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Abstract

It is known that Efron’s resampling bootstrap of the mean of random variables with common
distribution in the domain of attraction of the stable laws with infinite variance is not consistent,
in the sense that the limiting distribution of the bootstrap mean is not the same as the limiting
distribution of the mean from the real sample. Moreover, the limiting distribution of the
bootstrap mean is random and unknown. The conventional remedy for this problem, at least
asymptotically, is either the m out of n bootstrap or subsampling. However, we show that
both these procedures can be quite unreliable in other than very large samples. We introduce a
parametric bootstrap that overcomes the failure of Efron’s resampling bootstrap and performs
better than the m out of n bootstrap and subsampling. The quality of inference based on
the parametric bootstrap is examined in a simulation study, and is found to be satisfactory
with heavy-tailed distributions unless the tail index is close to 1 and the distribution is heavily
skewed.
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1 Introduction

Let F' be the cumulative distribution function (CDF') of the independent and identically dis-
tributed (IID) random variables Y1, ...,Y,. We are interested in the inference on the parameter
w in the location model

Y;=p+U;, EWU)=0, j=1,...,n. (1)

It has been known since Bahadur and Savage (1956) that such inference is impossible unless
moderately restrictive conditions are imposed on the distribution of the disturbances U;. Here,
we investigate bootstrap inference when the variance of the U’s does not exist. Even when it
does, there are still further conditions needed for inference to be possible.

The focus of this paper is the set of stable laws, and their domains of attraction. Since we know
in advance that complete generality is impossible, we hope that considering laws in the domains
of attraction of stable laws will provide at least some generality. Our main requirement is that
F'is in the domain of attraction of a stable law with a tail index a greater than 1 and smaller
than or equal to 2. A distribution F' is said to be in the domain of attraction of a stable law with
a < 2, if centered and normalized sums of independent and identically distributed variables
with that distribution converge in distribution to that stable law. We write F' € DA(«).

The stable laws, introduced by Lévy (1925), are the only possible limiting laws for suitably
centered and normalised sums of independent and identically distributed random variables.
They allow for asymmetries and heavy tails, properties frequently encountered with financial
data. They are characterized by four parameters: the tail index a (0 < a < 2), the asymmetry
parameter 5 (—1 < 8 < 1), the scale parameter o (o > 0), and the location parameter pu. A
stable random variable X can be written as X = p+ 0Z, where the location parameter of Z is
zero, and its scale parameter unity. We write the distribution of X as S, g5,,. The distribution
of Z is Sa,1,0- All the moments of X of order larger than or equal to o do not exist. When
1 < a < 2, the parameter p in model (1) can be consistently estimated by the sample mean.
When o < 2, the variance does not exist. When a = 2, the distribution S, g, is the normal
distribution N (u,202) and o2 can be consistently estimated by the sample variance.

It is documented in numerous studies that many series in finance and economics are heavy-tailed.
The first study goes back to Mandelbrot (1963). More recent studies are Mittnik and Rachev
(2000), Ibragimov (2011) and the references therein.

Since there has been some confusion in the literature occasioned by the existence of more than
one parametrization of the stable laws, we specify here that the characteristic function of what
we have called the S, g 10 distribution is

E(exp(itY)) = exp(—|t|*[1 — i tan(r/2)(signt)]). (2)

In simulation exercises, we generate realizations of this distribution using the algorithm pro-
posed by Chambers, Mallows, and Stuck (1981), their formula modified somewhat to take ac-
count of their use of a different parametrization. Specifically, a drawing from the S, 51,0
distribution is given by

1/2asin(a(Wy + b(a, 8))) (COS(W1 —a(Wi + b(«, 5))))(1—a)/a

2, 2
(1+ B° tan®(rar/2)) (cos TWy)1/ W

3)



where W is uniformly distributed on [—7/2, 7/2], W3 is exponentially distributed with expec-
tation 1, and b(a, ) = tan™'(Btan(ra/2)) /. Wi and W; are independently generated.

It was shown by Athreya (1987) that, when the variance does not exist, the conventional
resampling bootstrap of Efron (1979) is not valid (the bootstrap distribution of the sample
mean does not converge to a deterministic distribution as the sample size n tends to infinity).
This is due to the fact that the sample mean is greatly influenced by the extreme observations
in the sample, and these are very different for the sample under analysis and the bootstrap
samples obtained by resampling, as shown clearly in Knight (1989) and Hall (1990a).

A proposed remedy for the failure of the conventional bootstrap is the m out of n bootstrap;
see Arcones and Gine (1989). It is based on the same principle as Efron’s bootstrap, but the
bootstrap sample size is m, smaller than n. If m/n — 0 as n — oo, this bootstrap is consistent.
Like the m out of n bootstrap, the subsampling method proposed in Romano and Wolf (1999)
makes use of samples of size m smaller than n, but the subsamples are obtained without
replacement. If m is chosen appropriately, this method too is consistent. However, as we will
see in simulation experiments, the m out of n bootstrap fails and subsampling does not always
provide reliable inference if the sample size is not very large.

In this paper, we introduce a parametric bootstrap for the parameter pu of model (1), that
overcomes the failure of the conventional bootstrap test and performs better than the m out of n
bootstrap and subsampling. The parametric bootstrap is based on a central limit argument for
self-normalised sums. Section 2 introduces the main theoretical results, followed by a simulation
study in Section 3 and a conclusion in Section 4.

2 Main results

2.1 Introduction

Let {Y;}}_; be IID random variables from a distribution F' € DA(a), 1 < o < 2. Restricting
« to be greater than 1 ensures that the expectation of F' exists. Then, the parameter u of
model (1) can be consistently estimated by the sample mean Y, = n~! Z?Zl Y;. Ibragimov
(2007) shows that the sample mean is the best linear unbiased estimator of the mean of heavy-
tailed populations with a > 1, in the sense of peakedness.

Suppose we wish to test the hypothesis

Ho : pp = po- (4)

A possible test statistic is
n _
Zj:1(Yj — po) Y — o

Gn n~la,

: (5)

1/

Tn =

where a,, is a positive constant and a,, — co. For the case when ' = S, 5, , we have a, = n
as the stable distributions are in their own domain of attraction (Feller (1971), p.576). This
choice of a, also holds for the Pareto, Burr and ¢ distributions with 1 < a < 2, but not
for the log-gamma distribution with scale v > 1, for which a, = (I'(v) " (logn)"~'n) Le (see
Embrechts, Kluppelberg, and Mikosch (1997), p.133-134). In general, the choice of a,, can be
made such that n ff;n y>dF(y)/a? — 1. However, the choice of a, is not unique. Any other



sequence by, such that b, /a, tends to a positive limit may be used in place of a,, (Feller (1971),
p.314-315; Mittnik, Rachev, and Kim (1998), p.343).

The distribution F' from DA(«) has the property that a sum of IID random variables from F,
suitably centred and normalised, has an asymptotic stable distribution (Gnedenko and Kolmogorov
(1954), Theorem 2 p.227; Feller (1971) Definition 2 p.172, p.312). We call this property the
Generalized Central Limit Theorem (GCLT). Hence, by the GCLT, the asymptotic distribution

of 7, under the true null (4) is the stable distribution S, g+0. If 0, @, and 3 are known, then
we can perform asymptotic inference by comparing the realization of the statistic 7,, with a
quantile of the stable distribution S, g 0. The asymptotic P value for a test that rejects in
the left tail of the distribution is

Pn,a,aﬁ = Sa,ﬁ,U,O(Tn)- (6)
The hypothesis (4) can also be tested using the t—statistic
n1/2<Yn - NO)
T, = ; - 7z (7)
(=D (v - Ya)?)

Efron (1969) shows that T}, has a limiting distribution that coincides with the limiting distri-
bution of the self-normalised sum

Z?:1(Yj — Ho)
(Xj=1 (Y5 = mo)?))H/2

ty =

(8)

This follows from noticing that
Th =ta[(n—1)/(n — ti)]l/za (9)
where (n — 1)/(n — t2) converges to one in probability.

Logan, Mallows, Rice, and Shepp (1973) (henceforth LMRS) derive the expression of the lim-
iting distribution of ¢, for the case when {Y;}7_; are IID from F' € DA(«a), 1 < a < 2 and
E(Y1) = 0. We denote the limiting distribution of ¢, and T, under (4) by G, 3. Hence, the
asymptotic P value for a test that rejects in the left tail of G, g is

Ppopg=Gap(Th). (10)

One advantage of (10) over (6) is that the parameter o does not have to be known as ¢, and
T, are scale invariant. However, explicit estimation of G, g is a nontrivial task because this
distribution is expressed in terms of integrals of parabolic cylinder functions in the complex
plane. Moreover, care is needed when evaluating the integrals in the complex plane to make
sure that the transition from the rectangular to polar representation of complex numbers is
done correctly.

A well-known alternative to the asymptotic tests is the bootstrap. If F' € DA(«a), 1 < a < 2,
as assumed in this paper, the ordinary nonparametric bootstrap, based on resampling with
replacement, is asymptotically invalid, as shown by Athreya (1987), Knight (1989), and Hall
(1990a). The invalidity is due to the fact that the nonparametric bootstrap fails to model the
relationship among extreme order statistics in the sample correctly. Asymptotic and finite-
sample properties of the bootstrap mean are dictated precisely by the behavior of the extreme
order statistics.



The solutions to the nonparametric bootstrap failure proposed so far in the literature are the

m out of n bootstrap (Athreya (1985), Arcones and Gine (1989), Bickel, Gotze, and van Zwet
(1997), Hall and Jing (1998)) and subsampling (Romano and Wolf (1999), Politis, Romano, and Wolf
(1999)). These methods can be based on the non-studentised bootstrap statistic

o (YY)

= 11
™ 2 (1)
or the studentised bootstrap statistics
m * \/ a =
g 2= Y ™ — m! (Y, — ) (12)
m m

_ 1/2° _ 1/2
(S - v2) (om0 - v2)
where the Y"’s are drawings from the empirical distribution function (EDF) of {Y;}7_; and
have mean Y,,; a,, is a positive constant, a,, — oo and YV} = m~! Z;n:l Y;* The bootstrap
P value is then given by the proportion of bootstrap statistics more extreme than 7,, t,, or
T,, depending on the specific choice of test statistic. The asymptotic validity of the m out
of n bootstrap and subsampling is guaranteed by taking a bootstrap sample of size m < n
such that m/n — 0 as n and m — oo. If m fails to satisfy these conditions, the m out of n
bootstrap and subsampling distributions are random (as can be concluded from Hall (1990a)
and Hall and Yao (2003)). Moreover, Hall and Jing (1998) show that in the case of the statistic
Tn, for optimal choice of m and for a certain class of distributions F' € DA(«), the m out of n
bootstrap has an error of order larger than the error of the asymptotic test based on S, 4,0
and G, g, for given a, 8 and 0. The same conclusion applies for subsampling because in the
IID case, the difference between resampling with and without replacement is asymptotically
negligible if m?/n — 0 (Politis et al. (1999), page 48). In addition, our simulations in Section 3
indicate that in case of the t- statistic 7},, both m out of n bootstrap and subsampling exhibit
large size distortions unless the sample size n is very large.

In this paper we introduce a parametric bootstrap that overcomes the failure of the ordinary
nonparametric bootstrap and performs better than the m out of n bootstrap and subsampling.
The parametric bootstrap is based on the argument that the distribution G, g is the limiting
distribution of 7T, for IID {Y;}7_; having any distribution F' € DA(a), 1 < a < 2.

2.2 A parametric bootstrap
The parametric bootstrap for testing (4) that we propose here is described by the following
steps.

1. Suppose we have a sample H = {Yj}?:1 of IID random variables with distribution F' €
DA(a), 1 < a < 2. Compute the t-statistic Tr,.

2. Estimate a and 8 consistently from the original sample.

3. Draw B b?otstrap samples, Z7,..., Z;, from SdnﬁmLO
with &;, and 3, obtained in the previous step. Set Y;* = po + Z7 to satisfy (4).

(the estimate of S, g,1,0) using (3),

4. For each sample of stable random variables generated in the previous step compute the
bootstrap t-statistic



W2 — o)

T = T
(0110 v2)

n

with Y,y =n~! Do Y

5. The bootstrap P value is equal to the proportion of bootstrap statistics more extreme
than T,

B
. LS~ e
PB,n,dn,Bn - E I(Tn,z < Tn)v (14)
i=1

where I is the indicator function whose value is 1, when its Boolean argument is true, and 0
when it is false.

As B — o0, by the strong law of large numbers

* a.s. *
PB?”v&ann - PTL,OAén,Bn (15)
where P;,dn,ﬁn = G;:,éénwén (T,,) with GZ,dn,Bn (x) = Pr (T} < x|H) the finite sample distribution

:L:dnnﬁn
sources: from the IID Y*’s and from the estimators &,,, Bn which are functions of H. We also
denote by G, o g the (unknown) finite sample distribution of 7;, under (4). The asymptotic
validity of the parametric bootstrap relies on Assumptions 1-3.

of T} conditional on the random sample . The randomness of G comes from two

Assumption 1 The random variables {Y;}_; are IID and have a distribution F' € DA(a),
l<a<?2.

Assumption 1 implies that the sum tail

1—F(y) F(—y)
1= Fly)+ F(—y) ™ 1-F(y)+F(-y)

—q, (16)

is balanced, as y — oo, where ¢, and ¢, are positive constants, ¢. + ¢, = 1 (Feller (1971),
Theorem 2 p.577). Moreover, by Assumption 1,

1 - F(y)+F(~y) =y “L(y), y— oo, (17)

where L is a slowly varying function at infinity, i.e. for any > 0, limy_,[L(zy)/L(y)] =
1; see Bingham, Goldie, and Teugles (1989). For example L can be a constant, a function
converging to a constant, a logarithmic function, an iterated logarithmic function or power of
these. Condition (16) guarantees that

n [l — F(any)] — cqy - y Y=ry™% y>0 (18)

y =1~y y<o0 (19)

as n — 00, ap, — 00, where ¢, r and [ are positive constants (Feller (1971) p.576). If ¢, = ¢,
then the tails are symmetric.

Denote by &y, in and 7, the estimators of «, [ and r based on H.
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Assumption 2 plim,_, &, = «, plim,_, I, =1, plim,,_, 7, = 7.

The parameter § is linked to the parameters » and [ by the following relation

r—1
r+1

B= (20)
which follows from noting that for the stable distribution with scale one the tails behave like
(18) and (19) with ¢, = (1+8)/2and ¢ = (1 —f)/2 and ¢ = (2— ) (f; ¥ Sinydy)_l /v
see Samorodnitsky and Taqqu (1994) p.16 and Feller (1971) p.576. Hence, r = ¢(1 4 /3)/2 and
I = ¢(1 - ()/2 from which (20) follows. Hence under Assumption 2, the parameter 5 can be
consistently estimated by 8, = (fn, — 1)/ (Fn + ).

Let (64,3) € O, a bounded subset C (1,2) x (1,2), and let 7(z,&) = exp(ivyznt/*= /& 4
iv92%n%/*=2/%) 1, where z,v1,v9 € R and i = /—1. Define I’ to be 7 n(z,a)ndS, 5110 (2)-

Assumption 3 The map (&, 3) — I is continuous at the true value (o, 3).

Assumption 3 is satisfied if the Y*’s are drawn using (3). This formula generates random
variables with characteristic function (2) which is continuous in o and 3 for 1 < a < 2 (Zolotarev
(1986), Samorodnitsky and Taqqu (1994), p.7). Assumption 3 is the analogue of the condition
on p.1199 from Bickel and Freedman (1981), which together with Assumptions 1-2 guarantee
that I} converges in probability to a nonrandom limit as n» — oo. This result is needed in the
proof of the asymptotic validity of the parametric bootstrap.

The weak consistency of the parametric bootstrap (as defined in Shao and Tu (1995), p.72) is
showed in Proposition 1 below.

Proposition 1 Under Assumptions 1-3,

up | G, 5, (2) = Gnapl@) |0 (21)

i probability, as n — oo.

Proof In this proposition we prove the uniform convergence in probability to zero of the dis-
crepancy between the actual distribution of 7;, and the distribution of 7);. Since we know
the asymptotic distribution of T,, (under Assumption 1 it is derived in LMRS) and since this
distribution is continuous, we have that

sug | Gra,8(x) — Gap(x) |= 0 (22)
T€

by Polya’s theorem (Serfling (1980), p. 20). It then remains to show that

sup | G* . 5 () — Gap(x) |0 (23)

z€R 1,0, 0n

in probability under F'. We can arrive at this conclusion by imitating the proof of (22). To do
this it is convenient to rederive the asymptotic joint characteristic function of 7,, and

\ (Z}H(Yj — uo)2> is (24)

2
an




for the general case when F' € DA(«), not just for F' =S, g0, as initially derived in LMRS .
The joint characteristic function of 7, and A2 is

‘;On(UI,UZ) - E (eiv17'n+iv2)\%)
[ Y] — Y1 —p0)?\1"
= |Eexp (ivl 1~ Ho + i’Uz( ! Q'UO) >}
L Qn an
r +o00 _ _ 2 n
= |1 +/ [exp <iv1y'u0 + ivz(yzuo)> - 1] dF(y)]
L —00 Qn an
1 [t "
= |1+ / [exp (ivlz + i’UQZQ) — 1] ndF(anz + ,ug)} )
L n —0o0

The second equality follows from the IID assumption of the Y’s. The fourth equality follows
by taking z = (y — uo)/an. Denote

“+o00
I, = / (exp (ivlz + ivng) — 1) ndF(anz + po)

— 00

0
= / (exp (ivlz + iv222) - 1) ndF(anz + po)

—0o0

o
+ / (exp (ivlz + 10222) — 1) ndF(anz + po)-
0

From (18) and (19) we have that

ndF(anz + o) — arz"*tdz, 2>0 (25)
ndF(anz + o) = al(—2)"%1dz, 2<0 (26)
as n — oo. Hence
. . 1
Jim on(orv2) = lim (14 —0a)" = @ar(v1,02) (27)

with

0

dz|.(28)

exp (iv1z + ivgz?) — 1 % oxp (iv1z + iv922) — 1
p ( 1 2 ) dz + ar p ( 1 2 )

Sﬂa,r,l(vhvg) = exp [al/

—00
We now show that the asymptotic joint characteristic function of the numerator and denomi-

nator of Zn v )
R s (29)

1/2°
(Z;L:I(Y}* - NO)z)
appropriately normalised, is given by (28). The numerator and denominator of ¢ appropriately
normalised are

A*

n

(30)

n2/én

. (z;-;«yj*)? - uo>2>”“"



, hence a,, is estimated by n!/% . The joint characteristic

H)
* * 2 n

= [E <exp (ivl H 1/&% + ivg (¥ Q/d,uo) > ‘H)]
n n n n

1 [T o y—po . (y—po)? "
- {1 - n/ (eXp (wl e Pl e ) = 1) ndSs, 5, (W) (51

—0o0

The Y*’s are drawn from S. ;
J OanB'mLNO

function of 7¥ and A2 is

o - (v,v2) =E (ei””;?“”?’\fz2

1,8, n,ln

where the conditional expectation E(-[#) is with respect to the distribution S, 5 | - The
second equality follows from the fact that the Y*’s are conditionally independent. We have to
show that the probability limit of (31) is (28). Denote z = (y — pg)/n'/* and let

+o0 2
. . y—po . (y— o)
I, = / <exp <w1 1/Gn + 11)2n2/dn> B 1> "dsdn,/?n,l,uo(y)

—00

Feo . 11 5 2_2
= / {exp (wlzna &n +ivgzne an) —1}ndSA

aannvlnu'O
—00

(n'/*z + o).

By Assumption 2 and from the discussion thereafter we have
dn —a = Op(ha,(n,)) and B, — B = Oylhy (n,a)), (32)

where the rates of convergence hg,(n,a) — 0 and hg (n,o) — 0 as n — oo. The rates
depend on n and a and they are discussed explicitly in Section 2.4. Denote by h(n,a) =
max(hg, (n, @), hy (n,a)). Hence

n

—+o00
Irr = / (exp (ivlzn_op(hdn (ne)) 4 iv222n_20p(hdn(”’a))) - 1) nd(SaﬁJ’uo (Y2 + po) + Op(h(n, a))>

—0o0

0
= / (exp (ivlzn_OP(h&"("7a)) + ivngn_ZOp(han("va))) — 1) nd (Sa”g,lm (n*2 + po) + Op(h(n, a)))

+ /0+0<> (exp (ivlzn_op(hdn(”’a)) + ivgzzn_gop(h@n("’o‘)))) nd (Sawg,lm(nl/az + 110) + Op(h(n, a))) .
From (18) and (19), the discussion after (20) and by Assumption 3, it follows that
nd (Sa,@l,#o ("2 + po) + Op(h(n, oz))) =P arz " ldz, 2>0, (33)
nd(Sa,@LMO (02 + po) + O, (h(n, a))) P al(—2)"*dz, 2 <0, (34)

as n — oo. Hence, by Assumption 3, I converges in probability to a nonrandom limit as
n — oo and
. X . 1\"

plim,,_, P il (v1,v2) = plim,,_, <1 + nI”> = Ya,ri1(v1,v2). (35)
From (27) and (35) we conclude that (7, A\2) and (7%, \?) have the same asymptotic joint char-
acteristic function. Reiterating the same arguments from LMRS, it follows by the continuity
theorem that both (7,,,A\2) and (7%, \*?) have the same limit distribution. Since A2 and \*?
have the same limit distribution concentrated on the positive axis, i.e. the stable distribution
Sa/2,1,1,u (Mittnik et al. (1998)), t, = 7,/ An and ¢}, = 7,;/A}, have the same asymptotic distri-
bution G, g derived in LMRS. Moreover, the limiting distributions of ¢,, and T}, coincide (Efron
(1969)). Finally since G g is continuous, by Polya’s theorem we conclude that (23) holds. O



Corollary 1 Under the true null hypothesis, the bootstrap P value P* 5 (15) has the uni-

n,0n,Pn

form U(0,1) distribution asymptotically.

Proof Let -
P Zj:1(Yj — Ho)
oo o 1/2
(3252 % = 10)?)
which has distribution G, g. The distribution of P* . is

n,8n,0n

Pr(Gh, 5 (T <w) = PrlGag (te + Op(n™") + Op(h(n, ) < u]

n,Gin,Bn,

= Pr (too +0p(n 1) <G (u— Op(h(ma))))

= Gap |Gol (4= Oplh(n,))) = Op(n7H)]. (36)
The first equality is based on the fact that T,, = to + Op(n_l) since the convergence rate of ¢,
is n~1; see (27). Also by Assumption 2, G . 5 = Ga,p + Op(h(n, a)). For finite n, G* 5

and T}, are random and dependent through the Y’s, but asymptotically they are independent

B collapses to the nonrandom distribution G, g. Hence the second equality follows.

As n — o0, (36) converges in probability to u € R. [

Remark 1. When F' € DA(2), the limiting distribution of T¥ and T, is G2 which is given
by the standard normal distribution, as shown in Gine, Gotze, and Mason (1997). Thus, the
parametric bootstrap is based on drawings from the normal distribution with mean 0 and
variance 2 (Samorodnitsky and Taqqu (1994) p.20).

Remark 2. The t-statistic T, is not an asymptotic pivot, since its asymptotic distribution
depends on « and . As suggested by Beran (1988), one way to achieve complete asymptotic
pivotalness is to transform 7, by its limiting distribution function. The resulting statistic
Gop(Ty) is an asymptotic pivot with limiting uniform U(0,1) distribution. This procedure
entails evaluating integrals with parabolic cylinder functions in the complex plane. One way to
avoid this is to estimate the integrals by the EDF, but it would be as computationally intensive
as a double bootstrap.

An advantage of the parametric bootstrap of T,, (or t,) is that its asymptotic distribution
applies not only when the Y;’s are generated from a stable distribution, but also whenever
they are generated by any distribution in the domain of attraction of a stable law. This leaves
us with the practical problem of obtaining good estimates of the parameters. The location
and scale parameters are irrelevant for the bootstrap, as we can generate centered simulated
variables, and the statistic 7;,, being normalized, is invariant to scale.

2.3 Estimation of a and f

The problem of estimating the parameters « and § is hampered by the fact that the stable
distributions and the limiting distribution of 7, do not have a closed form. Unless assumptions
about the parametric form of the distribution generating the data are made, the only estimation
methods that could be employed are those that use just the information in the tails. The most
popular estimation method and the one we use in the simulation study of Section 3, is proposed



by Hill (1975). Hill’s method is based on the k largest order statistics Y7, > Ya,, >--- > Y, ,
from a sample of IID random variables, and gives the following estimator

where k = k(n) — oo in an appropriate way.

On account of (20), for any distribution in the domain of attraction of a stable law S, 5.5,,, We
can estimate the asymmetry parameter [ if we can estimate r and [, the nonnegative constants
given by (18) and (19). If k is the number of order statistics used for the estimation of « in the
right tail of the distribution, then r is estimated by %Yko‘g The parameter [ is estimated in a
similar way, using the order statistics in the left tail of the distribution.

Mason (1982) proves that the Hill estimator is weakly consistent when the cutoff parameter
k = k(n) — oo, k/n — 0 and if and only if F' € DA(«). The condition k = k(n) — oo
implies that eventually infinitely many order statistics are involved, allowing for the use of
the law of large numbers. The requirement k/n — 0 means that the tail and nothing else is
estimated. Hall (1982) gives the first result on the asymptotic normality of &,. More general
results under different sets of conditions on the normalizing constant a,, have been obtained by
Davis and Resnick (1984) and Haeusler and Teugles (1985).

The conditions needed for the consistency of the Hill estimates do not offer much guidance on
how k should be chosen. In practice it is more useful to use the method of Hall (1990b) or
the method of Danielsson, de Haan, Peng, and de Vries (2001) by minimizing the bootstrapped
asymptotic mean square error of the Hill estimate of a.

2.4 Rate of convergence of the parametric bootstrap

The rate of convergence of the parametric bootstrap is given by the rate of convergence of the
joint characteristic function (31), which is the slower of ¢,,, &, and B,. The rate of convergence
of ¢, is n™1 as it can be seen from (27). The rate of convergence of &, and Bn depends on the
choice of k which is intimately related to the tails of the distribution F'. For example, suppose
that the CDF F satisfies

1-F(y)=ry *(L+dwy " +0(y™")) and F(—y) =1y (1 +dly~" +o(ly|™)) (37)

as y — oo, where d,,0; > 0, d, and d; are real numbers and r and [ are as defined in (18)
and (19). Hall (1982) shows that under assumption (37), it is asymptotically optimal to take
k = o(n?/(25r+)) (for the right tail) and k = o(n?%/(%+)) (for the left tail) . Then the rate
of convergence of the estimators is

e Op(n—ér/(25r+a)), P — 1 = Op(n—5r/(25r+a) logn, Zn = Op(n—5l/(25l+a) log n.

From (20) it can be seen that the rate of convergence of Bn — [ is the slower of 7, —r and in —1.

Remark 3. The stable laws themselves satisfy (37) with 6, = 6, = «. For Student’s ¢
distribution, 6, = §; = 2. The t distribution is in the domain of attraction of the stable laws
and has infinite variance if the number of degrees of freedom is smaller than or equal to 2.

Remark 4. The assumption (37) is more demanding than just requiring the distribution F
to satisfy the general conditions (17). But Hall says that, if one relaxes it, then there does
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not seem a way to characterize the optimal k£ and to obtain an algebraic convergence rate
for the tail index estimator. Other explicit assumptions about the tails of F' are exploited in
Haeusler and Teugles (1985) (p.752-754) and they lead to much slower rates of convergence for
Gy, and Bn. In general, a convergence rate of n~1/2 cannot be achieved without parametric
knowledge of F, as pointed out in Hall and Jing (1998).

Remark 5. The m out of n bootstrap and subsampling based on 7;,, have an error of order
n~(@=D@=a)/e (Hall and Jing (1998)) which is larger than the error of the parametric boot-
strap. Simulations in next section support this conclusion. They also show that the parametric
bootstrap performs better than the m out of n bootstrap and subsampling based on T,.

3 Simulation evidence

In this section we investigate the performance of the parametric bootstrap and we compare it
with its main competitors: the m out of n bootstrap and subsampling. For these two methods,
the choice of m is an important matter. If the bootstrap sample fails to satisfy the conditions
m/n — 0 or m(loglogn)/n — 0, the bootstrap distribution is random and the methods are
invalid (as can be concluded from Hall (1990a) and Hall and Yao (2003)). In practice, m
is usually estimated using a data-dependent method, rather than using different asymptotic
arguments. In this paper we prefer the method of Bickel and Sakov (2008) since it is more
suitable for P values. However, simulations not reported here indicate that the m out of n
bootstrap and subsampling of 7,, and T;,, with data from the stable law with o = 1.5 and
B = 0, do not work well for any choice of m if the sample size is not as large as 2,000. The
subsampling of 7,, works better in this case, but it seems to be very sensitive to the choice of m.

Our simulation study is based on samples of size 100, 400 and 1000 from the ¢ distribution with
degrees of freedom 1.1, 1.5, 1.9 and the stable distribution with o = 1.1, 1.5, 1.9, 5 = 0, 1
and scale o = 1. For these distributions we take a, = n'/® in (5) (see discussion on p.2). We
compare the following bootstrap methods

e parametric bootstrap of T;,. The parameters o and 5 are estimated by Hill’s method as
described in Section 2.3. The number of order statistics k is estimated using the method
of Danielsson et al. (2001) for the stable law and the method of Hall for the ¢ distribution.

e m out of n bootstrap and subsampling of T},. The choice of m is done using the method
of Bickel and Sakov (2008).

e m out of n bootstrap of 7,,. The tail index « is estimated using Hill’s method and the
number of order statistics k is estimated using the method of Danielsson et al. (2001).
The choice of m is made by applying the method of Bickel and Sakov (2008).

e subsampling of 7;,. The tail index is estimated using the method of Bertail, Politis, and Romano
(1999) as in Romano and Wolf (1999), while the choice of m is made by applying the
method of Bickel and Sakov (2008).

All results are obtained from 10,000 replications of the statistics 7, and T, and B = 399
bootstrap repetitions. We consider the case in which the null hypothesis ¢ = 0 is true and
the case in which the alternative hypothesis p = —0.5 is true. The results based on the true
null hypothesis are displayed as P value discrepancy plots. The best performance of the tests
is achieved when the error in rejection probability (ERP) is close to zero. The results based
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on the true alternative are displayed as adjusted power functions, by taking into account the
actual size of the tests under the true null.

In Figures 1 and 2 the null hypothesis 4 = 0 is true. The data were generated from the stable
distribution with @ = 1.1 and § = 0 for sample sizes of 100 and 1000. It can be seen that the
parametric bootstrap has the fastest rate of convergence. If we consider Figure 3, the power
is not satisfactory for any bootstrap tests, except for the parametric bootstrap which has a
slightly higher power. Figures not displayed here indicate that the same conclusions hold for
the t distribution.

In Figures 4, 5, 6 and 7 the data were generated from the stable distribution with o = 1.5,
B = 0 and the t distribution with o = 1.5 degrees of freedom for samples of size 100 and 400.
In contrast to the m out of n bootstrap and subsampling, the parametric bootstrap performs
very well for samples as small as 100. Moreover, as Figure 8 shows, the power of the parametric
bootstrap is always higher than the power of the other bootstrap tests. Results not included
here indicate that the same conclusion holds for samples smaller than the one considered in the
figure and also for the stable distribution.

In Figures 9, 10 and 11 the data were generated from the stable distribution with o = 1.9
and 8 = 0 and from the t distribution with a = 1.9 degrees of freedom. It can be seen that
the parametric bootstrap has a faster rate of convergence than the other bootstrap methods
and performs very well. We did not include the power functions here, but the results are very
satisfactory for all bootstrap methods with adjusted power close to one.

The next four figures refer to the case in which the data are heavily skewed, with g = 1. Figures
12 and 13 show that the m out of n bootstrap and subsampling of T}, work better but not the
best if a = 1.5. Results not included here reveal that when @ = 1.1, 8 = 1 and n = 1,000 the
ERP of the bootstrap tests can be as high as 0.7 with the m out of n bootstrap and subsampling
of T,, having an ERP close to 0.4. In this extreme case, all the tests lack power, as can be seen
from Figure 14. The power increases for a = 1.5 with the parametric bootstrap having the
highest power, as shown in Figure 15. In general, the power is influenced by a and f: the
smaller « is and the closer 3 is to 1 or —1, the lower the power. The highest power is achieved
when the distribution is not far from having a finite variance, namely when oo = 1.9 and § = 0.

In conclusion, the figures indicate that the parametric bootstrap works better than the m out
of n bootstrap and subsampling when « is not close to 1 and £ is not close to 1 or —1.
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Figure 1: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T}, and 7,; data from stable law with o = 1.1, 8 = 0, n = 100; m chosen using Bickel and
Sakov’s method; k chosen using Danielsson’s method
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Figure 2: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T}, and 7,; data from stable law with o = 1.1, § = 0, n = 1000; m chosen using Bickel and
Sakov’s method; k chosen using Danielsson’s method
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Figure 3: Power; parametric bootstrap, m out of n bootstrap, subsampling of T;, and 7,,; data
from stable law with a = 1.1, 8 = 0, n = 1000; m chosen using Bickel and Sakov’s method; k
chosen using Danielsson’s method
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Figure 4: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T}, and 7,; data from stable law with o = 1.5, 8 = 0, n = 100; m chosen using Bickel and
Sakov’s method; k chosen using Danielsson’s method
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Figure 5: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T;, and 7,,; data from the ¢ distribution with a = 1.5 degrees of freedom, n = 100; m chosen
using Bickel and Sakov’s method; k chosen using Hall’s method for the parametric bootstrap
and Danielsson’s method for the m out of n bootstrap and subsampling
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——— m out of n bootstrap T,
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—0.08 -

Figure 6: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T,, and 7,; data from stable law with o = 1.5, 8 = 0, n = 400; m chosen using Bickel and
Sakov’s method; k£ chosen using Danielsson’s method

16



ERP
0.10

0.08

parametric T},
0.06 —

—— m out of n bootstrap 7,

subsampling 7,

Nominal
level

——— m out of n bootstrap T,

subsampling T;,

Figure 7: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T;, and 7,; data from the t distribution with o = 1.5 degrees of freedom, n = 400; m chosen
using Bickel and Sakov’s method; & chosen using Hall’s method for the parametric bootstrap
and Danielsson’s method for the m out of n bootstrap and subsampling
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Figure 8: Power; parametric bootstrap, m out of n bootstrap, subsampling of T;, and 7,; data
from the t distribution with o = 1.5 degrees of freedom, n = 1000; m chosen using Bickel and
Sakov’s method; k£ chosen using Danielsson’s method
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Figure 9: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T,, and 7,; data from stable law with a = 1.9, 8 = 0, n = 100; m chosen using Bickel and
Sakov’s method; k£ chosen using Danielsson’s method

parametric T,

Nominal
level

subsampling 77,

Figure 10: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T;, and 7,; data from the ¢ distribution with a = 1.9 degrees of freedom, n = 100; m chosen
using Bickel and Sakov’s method; k chosen using Danielsson’s method
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——— m out of n bootstrap T,

—0.06 ~ subsampling T,

Figure 11: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T;, and 7,; data from the ¢ distribution with o = 1.9 degrees of freedom, n = 400; m chosen
using Bickel and Sakov’s method; & chosen using Danielsson’s method
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Figure 12: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T,, and 7,,; data from stable law with o = 1.5, 8 = 1, n = 1000; m chosen using Bickel and
Sakov’s method; k chosen using Danielsson’s method
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Figure 13: P value discrepancy plots; parametric bootstrap, m out of n bootstrap, subsampling
of T}, and 7,; data from stable law with a = 1.9, § = 1, n = 1000; m chosen using Bickel and
Sakov’s method; k£ chosen using Danielsson’s method
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Figure 14: Power; parametric bootstrap, m out of n bootstrap, subsampling of T}, and 7,,; data
from stable law with o = 1.1, 8 = 1, n = 1000; m chosen using Bickel and Sakov’s method; &
chosen using Danielsson’s method
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Figure 15: Power; parametric bootstrap, m out of n bootstrap, subsampling of T;, and 7,; data
from stable law with a = 1.5, 8 = 1, n = 100; m chosen using Bickel and Sakov’s method; &
chosen using Danielsson’s method

4 Conclusion

In this paper, we have proposed a parametric bootstrap for the purposes of inference on the ex-
pectation of a heavy-tailed distribution when an independent and identically distributed sample
generated by that distribution is available. The parametric bootstrap is based on a central-limit
argument for self-normalised sums. The bootstrap distribution can be estimated consistently if
we can estimate the parameters o and § of the stable law to which the centred and normalized
sum of the observations converges. This is most conveniently carried out by simulation, rather
than by use of the asymptotic distribution, which, although known, is expressed in terms of
integrals of functions of parabolic cylinder functions, and is thus awkward to compute. Our re-
sults show that, as long as estimation of a and 3 is reasonably precise, the parametric bootstrap
gives inference with a sample size of 100 that is reliable by any usual standard. Its performance
deteriorates when the methods we use to estimate these parameters become imprecise, which
happens when the expectation is close to nonexistence, and when the distribution is heavily
skewed. We conjecture that it is impossible to devise a reliable method of inference for « close
to 1, but it may be possible to find better estimators of 5.

Moreover, the parametric bootstrap is a better alternative to the asymptotic test based upon the
stable distributions, since it requires the estimation of a smaller number of nuisance parameters
under the null hypothesis.

Finally, the parametric bootstrap performs better than its main competitors: subsampling and
the m out of n bootstrap, as clearly indicated by our simulations.
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