1

(Y ∗
j − Ȳ ).

where Ȳ =
∑n

j=1 Yj is the sample mean. The Y ∗
j are centred using Ȳ because we wish

to use the bootstrap to estimate the distribution of the statistic under the null, and the
sample mean, not 0, is the true mean of the bootstrap distribution. The bootstrap P value
is the fraction of the bootstrap statistics more extreme than τ . For ease of exposition, we
suppose that “more extreme” means “less than”. Then the bootstrap P value is

P ∗
B =

1

B

B∑

j=1

I(τ∗j < τ).

Note that the presence of the (asymptotic) normalising factor of n−1/α is no more than
cosmetic for the bootstrap.

As B → ∞, by the strong law of large numbers, the bootstrap P value converges almost
surely, conditional on the original data, to the random variable

p(Y ) = E∗(I(τ∗ < τ)
)
= E

(
I(τ∗ < τ)

∣∣ Y )
, (11)

where Y denotes the vector of the Yj , and E∗ denotes an expectation under the bootstrap
DGP, that is, conditional on Y . p(Y ) is a well-defined random variable, as it is a deter-
ministic measurable function of the data vector Y , with a distribution determined by that
of Y . We will see that as n → ∞ this distribution tends to a nonrandom limit.
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For convenience in what follows, we let γ = 1/α. Knight (1989) shows that, conditionally
on the original data, the bootstrap statistic τ∗ has the same distribution (in the limit when
B → ∞) as the random variable

τ(M) = n−γ
n∑

j=1

(Yj − Ȳ )(Mj − 1),

where the Mj are n independent Poisson random variables with expectation one. The
cumulant-generating function (cgf) of the distribution of τ(M) is

n∑

j=1

{
exp

(
itn−γ(Yj − Ȳ )

)− 1
}

(12)

as a function of t. The variance of this distribution is n−2γ
∑n

j=1(Yj − Ȳ )2, and its
expectation is zero. Note that the function (12) is random, because it depends on the Yj .

It follows that the distribution of the self-normalised sum

t(M) ≡
∑n

j=1(Yj − Ȳ )(Mj − 1)
(∑n

j=1(Yj − Ȳ )2
)1/2 (13)

has expectation 0 and variance 1 conditional on Y , and so also unconditionally.

Let Fn
Y denote the random CDF of t(M). Then, from (11) with τ∗ replaced by τ(M), we

have

p(Y ) = Fn
Y

( ∑n
j=1 Yj

(∑n
j=1(Yj − Ȳ )2

)1/2
)
. (14)

The principal questions that asymptotic theory is called on to answer in the context of
bootstrapping the mean are:

(i) Does the distribution with cgf (12) have a nonrandom limit as n → ∞? and

(ii) Does the distribution of the bootstrap P value p(Y ) have a well-defined limit as
n → ∞?

If question (i) has a positive answer, then the cgf (12) must tend in probability to the non-
random limit, since convergence in distribution to a nonrandom limit implies convergence
in probability. Question (ii), on the other hand, requires only convergence in distribution.

A detailed answer to question (i) is found in Hall (1990). The distribution with cgf (12)
has a nonrandom limit if and only if the distribution of the Yj either is in the domain of
attraction of a normal law or has slowly varying tails one of which completely dominates
the other. The former of these possibilities is of no interest for the present paper, where
our concern is with heavy-tailed laws. The latter is a special case of what we consider
here, but, in that case, as Hall remarks, the nonrandom limit of the bootstrap distribution
bears no relation to the actual distribution of the normalised mean.
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Regarding question (ii), we have seen that the distribution of p(Y ) is nonrandom, since
p(Y ) is the deterministic measurable function of Y given by (14). The question is whether
the distribution converges to a limiting distribution as n → ∞. A part of the answer is
provided by the result of Logan, Mallows, Rice, and Shepp (1973), where it is seen that
the self-normalised sum

t ≡
∑n

j=1 Yj

(∑n
j=1(Yj − Ȳ )2

)1/2 (15)

that appears in (14) has a limiting distribution when n → ∞. In fact, what we have to
show here, in order to demonstrate that the bootstrap P value has a limiting distribution,
is that the self-normalised sum and the CDF Fn

Y have a limiting joint distribution, and
this can be shown by a straightforward extension of the proof in Logan et al.. This is what
we need to conclude that the bootstrap P value does indeed have a limiting distribution
as n → ∞. Of course, asymptotic inference is possible only if we know what that limiting
distribution actually is.

We stated earlier that the distribution of the statistic t(M) of (13) has expectation 0 and
variance 1. A simulation study not reported in detail here shows that, for values of n in
the range from 20 to 2,000, the distribution is not too far removed from standard normal.
Suppose for a moment that the CDF of t(M) is actually equal to Φ, the standard normal
CDF. Then the bootstrap P value p(Y ) of (14) would be Φ(t), where t is given by (15),
and its CDF would be

Pr
(
p(Y ) ≤ u

)
= Pr

(
Φ(t) ≤ u

)
= Pr

(
t ≤ Φ−1(u)

)
.

Denote the CDF of the limiting distribution of t by Gα,β . The limiting distribution of p(Y )
would thus have CDF Gα,β ◦ Φ−1. Provided that α and β can be estimated consistently,
an asymptotically valid test of the hypothesis that the expectation of the Yj is zero could
be based on p(Y ) and the estimated CDF Gα̂,β̂ ◦ Φ−1.

The asymptotic distribution function Gα,β is characterised by a complex integral involving
parabolic cylinder functions, and so computing it is a nontrivial task. For a finite sam-
ple, therefore, it is easier and preferable to estimate the distribution of t consistently by
simulation of self-normalised sums from samples of stable random variables with α and β
consistently estimated from the original sample. This amounts to a parametric bootstrap
of t, without reference to p(Y ).

An advantage of a parametric bootstrap of t is that its asymptotic distribution applies
not only when the Yj are generated from a stable distribution, but also whenever they are
generated by any distribution in the domain of attraction of a stable law. This leaves us
with the practical problem of obtaining good estimates of the parameters. The location
and scale parameters are irrelevant for the bootstrap, as we can generate centred simulated
variables, and the statistic t, being normalised, is invariant to scale.

The proposed bootstrap is described by the following steps:

1. Given the sample of random variables Y1, ..., Yn with distribution F in the domain of
attraction of the stable law cS(α, β), compute the self-normalised sum t.

– 14 –



2. Estimate α and β consistently from the original sample.

3. Draw B samples of size n from S(α̂, β̂) with α̂ and β̂ obtained in the previous step.

4. For each sample of the stable random variables compute the bootstrap self-normalised
sum,

t∗ =

∑n
j=1 Y

∗
j(∑n

j=1(Y
∗
j − Ȳ ∗)2

)1/2 .

5. The bootstrap P value is equal to the proportion of bootstrap statistics more extreme
than t.

Theorem 2

The distribution of t∗, conditional on the sample Y1, . . . , Yn, approaches that of t
as n → ∞ when the Yj are drawn from a distribution in the domain of attraction
of a non-Gaussian stable law S(α, β).

Proof:

The result follows from three facts: first, the consistency of the estimators α̂ and
β̂, second, the continuity of the stable distributions with respect to α and β, and,
third, the result of Logan et al. that shows that the self-normalised sum has the
same asymptotic distribution for all laws in the domain of attraction of a given
stable law S(α, β).

6. Goodness of Fit

This section is based on ongoing work joint with Emmanuel Flachaire, Frank Cowell,
and Sanghamitra Bandyopadhyay. The idea is to develop a goodness-of-fit test based on
a measure of distance between two distributions. Usually, one of the distributions is the
empirical distribution of a sample; the other might be the empirical distribution of another
sample, or else a theoretical distribution, in which case we suppose that it is absolutely
continuous. It is desired to have a test that satisfies a number of criteria: among them
robustness to heavy tails, and also the possibility to tailor the test statistic to maximise
power in certain regions of the distribution.

For two samples of the same size, {Xi} and {Yi}, i = 1, . . . , n, Cowell, in Cowell (1985),
proposed the measure

Jα =
1

nα(α− 1)

n∑

i=1

{(Xi

µ1

)α( Yi

µ2

)1−α}
,

where µ1 and µ2 are respectively the means of the X and Y samples, and α, which may
take on any real value, determines the part of the distribution to be weighted most heavily.
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The measure can be adapted so that the Y sample is replaced by a theoretical distribution
with CDF F , as follows:

Jα =
1

nα(α− 1)

n∑

i=1

{(Xi

µ1

)α(F−1(i/(n+ 1))

µF

)1−α}
, (16)

where F−1 is the quantile function for distribution F , and µF can be either the mathe-
matical expectation of that distribution, or else the mean of the quantiles F−1(i/(n+1)).

For the purposes of inference, it is necessary to know the distribution of Jα in (16) under
the null hypothesis that the X sample is an IID sample drawn from distribution F , or,
failing that, the limiting distribution as n → ∞. Under regularity conditions that are
very restrictive regarding the right-hand tail of the distribution, it can be shown that the
limiting distribution of nJα is that of

1

2µF

[∫ 1

0

B2(t) dt

F−1(t)f2(F−1(t))
− 1

µF

(∫ 1

0

B(t) dt

f(F−1(t))

)2]
. (17)

Here f = F ′ is the density of distribution F , µF is its expectation, and B(t) is a Brown-
ian bridge. Unfortunately, even for a distribution as well-behaved as the exponential, the
random variable (17) has an infinite expectation. The divergence of the expectation as
n → ∞ is very slow, like log log n, but divergence at any rate whatever invalidates asymp-
totic inference, and makes bootstrap inference hard to justify. Only if F has a bounded
support does the limiting distribution have reasonable properties.

When F is a known distribution, the Xi of the original sample can be transformed to
F (Xi), which, under the null hypothesis, is distributed as U(0,1), that is, uniformly on
the interval [0, 1]. The statistic that compares the F (Xi) and the uniform distribution is,
analogously to (17), but without the denominator of n,

Gα ≡ 1

α(α− 1)

n∑

i=1

{(F (X(i))

µ̂U

)α( i/(n+ 1)

1/2

)1−α

− 1

}
, (18)

where µ̂U ≡ n−1
∑

i F (Xi), and the X(i) are the order statistics. Since the F (Xi) are IID
drawings from U(0,1), the distribution of Gα in (18) is the same as that of the variable
in which the F(i) are replaced by the order statistics of an IID sample of size n from
U(0,1). Thus the distribution of (18) under the null depends only on n and α, and is quite
unaffected by the heaviness or otherwise of the tail of F . Further, the limiting distribution
as n → ∞ exists and has finite moments.

Matters are slightly more complicated if F is known only up to the values of some par-
ameters that can be consistently estimated. Suppose we have a family of distributions
F (θ) and a vector of consistent estimates θ̂. It can be shown that the distribution of Ĝα,

in which F is replaced by F (θ̂), is well defined, and the limiting distribution exists. In
fact, under certain conditions on the family F (θ), Ĝα is an asymptotic pivot, a fact that
justifies the use of the bootstrap.
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In a simulation study with the lognormal distribution, variables X were generated by the
formula X = exp(µ+ σW ), W ∼ N(0, 1). For each of N samples of n IID drawings, esti-
mates µ̂ and σ̂ of the parameters were obtained, and the estimated distribution, with CDF
Φ
(
(log x− µ̂)/σ̂

)
, used to construct a realisation of the Ĝα just described. Next, B boot-

strap samples of size n were generated by the formula X∗ = exp(µ̂+ σ̂W ∗), W ∗ ∼ N(0, 1),
and, for each bootstrap sample, estimates µ∗ and σ∗ were obtained and used to compute
a bootstrap statistic G∗

α. The full set of bootstrap statistics was then used to form a
bootstrap P value, as the proportion of the B statistics greater than the Ĝα obtained from
the original sample. The nominal distribution of the bootstrap P value is U(0,1). Table 4
shows the maximum discrepancies of the empirical distributions of these P values, based
on N replications, for N = 10, 000, B = 399, µ = 0, σ = 1, and α = 2, as a function of
sample size n. Except for the very small sample size with n = 16, the discrepancies are
insignificantly different from zero.

n 16 32 64 128

max discrepancy 0.0147 0.0048 0.0065 0.0049

Table 4: P value discrepancies for Ĝα; lognormal distribution

7. A Wild Bootstrap for Quantile Regression

The content of this section jumps away from that of the rest of the paper, by consider-
ing quantile-based inference and, in particular, quantile regression. Basing inference on
quantiles is often a good way to avoid the difficulties posed by the possible presence of
heavy tails. In particular, quantile regression provides a way to obtain quite detailed infor-
mation about the conditional distribution of a dependent variable. In Koenker and Xiao
(2002), there is considerable discussion of the problem of performing reliable inference on
the results of quantile regression. Although Koenker and Hallock (2000) mention het-
eroskedasticity as a “peril” for quantile regression, there does not seem to be a great deal
in the literature about heteroskedasticity-robust inference for quantile regression, beyond
suggestions that the Eicker-White approach can be extended to it. See also the excellent
textbook treatment in Koenker (2005).

With least-squares regression, and indeed in many other contexts, a bootstrap technique
that offers a degree of robustness against heteroskedasticity is the wild bootstrap. In
Davidson and Flachaire (2008), it is suggested that, for ordinary least squares, the most
reliable way to implement the wild bootstrap is to use the Rademacher distribution:

εt =

{
1 with probability 1/2
−1 with probability 1/2.

(19)

in order to form the bootstrap disturbances as u∗
t = ûtεt, where the ût are the OLS

residuals. This means that the bootstrap disturbances are just the residuals multiplied by
a random sign.
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If one forgets for a moment the difference between residuals and true disturbances, the wild
bootstrap with (19) conditions on the absolute values of the disturbances, and generates
the bootstrap distribution by varying their signs. This procedure can be expected to work
well if the disturbances are symmetrically distributed about zero, because in that case the
sign of the disturbance is independent of its absolute magnitude. A recent working paper
by Cavaliere, Georgiev, and Taylor (2009) uses this fact to justify a wild bootstrap for
the mean when the variance need not exist. In fact their procedure works for the median
even when the mean itself does not exist. When the disturbances of a regression model are
skewed, however, the symmetric wild bootstrap can be expected to work less well, which
is why the original suggestion of Mammen (1993) was to use an asymmetric distribution
instead of (19).

With a skewed distribution with median zero, it is still possible to decompose a drawing
into a sign and another variable independent of the sign. We have

Lemma 2

Let F be an absolutely continuous CDF. The random variable X given by

X = SF−1(U) + (1− S)F−1(1− U),

U ∼ U(0, 0.5), S =

{
1 with probability 0.5
0 with probability 0.5

, U ‖ S,
(20)

follows the distribution with CDF F . Conversely, if X has CDF F , and if U and
S are defined by

S = I
(
X ≤ F−1(0.5)

)
and U = SF (X) + (1− S)(1− F (X)), (21)

then X, U , and S satisfy (20). In addition, the unconditional median of X is also
a median conditional on U .

Proof: In Appendix

A wild bootstrap procedure for median regression can be based on this lemma. Let the
regression model be

yt = Xtβ + ut, t = 1, . . . , n, (22)

where the disturbance terms ut have zero median, so that the median of yt conditional on
the exogenous explanatory variables Xt is Xtβ. The quantile regression estimator β̂ for
the median is just the least-absolute-deviation (LAD) estimator, which minimises the sum

n∑
t=1

|yt −Xtβ|.

The wild bootstrap DGP first centres the LAD residuals by subtracting their median from
each of them. Then the residuals along with the corresponding Xt variables are sorted in
increasing order of the residuals, thereby keeping the pairing between explanatory variables
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and residuals. Denote by (û(t),X(t)) the pair in position t of the sorted array. The next
step is to generate a sequence S∗

t of IID drawings from the binary distribution (19), and
then, for each t such that S∗

t = 1, set u∗
t = û(t), and, for each t such that S∗

t = −1, set
u∗
t = û(n−t) for n even, or u(n+1−t) for n odd. The bootstrap sample is generated by the

equation

y∗t = X(t)β̂ + u∗
t .

In this way, the bootstrap DGP implements (20) with F given by the empirical distribution
of the recentred LAD residuals. Zero is a median of each u∗

t conditional on X(t), and so
the bootstrap DGP is a special case of the model (22). Note that the reordering of the
observations due to the sorting by the residuals is of no importance.

It must be noted that this new wild bootstrap is not appropriate for least-squares regres-
sion, since, the mean of u∗

t conditional onX(t) is not zero, unless the underlying distribution
is symmetric.

All the bootstrap DGPs we look at next have the form

y∗t = X∗
t β̂ + u∗

t .

A conventional resampling bootstrap sets X∗
t = Xt and the u∗

t as IID drawings from

the empirical distribution of the residuals yt − Xtβ̂. This bootstrap DGP thus destroys
the pairing between the Xt and the corresponding disturbances. The conventional pairs
bootstrap, or (y,X) bootstrap, which resamples pairs (yt,Xt), preserves the pairing, at
the expense of abandoning the condition that the median of the bootstrap disturbance for
observation t is zero conditional on Xt. The conventional wild bootstrap assigns a random
sign to each residual, retaining the pairing, so that X∗

t = Xt and u∗
t = S∗

t |ut|, with the
S∗
t IID drawings from (19). This bootstrap DGP does maintain the condition that u∗

t has
zero median conditional on Xt. The new wild bootstrap is as described above.

For simplicity, we now restrict attention to the case in which there is only one explanatory
variable, Xt, and one parameter β, with LAD estimate β̂, and true value β0. For all of
the different bootstrap procedures, the LAD estimate β∗ is computed using the bootstrap
data, and the bootstrap statistic β∗ − β̂ computed. The bootstrap uses the distribution
of β∗ − β̂ as an estimate of that of β̂ − β0 under the null, and so the bootstrap P value
is the proportion of the β∗ − β̂ that are more extreme than β̂ − β0. Both two-tailed and
one-tailed tests are possible. The nominal distribution of the bootstrap P value under the
null is U(0,1).

First, we look at the case with the ut IID drawings from some distribution with zero
median. In this case, even with skewed disturbances, all the bootstraps work as well as
can reasonably be expected when working with a non-pivotal quantity that is not even
asymptotically pivotal. In Table 5 are shown the maximum discrepancies between the
bootstrap distribution, based on 1,000 replications with 199 bootstraps each, and the
nominal U(0,1) distribution, for a one-tailed test that rejects to the left. The symmetric
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n 33 129 513

resampling 0.065 0.040 0.037

0.078 0.052 0.046

wild 0.098 0.047 0.039

0.102 0.044 0.043

new wild 0.112 0.055 0.038

0.125 0.056 0.048

Table 5: Maximum bootstrap discrepancy; IID disturbances.
Upper numbers for symmetric distribution, lower for skewed.

distribution is the stable distribution S(1.5, 0), and the skewed distribution S(1.5, 0.5).
Thus in neither case does the variance exist.

We see that the new wild bootstrap is in fact the worst of the three in most cases, although,
since the figures in the table may have a standard deviation of up to 0.016, the differences
in the discrepancies are not measured very accurately in this experiment.

Things are very different, however, if the disturbances are heteroskedastic. In this case,
we do not expect the resampling bootstrap to be appropriate. The conventional wild
bootstrap should be fine so long as the disturbances are symmetrically distributed, less so
if they are skewed. The new wild bootstrap should work well enough even with skewed,
heteroskedastic disturbances. The DGP used to study the effects of heteroskedasticity is
as follows:

yt = Xt(β0 + ut),

where the ut again have median zero, and are independent of the corresponding Xt. The
median of yt conditional on Xt is again Xtβ0.

Maximum discrepancies are shown in Table 6. We see that resampling is invalid; its
discrepancy does not diminish for larger samples. Both wild bootstraps work acceptably
well, the conventional one somewhat better than the new one.

n 33 129 513

resampling 0.240 0.248 0.281

0.254 0.253 0.294

wild 0.093 0.039 0.034

0.090 0.041 0.040

new wild 0.112 0.046 0.043

0.128 0.044 0.057

Table 6: Maximum discrepancy; heteroskedastic disturbances
Upper numbers for symmetric distribution, lower for skewed.
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All the results so far presented are for median regression. For a general quantile p,
0 < p < 1, and model (22), one minimises the function

n∑
t=1

ρp(yt −Xtβ)

with respect to β, where ρp(u) = u
(
p − I(u < 0)

)
; see Koenker (2005). Let β̂p be the

estimator resulting from this minimisation. If the disturbances are IID, then a possible
resampling bootstrap DGP is

y∗t = Xtβ̂p + u∗
t ,

where the u∗
t are IID drawings from the empirical distribution of the residuals yt −Xtβ̂p,

shifted so that their p-quantile is zero. Thus the p-quantile of y∗t is Xtβ̂p. If the distur-
bances ut are IID, then this resampling bootstrap should be valid asymptotically. However,
if the ut are heteroskedastic, it should be no more valid than it is for the case we examined,
with p = 0.5.

The conventional wild bootstrap may be modified as follows for the model with just one
explanatory variable. In order to test the null hypothesis that the p-quantile of yt is Xtβ0,
the estimate β̂p is found, along with the residuals ût = yt−Xtβ̂p, and the estimation error

β̂p−β0 computed. The residuals are shifted so that their p-quantile is zero. The bootstrap
DGP is then

y∗t = Xtβ̂p − S∗
t |ût|+ (1− S∗

t )|ût|,
where S∗

t = 1 with probability p, and -1 with probability 1 − p. Thus the p-quantile

of y∗t conditional on Xt is Xtβ̂p. If β
∗
p denotes the estimate from the p-quantile regression

with the bootstrap data, then the distribution of β∗
p − β̂p is the bootstrap estimate of the

distribution of β̂p − β0.

The new wild bootstrap can be modified using the following Lemma.

Lemma 3

Let F be an absolutely continuous CDF, and let 0 < p < 1. The random vari-
able X given by

X = SF−1(pU) + (1− S)F−1
(
1− (1− p)U

)
,

U ∼ U(0, 1), S =

{
1 with probability p
0 with probability 1− p

, U ‖ S
(23)

follows the distribution with CDF F . Conversely, if X has CDF F , and if U and
S are defined by

S = I
(
X ≤ F−1(p)

)
and U = S

F (X)

p
+ (1− S)

1− F (X)

1− p
,
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then X, U , and S satisfy (23). In addition, the unconditional p-quantile of X is
also a p-quantile conditional on U .

Proof: Similar to that of Lemma 2.

Since only very preliminary results are as yet available, I will not go into details of the
implementation of the new wild bootstrap for general p. These preliminary results show
that, with heteroskedastic disturbances, the resampling bootstrap fails completely, the
modified conventional wild bootstrap performs badly, whereas the new wild bootstrap
gives rise to distortions not significantly different from those presented above for median
regression.

8. Conclusion

The result of Bahadur and Savage imposes severe restrictions on the sort of model that
can allow for reliable inference based on moments. The reasoning that leads to their result
is unrelated to the existence or otherwise of heavy tails, but imposing the boundedness of
higher moments does avoid the impossibility result of their theorem. The bootstrap can
sometimes provide reasonable moment-based inference with heavy-tailed distributions, but
its performance degrades as higher moments cease to exist. Quantile-based methods offer
an escape. In particular, if one is prepared to assume the symmetry of a distribution,
unreliable inference on the mean can be replaced by reliable inference on the median.
The use of the bootstrap with quantile-based methods is worthy of considerable further
research, given the encouraging results obtained with the new wild bootstrap procedure.
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Appendix

Lemma 1:

If the class of distributions F is restricted so that there exists a finite K and some
θ > 0 such that E|U |1+θ < K for all distributions in F , the mapping from F to
the real line that associates its expectation to each distribution is continuous.

Proof:

Suppose that, contrary to what we wish to show, this restriction does not make the mapping
continuous. Then, for the density f of a distribution in F at which the mapping is not
continuous, there exists a sequence of densities gm of distributions in F such that

∫
|f(x)− gm(x)| dx → 0 as m → ∞ (24)

with ∫
x f(x) dx = µ0,

∫
x gm(x) dx → µ1 6= µ0 as m → ∞.

The uniform boundedness assumption means that there exist K and δ > 0 such that

∫
|x|1+θf(x) dx < K and

∫
|x|1+θgm(x) dx < K for all m.

Then ∫
|x|1+θ|f(x)− gm(x)| dx ≤

∫
|x|1+θ

(
f(x) + gm(x)

)
dx < 2K. (25)

For any K1 > 1, we have for sufficiently large m that

|µ0 − µ1| ≤
∫

|x|≤K1

|x| |f(x)− gm(x)|dx+

∫

|x|>K1

|x||f(x)− gm(x)| dx. (26)

But

∫
|x|1+θ|f(x)− gm(x)|dx ≥

∫

|x|>K1

|x|1+θ|f(x)− gm(x)| dx

≥ Kθ
1

∫

|x|>K1

|x| |f(x)− gm(x)|dx. (27)

Choose M(K1) such that

∫

|x|≤K1

|x| |f(x)− gm(x)| dx ≤ K1

∫
|f(x)− gm(x)| dx < |µ0 − µ1|/2
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for all m > M(K1). This is possible by virtue of assumption (24). Then from (26), we see
that ∫

|x|>K1

|x| |f(x)− gm(x)| dx >
|µ0 − µ1|

2
,

and, combining this with (27), we obtain for all m > M(K1)

∫
|x|1+θ|f(x)− gm(x)| dx >

|µ0 − µ1|
2

Kθ
1 .

For θ > 0, we can find a K1 such that Kθ
1 |µ0 − µ1|/2 is greater than 2K, which con-

tradicts (25). Thus the uniform boundedness assumption restores the continuity of the
mapping from F to the expectation.

It is not hard to check that the above proof does not require that the densities exist. We
can systematically replace f(x) dx by dF (x), where F is a CDF, and similarly for gn(x).

Proof of Lemma 2

Let m = F−1(0.5) be the median of the distribution F . We compute the CDF of X given
by (20). For x ≤ m,

Pr(X ≤ x) = Pr(S = 1)Pr(F−1(U) ≤ x) = 0.5Pr(U ≤ F (x)) = F (x).

For x > m,

Pr(X ≤ x) = Pr(S = 1) + Pr(S = 0)Pr(F−1(1− U) ≤ x)

= 1−
2

(
1 + Pr(1− U ≤ F (x)

)
= 1−

2

(
1 + 2F (x)− 1) = F (x).

This demonstrates the first part of the Lemma.

Let U and S be defined as in (21). Then obviously S has the required distribution, and
U ∈ [0, 0.5]. Further,

SF−1(U) + (1− S)F−1(1− U) = SX + (1− S)F−1
(
F (X)

)
= X.

We next show the independence of U and S. We see that, for u ∈ [0, 0.5],

Pr(U ≤ u|S = 1) = Pr
(
F (X) ≤ u|X ≤ F−1(0.5)

)
=

Pr
(
X ≤ F−1(u)

)

Pr
(
X ≤ F−1(0.5)

) = 2u,

while

Pr(U ≤ u|S = 0) = Pr
(
1− F (X) ≤ u|X > F−1(0.5)

)
=

Pr
(
X ≥ F−1(1− u)

)

Pr
(
X > F−1(0.5)

) = 2u.
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It follows that S and U are independent, and that U ∼ U(0, 0.5).

Finally,

Pr
(
X ≤ m

∣∣ U)
= E

(
I
(
SF−1(U) + (1− S)F−1(1− U) ≤ m

) ∣∣ U
)

= E
(
S I

(
F−1(U) ≤ m

) ∣∣ U
)
+ E

(
(1− S) I

(
F−1(1− U) ≤ m

) ∣∣ U
)

= 0.5 I
(
U ≤ F (m)

)
+ 0.5 I

(
1− U ≤ m

)
= 0.5,

since 0 ≤ U ≤ 0.5 and F (m) = 0.5, so that U ≤ F (m) with probability 1 and 1− U ≤ m
with probability 0. This proves the last statement of the Lemma.
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