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1. Introduction

In this study we propose a form of semi-nonparametric regression based
on wavelet analysis. Traditional time series analyses rely on methods that
involve either the time or the frequency domain. But wavelet transforms
permit an analysis that combines both time and frequency information,
the latter in terms of levels of time resolution. Usually wavelet transforms
are used only with equally spaced observations whose number is an integer
power of two. In this paper, we show how to go beyond these constraints. In
an empirical application, we use our methods in order to construct “patios”
for some important international commodity price series. These patios show
the magnitude of the variations in the series at different time scales for
different subperiods of the full sample.

In the next section, we begin with a brief review of past economet-
ric findings concerning commodity price behavior. Then, in section 3, we
present a discussion of multi-resolution analyses, in particular their imple-
mentation in terms of wavelets. Section 4 contains a description of how we
extend traditional multi-resolution analyses to the context of nonparamet-
ric regression, and in section 5, we present the results of the application
of our methods to some commodity price series. Section 6 endeavors to
provide an economic interpretation of the results, and, finally, in section 7,
we offer a few conclusions regarding the implications of our findings on
commodity prices, and some suggestions for future research.

2. Commodity Price Behavior

The econometric analysis of commodity price behavior is based on a vari-
ety of generating processes for short-term price movements. Although these
often appear completely random, arguments can be made for price regular-
ities or cycles. Models as simple as the cobweb give the most basic expla-
nation of these: in such models, the market clears at every point in time,
but prices in the supply equation depend on expectations of future prices.
The first-order differential equation describing this phenomenon can yield
convergent, divergent, or continuously oscillating solutions. More complex
mechanisms give rise to second-order equations, of which the solutions can
include not only continuous but also damped or explosive oscillations. Fur-
ther explanations can be found, for example, in Ackerman (1957), Baumol
(1962), or Gandolfo (1985).

Developments of these models specific to commodity markets appear
in Brock (1988), Chavas and Holt (1991), and Mackey (1989). Studies
which expand this approach to include nonlinearity and chaotic behavior



include Burton (1993), Boldrin and Woodford (1990), and Jensen and Ur-
ban (1984).

The detection of regularities has proven difficult for a number of rea-
sons. While visual examination of price movements suggests cyclicality,
demonstrating the existence of statistically significant cycles can be dif-
ficult. Most of the time-domain research on this point has concentrated
on short-term fluctuations. An early study of this type was Working’s
(1958) investigation of the random walk; he proposed that the continuous
flow of many different kinds of information into commodity markets causes
frequent price changes which might be nearly random. Still, this model
allows for some gradualness of price changes, and thus, some degree of very
short-term predictability. Samuelson (1965) further developed this theory
by postulating that commodity prices follow a martingale process.

Most of the empirical tests of the random walk and martingale hy-
potheses look for serial correlation and trends, since both processes require
price changes to be independent. Trend deviations from a random walk
were first discovered for wheat and corn by Houthakker (1961), and for
soybeans by Smidt (1965). Labys and Granger (1970), in performing spec-
tral analysis on futures and also spot price series, found some evidence for
a modified random walk process, mostly resembling the martingale process.
Stevenson and Bear (1970) and Leuthold (1972) also found departures from
random walk using filter rules which revealed positive and negative price
dependence, thus casting doubt on the validity of the random walk model.

While most of the above studies are based on linear models, other
possibilities have been considered. One example is nonlinear models re-
flecting chaotic behavior. Drawing upon Houthakker’s (1961) analysis of
cotton prices, Mandelbrot (1963) replaced Gaussian probability laws with
those termed “stable Paretian”. His approach represented an attempt to
discover orderly behavior within what appeared to be a random series of
price fluctuations. It is in this context that Frank and Stengos (1989) in-
vestigated the martingale hypothesis, using an approach of Sims (1984) as
well as a chaos-based approach. Although Frank and Stengos were not
able to reject the martingale hypothesis in a series of standard economet-
ric tests involving daily and weekly silver and gold prices, they did provide
correlation-dimension-based evidence of the presence of nonlinear structure.
This structure was also confirmed using a similar test on soybeans by Blank
(1990), and on silver, copper, sugar, and coffee futures by DeCoster, Labys,
and Mitchell (1992).

Other recent studies of nonlinear dynamic process in commodity prices
have involved the testing of ARCH and GARCH models. For instance, Yang
and Brorsen (1992) use GARCH models for corn, pork bellies, soybeans
(including meal and oil), sugar, wheat, and gold daily spot price changes.
Results from these models suggest that the variance of the price changes
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is not constant. Departing from the linear corn/hog price cycle analysis of
Jameson (1983), Chavas and Holt (1991) use a GARCH model, but suggest
that the pork market may be characterized by other forms of nonlinear
dynamics. Two other recent studies which investigate nonlinear dynamics
in commodity prices, but which employ a dynamic programming approach,
are those of Deaton and Laroque (1992, 1995).

Commodity price studies in the frequency domain have usually taken
a spectral analysis approach. For example, Labys and Granger (1970)
analyzed agricultural prices, Gelb (1979) and Parikh (1973) coffee prices,
Labys, Elliott and Rees (1971) copper prices, Rausser and Cargill (1970)
broiler prices, Weiss (1970) cocoa prices, and Slade (1981) several metal
prices, using this method. The hog cycle analysis of Talpaz (1974) was fre-
quency related, but was limited to a Fourier representation. The advantage
of the spectral approach is that it permits cycles of different frequencies
to be discovered and to be tested statistically by methods based on the
fast Fourier transform of a price series. This enables researchers to study
not only shorter-term or higher frequencies reflecting random-walk behav-
ior, but also medium and long-term frequencies embodying business cycles
and/or growth cycles.

The disadvantage of the spectral approach is that the Fourier transform
has difficulty with functions having transient components, that is, compo-
nents localized in time. Another problem is that the Fourier transform of
cyclical information does not provide insights into the phase relationships
(leads and lags) between cycles of the same frequency in different series.
In this study, we hope to show how such problems can be overcome by
combining time and resolution analysis through the use of wavelets.

3. A brief theory of wavelets

A concept that, in principle at least, allows one to obtain local time infor-
mation, while still providing information in the frequency domain, is that
of a multi-resolution analysis. The notion seems to have grown out of work
in which a signal is subjected to a bank of filters: high-pass filters, low-pass
filters, medium-pass filters, etc. One can imagine listening to the output
of an equaliser on hifi equipment. Listening to only one channel, one hears
only a narrow band of frequencies. However, the output does not consist
of just a continuous unvarying drone. There will normally be variations in
pitch over time, of limited extent, but usually perceptible, and there will be
possibly substantial variations in volume. A Fourier analysis would have
neither of these features. At any definite frequency there would be a fixed
intensity (volume), constant over the whole duration of the signal. And it
would be a definite frequency, unable to vary even slightly.
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What makes the difference? Mostly, the fact that each band passed by
a filter does not correspond to a definite frequency, but rather to a range
of frequencies. The fundamental uncertainty principle excludes absolute
precision of information in the time and frequency domains simultaneously.
For instance, when we deal with discrete time series, the time resolution
cannot be any better than the time between successive observations, and
the frequency resolution gives no information about frequencies faster than
the frequency of observation or slower than the frequency determined by
the overall length of the sample.

This trade-off between information in the time and frequency domains
inspires multi-resolution analysis. Much of the material we present below
derives from the work of Daubechies (1990, 1992), Grossman and Morlet
(1989), and Meyer (1992). More formal presentations of wavelet theory
can be found in Beylkin et al. (1992), Chui (1992a and b), Combes et
al. (1991), Meyer (1990), Meyer and Coifman (1991), and Wickerhauser
(1994).

With monthly data, say, information on phenomena at frequencies
shorter than monthly will not be available. But we can certainly con-
sider lower levels of resolution, and look at phenomena characterised by
quarterly, or yearly frequencies, or by frequencies commonly thought to
be associated with the business cycle. It should be said at once that the
concept of frequency cannot be used in its usual precise sense in this con-
text. As pointed out by Priestley (1996), the term “frequency” refers only
to sines, cosines, and the exponential function of an imaginary argument.
It will therefore be preferable to speak of levels of resolution rather than
frequencies.

It is clear that a multi-resolution analysis must be a form of smoothing.
High-frequency phenomena (those perceptible only at high levels of resolu-
tion) ride along on top of phenomena visible at lower resolution, perturbing
with rapid movements the slower, smoother, movements corresponding to
lower resolutions. We can imagine taking a signal, and passing it through a
low-pass filter, in such a way that only variations corresponding to annual
or longer frequencies get through. This will yield a smoothly varying fil-
tered output, corresponding to an annual level of resolution. If we then take
into account all the variation cut out by the filter, this variation, typically
much less smooth, can be thought of as details that can be superimposed
on top of the annual level of resolution in order to obtain a more detailed
picture at the monthly level of resolution. Finally, one could imagine that a
new data source becomes available, providing daily data where before only
monthly data were to be had. We could subtract from these daily data the
monthly data we had before, and thus obtain another level of details.

Consider the space L?(R) of square-integrable functions on the real
line. Then we may define a multi-resolution analysis of L%(R) as follows:
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1. A multi-resolution analysis of L?(R) is an increasing sequence
{V;}jez of closed subspaces of L?(R), with the following three prop-
erties:

() Vi={0}, |J V;isdensein L*(R); (1)

j=—00 j=—o00

2. for all f € L?(R), and for all integers j € Z, f(x) € Vp if and only
if f(27z) € V;; and

3. there exists a function ¢(z) € Vp such that the sequence of functions
{¢(x — k) }kez constitutes a Riesz basis of V.

The first of these properties defines the different levels of resolution. We
see that there is a double infinity of these. The lowest level, correspond-
ing to 7 = —oo, admits only constant functions, while the highest level,
corresponding to j = +oo, encompasses the whole space L?(R).

The second condition specifies the relation between successive levels of
resolution. Any function that belongs to level j corresponds to a function
at any other level, by a simple process of dilation by an integer power of 2.

The last condition means, among other things of mainly technical in-
terest, that, for an appropriate choice of normalisation,

id)(a:—k)zl VzeR (2)

k=—o0

Thus the set {¢(z—k) }rez gives a partition of unity, and it is this property
that allows certain multi-resolution analyses to be local.

Let us take a brief look at the very simplest multi-resolution analysis,
associated with the name of Haar. In this, the basic function ¢(z), called
the scaling function, or, sometimes in more recent literature, the father
wavelet, is just the indicator function for the unit interval:

0 forz<O
¢(x):{1 for0<z<1

0 forx>1
With this choice, it is clear that (2) is satisfied. We see at once that Vj,
being generated by the set of all integer translates of the indicator function,
is just the set of all functions that are piecewise constant on all segments
of the form [k, k + 1], k € Z. Thus, at the base level of resolution, we can
see nothing inside intervals of this form. All details on a scale less than

that given by the distance between any two successive integers is lost at
this level of resolution.



The second defining property of a multi-resolution analysis allows us
to see what the other levels of resolution look like. For j = 1, for instance,
we see that the function ¢(2x) belongs to Vi. This can readily be seen to
be just the indicator function for the interval [0,1/2]. Thus V; is made up
by those functions that are piecewise constant on the intervals of length
one half for which one end is an integer. There is just twice as much detail
available in such functions. It is clear how this can be extended to arbitrary
integers j, positive or negative. A positive j gives more detail than that in
Vo; a negative j less.

The shortcomings of the Haar analysis are clear. Functions that are
piecewise constant are maximally smooth inside the segments of constancy,
but are not even continuous, let alone differentiable, at the points at which
adjoining segments touch. We would clearly be prepared to sacrifice con-
stancy inside the segments in favour of a little continuity at the joins. An-
other multi-resolution analysis can be defined, for which the scaling function
is the so-called tent function, defined as follows:

T for0<z<1
2—z forl <z <2

0 for z <0
-]

Property (2) is again trivially satisfied, and now we see that V; contains
functions that are piecewise linear on the segments [k, k+ 1], k € Z. Conti-
nuity at the joins is now achieved; the discontinuity is in the first derivative.

The idea of the preceding paragraph may be extended in order that Vj
should be made up of functions that are piecewise quadratic, or piecewise
cubic, etc, and that have discontinuities of the second, third, etc, derivative
at the joins. Such functions are called splines, and their theory is well
developed in the numerical analysis literature. Although they could well
form the basis for the sort of procedure we will develop here, it turns out
that something even better for our purposes is available.

One highly desirable property of the spline wavelets is that of having
compact support. The simplest case, with the indicator function as scaling
function, has a scaling function with support just [0, 1]. In the case of the
tent function, the support is twice as long. Generally, there is a tradeoff
between regularity, or smoothness, on the one hand, and the extent of
the support of the scaling function. Why is a short support desirable?
Precisely because this is what makes a multi-resolution analysis local. The
shorter the support, the more local is the information in the multi-resolution
analysis for any given level of resolution. The Haar analysis achieves perfect
localisation at the cost of continuity. Other setups give greater regularity
at the cost of less perfect localisation.

We need now to specify just where wavelets come into a multi-
resolution analysis. Recall from (1) that V, C Vi. It should therefore
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be possible to define a subset of V; complementary to Vy, Wi say, so that
Vi is the direct sum of Vy and Wr:

Vi=VW e W,. (3)

It is normally possible to find a W7 that is the span of the set of functions
Y(x—k), k € Z, for some suitable function 1), called the wavelet of the multi-
resolution analysis. (It would be the mother wavelet in the terminology that
calls the scaling function the father wavelet.) In the Haar case, the obvious
choice is the following function:

0 for x <0
1 for0<z<1/2
for1/2<z <1
0 for x > 1.

It is clearly possible to construct any function that is piecewise constant on
all the intervals of length one half and one endpoint an integer by taking a
linear combination of the ¢(x — k), that is, the indicator functions on the
unit intervals, and of the ¢ (xz — k). Then these piecewise constant functions
make up V7 in the Haar case.

In addition, from the second two defining properties of a multi-
resolution analysis, Vp is spanned by the functions ¢(z—k), k € Z, and V; is
spanned by the ¢(2z — k), k € Z. Thus it must be possible to express both
¢(x) and 9(z) as linear combinations of the ¢(22 —k), k € Z. If in addition
¢ and v have compact (bounded) support, these linear combinations are
necessarily finite. Thus there are coefficients cx and g such that, for all
r€R:

o(z) = Z ckd(2x — k), and (4)
k=0

Y(@) =Y grd(2z — k) (5)
k=0

for some finite K. Equations (4) and (5) constitute what is called the scaling
filter associated with the multi-resolution analysis. It turns out that the g
can be chosen in a determined way if the c; are given, and that in fact the
scaling function ¢ and the wavelet 9 are fully determined by (4) and (5).

The Daubechies wavelets that we will use in our applications make
use of sets {cr} which turn the functions ¢(z — k) and ¥ (z — k) into an
orthonormal basis of the space they span. Thus the Daubechies father and



mother wavelets satisfy the following orthogonality properties:
/Oo bz —k) de =0, kel
/Oo b@) bz —k) dz =0, keZ, k0,
/Oo V@) bz — k) dr =0, beZ, k40,

and the following normalisation properties

/_O; #*(x) dor = /_Z Y2 (x) do = 1.

It is in fact not too difficult to find wavelets satisfying the orthonormality
properties above; there are many such examples. Note, however, that the
spline wavelets do not do so, except for the Haar wavelet.

What makes the Daubechies wavelets really useful is that they have
compact support, and a certain number of vanishing moments. Thus, for
each set of Daubechies wavelets, there is an integer m such that, for all
integers k£ with 0 < k < m,

/00 2 () de = 0. (6)

— 00

Since ¥ has compact support, the effective range of the above integral is
not at all infinite. It is easy to see as well that the number of nonzero ¢y
in the scaling filter is finite.

The tradeoff to be taken account of at this point is between the length
of the support of the wavelets and the number of vanishing moments. An
increase in m can be bought only at the cost of extending the length of
the support, that is, of lessening the degree of localisation achieved by the
wavelets. However, a greater value of m also provides a higher degree of
continuity and differentiability of the wavelets. The Daubechies wavelets
we actually use in this paper have m = 2. The graphs of the father and
mother wavelets are shown in Figure 1. It can be seen that the father
wavelet is not too dissimilar to the tent function, while the mother wavelet
is oscillatory, with four main crossings of the axis, although there are many
more in the right-hand tail.

Suppose then that we choose a value of m well adapted to our purposes.
We may define Vj as the space spanned by the functions ¢(z — k), k €
Z. Because of (3), V4 is then spanned by these functions along with the
Y(x—k), k € Z. As we proceed to successively higher resolutions, the spaces
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Daubechies Scaling Function or Father Wavelet

Daubechies (Mother) Wavelet

Figure 1
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V; are spanned by the functions already in use along with the 29/ Zp(27z—k),
j <1, k € Z. (The factors of 27/2 merely serve to normalise the functions.)
In this way, we can construct a multi-resolution analysis of L2(R) based on
Daubechies wavelets.

In most applications, we neither need nor want to consider functions
defined on the whole real line. If attention is restricted to functions with
support in some finite interval [a, b], then the compactness of the support of
the Daubechies wavelets means that, at any given resolution, only a finite
number of the wavelets making up the orthonormal basis at that resolution
have support that intersects [a, b].

Let us suppose, without loss of generality, since we can always rescale
and relocate a function with compact support, that the interval we consider
is [0, 1]. Tt turns out that the support of a Daubechies wavelet is an interval
of the form [0, 2m + 1], where m is the highest nonvanishing moment of the
wavelet 1; see (6). Let jo be the smallest integer such that 2m + 1 < 270,
Then the wavelets ¢(2%0x — k) have support of length 2770(2m + 1) < 1.
Define a set of 270 functions ¢ (-), 0 < k < 2% on [0, 1] as follows:

[ p(2ox — k) if 2700 — k>0
or(z) = { #(27% (z + 1) — k) otherwise. ")

Thus the ¢y are just the scaling functions “wrapped round” on to the
interval [0, 1] when their supports extend beyond the endpoint 1. Then the
functions ¢ (z) yield a partition of unity on [0, 1]:

270 _

1
Z dr(z) =1, forall z €[0,1]; (8)
k=0

they are mutually orthogonal, and they can be normalised to have L? norm
of unity at the cost of making the right-hand side of (8) a power of 2 rather
than 1. We may regard them as spanning the subspace of L2[0,1] that
corresponds to the “base” level of resolution.

Higher levels of resolution are obtained by, first, appending to the set
#1 another 27° functions vy, defined just like the ¢y in (7), but with the
mother wavelet 1) in place of the father wavelet ¢; then, subsequently, sets
of functions of the form (272 — k), j > jo, k = 0,...,27, with the same
sort of wrapping round as in (7). It is easy to see that, at each resolution,
there are exactly 29*! basis functions, for each j > jo. Given the second
defining property of a multi-resolution analysis, another way to span the
space of the resolution with 2/*! basis functions, based exclusively on the
father wavelet, is to use the functions ¢(2/*'z — k), k = 0,...,27+1 — 1,
suitably wrapped round.
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The discrete wavelet transform is constructed on the basis of the above.

Let us denote by 0x(-), k = 0,...,29 — 1 the functions making up an or-
thonormal basis of some level of resolution of L2[0,1] by use of one set
of father wavelets and various sets of mother wavelets. Then consider a
function f € L2[0,1]. Its representation at this resolution is just the or-
thonormal projection of f on to the span of the 0y:

271

f(x) = Z axbr(z),

k=0

where

ag :/0 f(z) Ok () dz.

Similarly, let the same space be spanned by the orthonormal set of functions
nk(-), k= 0,...,27 — 1, where the 7 are translations and dilations of the
father wavelet only. Then we may write

f(z) = Z_ b (2),
k=0
where )
b= [ 1@ m(o) da. (9)

At this resolution then, the function f is represented by either one of the
two 27-vectors a and b, with typical elements a; and b respectively.

Since the 0 constitute an orthonormal basis, as do the 7y, the vectors
a and b corresponding to an given f are related by a matrix orthonormal
transformation independent of f. This orthonormal transformation can be
implemented by a fast algorithm constructed on the same lines as the fast
Fourier transform. It is called the fast wavelet transform. Like the FFT,
it applies only to vectors with exactly 2/ components, for some positive
integer j. The computational details (for the Daubechies wavelets of low
order) can be found in Press et al. (1992).

A Patio Plot

Figure 2
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The interest of the discrete wavelet transform, fast or not, is as follows.
The vector b can be thought of as a sampling of the values of the function f,
sufficient for a description of f at resolution j. In fact, since the support of
(272 — k) is the interval k277, (k + 2m + 1)277] (ignoring wrap-around),
(9) can be thought of as providing (up to a scalar factor) a weighted av-
erage of the values of f on this interval. On the other hand, a provides
information about f with respect to time and level of resolution. Unlike a
Fourier frequency-domain representation, the representation provided by a
is discrete. Its information content can be displayed visually by means of
a “patio” diagram, as illustrated in Figure 2. Each tile of such a patio rep-
resents one of the components by (the darkness of shading is proportional
to b2), and each of these components corresponds to a time interval and
a resolution, which are, respectively, the support and the resolution level
of the corresponding 7ni. As Figure 2 shows clearly, the time intervals are
longer at lower resolutions, on account of the uncertainty principle.

4. Wavelet Estimation and Tests

One of the most constraining features of the various wavelet transforms
considered in section 3 is that they apply to data sets for which the number
of observations is an integer power of 2. In addition, regarding the inter-
pretation of wavelet transforms, there is almost always a presumption that
the observations are equally spaced in time.

There exist suggestions in the literature as to how to overcome these
constraints. For instance, methods exist for padding data sets so that the
number of observations is increased to the smallest power of 2 greater than
(or equal to) the size of the observed sample. Similarly, no great difficulties
of interpretation arise if the data, rather than being equally spaced, are
spaced by random drawings from a known distribution.

If for the moment we ignore these limitations, the method of data
analysis known as wavelet shrinkage has great success in coping with data
sets of widely different natures, where the observations can be regarded
as a realisation of some stochastic process. The simplest example is a
nonparametric regression, in which successive observations on a random
variable are generated by an unknown deterministic function of the time,
plus random noise. Formally,

Y = g(t) + us.

Here y; is the ¢*® observation on the dependent variable, g(-) is the unknown

deterministic function to be estimated, and u; is the ¢*® element of a zero
mean noise process, which in general may be heteroskedastic and/or serially
correlated.
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In order to perform wavelet shrinkage, the sequence of points i,
t =1,...,T, (after padding so that T = 2¢ for some positive integer 7)
is subjected to a discrete wavelet transform, which will yield a set of trans-
form coefficients associated with different translations and dilations of the
mother and father wavelet functions. The “shrinkage” process then either
completely eliminates or else greatly reduces all the coefficients smaller in
absolute value than some suitable threshold. Finally, the shrunk coeflicients
are used in order to perform an inverse transform, the result of which is the
estimate of the function g(-).

This procedure is advocated in Donoho, Johnstone, Kerkyacharian,
and Picard (1995). Many advantages to its credit are pointed out, not
only in the paper itself, but in the discussion published along with it. In
particular, the estimate of g(-) is in most circumstances “as smooth as
the truth”, that is, the unknown function g itself. The authors present
examples for which this function has actual discontinuities, which are well
captured by the wavelet estimator. Closely related work is presented in
Antoniadis (1994), in which various optimality results are proved for a
procedure which, while not referred to as “wavelet shrinkage”, nevertheless
is clearly a variant of it.

Like all nonparametric methods, this one has an adjustable parameter,
here the threshold below which shrinkage takes place. Like most nonpara-
metric methods, a suitable value for the adjustable parameter can often
be found by cross-validation; see Nason (1996) for numerous suggestions
as to the implementation of cross-validation in this context, and Hall and
Patil (1996) for further theoretical discussion of the choice of the adjustable
parameter.

For our present purposes, wavelet shrinkage can be applied directly
to the price series we consider, since they consist of equally spaced ob-
servations, assuming only that we use an appropriate padding method to
extend our data series so as to have 2° observations. However, for the pur-
poses of the nonparametric regression as a tool for econometricians, the
constraints mentioned at the beginning of this section are too severe for
wavelet shrinkage to be a practical procedure. What to do if there are
missing data points? What to do if the independent variable is not the
time, but rather an exogenous variable the distribution of which we do not
wish to model? What to do when our data have trends, thus making un-
tenable the usual assumption that the unknown function g(-) is periodic,
with period the length of the observed sample? Applying the usual proce-
dure blindly leads to strange “edge effects” in the estimates of g(-) near the
beginning and the end of the sample. (Antoniadis (1994) alludes to ways
around this involving “tapering” of the wavelet series, but he provides no
details.)
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The suggestion we make in this paper is to use the translations of the
scaling function and the translations and dilations of the mother wavelet
function in the same way as we use trigonometric functions, or orthogonal
polynomials, in semi-nonparametric regression. Thus we select a particular
scaling function with its corresponding wavelet, and treat them as functions
that we can evaluate for any given argument. Then we can simply regress
our dependent variable on a set of translations and dilations of the basic
functions evaluated at the observed values of the explanatory variable.

One advantage of this method is that we can apply standard results
on the statistical properties of semi-nonparametric regressions directly. An-
other is that it answers simply and naturally most of the questions posed
above. There are no constraints at all regarding the number of observa-
tions, and missing observations are just that — they do not appear in the
sample. Unequally spaced values of the explanatory variable are handled
as easily as equally spaced ones. Edge effects can still occur with trending
data, as they can with any semi-nonparametric regression, although for a
different reason from the one that applies to the standard wavelet trans-
form. We will see later that a simple trick allows us to reduce these effects
to a minimum.

In order to analyse the time series we consider, we proceed as follows.
First, we compress the length of the observed series to the [0, 1] interval.
Since we treat monthly (and so equally spaced) series, the values of the
independent variable at which the various functions appearing in our semi-
nonparametric regression are evaluated take the form i/n, where n is the
sample size (number of observations), and ¢ = 1,...,n. For the purposes
of this paper, we use the Daubechies wavelet with m = 2 (see (6)), that
is, a wavelet 1 and a scaling function ¢ (mother and father wavelet) such
that the support of both functions is the interval [0, 5]. By use of an inverse
discrete wavelet transform, ¢ and 4 are evaluated at a fine grid of 2¢ points,
such that 2° is much greater than the sample size n. The choice of i simply
determines the accuracy with which ¢ and 1) are evaluated for an arbitrary
argument z: given z, we take for ¢(z) the value of ¢ at the closest point to
z in our grid of 2¢ points.

At our base level of resolution, we use the functions ¢y, defined in (7)
for jo = 3 (since 2m + 1 = 5 < 23). These functions all have support of
length 5/(23) = 5/8, and the different ¢y, are all translates of one another
by an integer multiple of 1/8. In order to take account of all translates that
intersect the [0, 1] interval, therefore, we need 12 translates, namely those
whose support begins at —1/2,-3/8,—1/4,...,5/8,3/4,7/8. In order to
perform an analysis of a series (of n observations) at this resolution, we now
form an n x 12 regressor matrix, the elements of which are the 12 functions
evaluated at the points i/n, ¢ = 1,...,n, on which we regress the n x 1
vector given by the series under analysis. Note that we use 12 different
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functions rather than using the “wrap-around” procedure characteristic of
the discrete wavelet transform in order to reduce edge effects, which would
otherwise be substantial with the strongly trending series we will consider.

At the next stage, we need exactly the same number of translates of 1
at the base resolution, since the support of 1 is the same as that of ¢. At this
next resolution level, we would use an n x 24 regressor matrix. After that, we
need 16 +4 = 20 translates of 9 shrunk so as to have support 5/16, thereby
obtaining an n x 44 regressor matrix, and then 32 4+ 4 = 36 translates of ¥
shrunk to support 5/32, and so on. In fact, we will stop at this last level of
resolution. Thus, at our highest resolution level, we need 12+12+20+36 =
80 functions based on either ¢ or .

How then to interpret the results of these semi-nonparametric regres-
sions, at different resolutions? The first, in which one regresses a series on
the 12 translates of the scaling function ¢, gives a fit that we will interpret
as the trend of the series. This interpretation is, of course, somewhat arbi-
trary, in that a we choose a specific resolution for what we call the trend.
The choice was made on the basis of the appearance of the fits we actu-
ally obtained, as described in the following section. Note that the mean of
the series being analysed is entirely captured by this first regression, since
1 integrates to zero. In addition, since the Daubechies wavelets we use
have vanishing first and second moments (m = 2), any linear or quadratic
time trend in the data is also completely captured. In fact, numerical ex-
perimentation, in which cubic and quartic trends were regressed on the
12 regressors of the first stage, shows that, although they are not exactly
fit, as linear or quadratic trends are, they are nonetheless fit with a high
degree of accuracy. In particular, plots, on paper or a computer screen, of
such a trend and its wavelet fit cannot be distinguished by eye.

As we move to higher resolutions, we find at the first stage another
12 regressors, based now on 1. The shape of the Daubechies wavelets
is such that the first four translates, those whose supports begin at
-1/2,-3/8,—-1/4,—1/8, are not very different from zero on [0,1]. They
do not seem to play a significant role in our analysis, except for ironing
out the edge effects alluded to earlier. We therefore ignore them for our
interpretation.

That leave us with 8 translates, which we can associate with the 8 in-
tervals of length 1/8, beginning successively at 0,1/8,...,7/8. We wish to
interpret the contribution of each translate to the total fit as a measure of
the amount of “activity”, or variation, of the series, at time scale 1/8 of the
total sample period, at the appropriate time, that is, a time interval of the
form [i/8,(i+1)/8],i=0,...,7.

This interpretation would be simple and unambiguous if we had per-
formed a discrete wavelet transform. As we have seen, such a transform
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corresponds to a transformation of the data by an orthogonal matrix. But,
although the wavelet functions, considered as elements of L?*(R), form an
orthonormal basis, the columns of the regressor matrices we use are neither
normalised nor orthogonal. This is in general the case for two distinct rea-
sons: the wavelet functions are evaluated at a discrete set of points only,
and those whose support extends outside [0, 1] are truncated.

This being the case, the appropriate measure of variation in each time
cell seems to be provided by (the square of) the ¢ statistic on the regressor
corresponding to that cell. This quantity has of course its usual statistical
interpretation, and here it has the twofold virtue, first, that it is invariant to
the scale of the corresponding regressor, thereby freeing us from any concern
due to the lack of normalisation of these regressors, and, second, that it
measures the marginal significance of each regressor, thereby making it
unnecessary that the regressors be mutually orthogonal. In point of fact, the
t statistics associated with the four leftmost translates, at any resolution,
are very rarely significant at conventional levels, and the other translates,
except the rightmost two or three, are not far from being orthogonal.

Similar interpretations are available at higher resolutions. At the last
one we consider, we have 32 (i.e. 36 — 4) time intervals in which we can
measure the variation at time scale 1/32 of the total sample period.

We also wish to be able to compare intensities of variation across dif-
ferent time scales. To this end, we determine the overall contribution of
any given time scale by its marginal contribution to the explained sum of
squares of the regression. For instance, at the second highest resolution,
which corresponds to a time scale of 1/16 of the sample period, the con-
tribution is proportional to the increase in the explained sum of squares in
passing from the regression at the next lower resolution (with 24 regressors)
to the regression at this resolution (with 44 regressors). We can also mea-
sure the importance of the residual variation, which we naturally interpret
as the variation at time scales shorter than that of the highest resolution
actually considered. For this we use a sort of R2, but one in which we ignore
the variation in the trend of the series. Thus our “total sum of squares”
is the increase in the explained sum of squares when we go from the first
regression, with just 12 regressors, to the final one, with 80.

In summary, then, each resolution level is assigned an overall impor-
tance proportional to its contribution to the explained sum of squares, and
within that contribution, each time interval is assigned an importance pro-
portional to the square of the ¢ statistic of the regressor corresponding to
that interval at that resolution.

This allows us to construct the “patio” plots we mentioned in the pre-
ceding section. These have three rows of subintervals, each row spanning
the sample period. The first row, which has 8 subdivisions, corresponds to
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the first level of “details” beyond the trend. The next row has 16 subdivi-
sions, corresponding to the next smaller time scale, and the third row has
32 subdivisions, corresponding to the smallest time scale we treat explicitly.
Such patio plots will be presented in the next section.

5. Data Analysis: Patio Plots

We performed the wavelet analysis described above for twenty-one inter-
national commodity price series, covering the period January 1960 until
December 1995, except for three (aluminum, gold and petroleum), which
begin in January 1970. Most of these can be found conveniently in a sec-
ondary source, the UNCTAD (1996) monthly Commodity Price Bulletin.
The commodities were selected from those traded on exchanges where prices
are determined competitively, or on major markets, rather than on the basis
of a mark-up. We use monthly data, because they have enough degrees of
freedom for the wavelet analysis to be meaningful, while avoiding the high-
frequency noise often found in daily or tick observations. All of the series
were checked for consistency of definition over time and for possibilities of
errors in recording. Prices are in the currency of the market in question —
no series were unnecessarily converted to U.S. dollars in order to minimize
possible contamination through exchange-rate fluctuations. In addition,
nominal prices were used, because these tend to reflect best the emergence
of information that may influence a commodity market, rather than real
prices, which are more relevant for studying annual terms of trade than
physical market adjustments. This choice also avoids possible contamina-
tion by a cyclical price deflator. A definition of each of the series we treat
is given in the Appendix.

All the price series were tested for seasonality. Because of the interna-
tional geographic dispersion of commodity markets and of related trading
arbitrage, these prices typically do not have a strong or even a weak seasonal
component.

Earlier, we discussed the possibility that edge effects might be impor-
tant in the wavelet analysis we undertake. Most of these appear to be
accounted for satisfactorily by the inclusion of four more regressors at each
resolution, as discussed in the previous section. Another device appeared
to provide additional help in obtaining reasonable fits at the edges of the
sample. This device is a straightforward extension of one used in Donoho,
Johnstone, Keryacharian, and Picard (1995). The beginning and end of the
sample are artificially extended by some number, say m, observations (we
set m = 16), in the following way. The series, now of n + 2m elements, is:

YmsYm—15--5Y2, Y1, Y1, Y25« - s Yn—1:Yn s Yns Yn—15- - - s Yn—m+1-
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This ensures continuity at the edges, and, for all the series treated, seems
to be beneficial as regards the fit of the first few “real” elements.

In Figures 3-6 we display graphically the results of the analysis. For
four out of the twenty-one commodities considered, namely, coffee, copper,
cotton, and rice, we present, first, the patio showing how much movement
there is in a series at a certain resolution in a certain sub-interval. (The
patio plots for the other 17 commodities are not shown for reasons of space.
They may be accessed by anonymous ftp at ...) At the highest resolution,
the sample period is divided into 32 subintervals, each of which is thus
roughly a year long. The other, coarser, resolution levels, correspond to
time scales of 2 and 4 years approximately.

The graph below the patio in each of the figures shows a plot of the
actual series (the finer line) and a plot of the trend, that is, the fit obtained
by regressing on the 12 father wavelets at the base level of resolution. Below
is a plot of the residuals from the regression on the complete set of 80 wavelet
regressors. These residuals represent movement at a level of resolution
higher than one year. Since in most cases these residuals are evidently
heteroskedastic, it is clear that more information could be obtained by
examining the resolutions at 6-month and 3-month time scales. Going
further with monthly data would lead in short order to a perfect fit andno
degrees of freedom. Lastly, underneath the graphical information, we give
the numerical proportions of the total variation accounted for at the various
levels of resolution.

The more extensive analysis, down to the 3-month level, was carried
out for just one commodity, coffee, and the results are shown in Figure 7.
Only two resolutions are shown in this figure, those for which the sample
period is subdivided into 64 and 128 subintervals, respectively. These are
approximately 6-month and 3-month time scales. For reasons of visibility,
the overall patio is now spread out over four lines, each corresponding to
one quarter of the length of the sample period. Below, the plot shows the
residuals after these two new levels have been accounted for; they may be
compared with those of Figure 3.
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Sample period: 1960.1 until 1995.12
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Copper

Sample period: 1960.1 until 1995.12
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Cotton

Sample period: 1960.1 until 1995.12
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Rice

Sample period: 1960.1 until 1995.12
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6. Interpretation

The results of the wavelet analyses discussed in the previous section, in
particular the patio plots, present us with a number of opportunities to
learn how commodity prices behave both as regards time location and time
scale.

Price cycles are often considered to display growing volatility over time.
If so, then we expect to see darker tiles for later times at the resolution
corresponding to the underlying cyclical behavior. If the time scale of the
cyclical behavior itself changes, then we expect to see the darker tiles shift
from one resolution to another. If cyclical behavior is present at more than
one time scale, then dark tiles should be found at more than one resolution.
One may well observe that volatility increases over time for some time scales
but decreases for others.

A shock, such as the oil shocks that clearly have a strong influence
on the series we study here, gives rise to effects that may be more or less
persistent. Such effects can be studied not only as regards their persistence
in time but also as regards the time scale at which they operate.

If detrending is an issue, the wavelet analysis allows us to distinguish
clearly between what we may call short and long run trends, provided only
that we are prepared to specify the time scales that we qualify as short or
long run. If we suspect the existence of structural breaks, then we would
normally try to detect these by examining outliers. Just which observa-
tions are outliers, in the sense of being associated with large residuals,
may depend on the finest level of resolution used. By comparing different
resolutions, we may glean information concerning the nature of possible
structural breaks.

At relatively fine levels of resolution, it is possible to see how some
commodity prices lead or lag others by seeing when the tiles are darkest for
the various price series. One price can be thought of as leading another if its
dark tiles consistently occur before those of the other. On the other hand,
if most commodities have dark tiles at the same points in time, then we
may conclude that the prices of these commodities usually move together.

Wayvelet analyses may help in forecasting commodity price movements.
But one must be wary here, since the very fact of the superior time local-
ization provided by the compact support of wavelets means that no infor-
mation is available outside of that support.

For the rest of this section, we look in a little more detail at the prop-
erties of the twenty-one series analyzed in the light of the above remarks,
bearing in mind that our ability to interpret the patios is still rudimen-
tary. First, some general observations. Considerable activity is observed
in all the series at the annual and next above resolution during the market

— 924 —



upheaval associated with the petroleum crises. Particularly between 1973
and 1980, one can observe increased volatility in commodity price fluctua-
tions, though some calming appears at the end of this period. The relative
shading of the tiles suggests that the intensity of the volatility is greater
at different resolutions for different commodities. The fact that activity
increases at the 2-year resolution as well as at the annual indicates that the
effects of the upheaval over this period were more than transitory — price
swings persisted for more than two years before market forces produced
a dampening effect. On the other hand, activity at the 4-year resolution
appears normally to be more pronounced at the beginnning of the period.
This is probably due to the strong upward trend in prices starting late in
the 1960’s and peaking in 1974 or early 1975. At that point, commodity
prices were higher than at any time since World War II.

The above general observations change only slightly when we examine
the patios of individual commodities. If we begin with the metals, 2-year
activity appears strongly for copper, gold, lead, tin, tungsten, and zinc.
In time, the first or the fifth tile is the most important for most metals.
At the 4-year resolution, the metals differ among themselves. The upward
trend in prices occurred earlier for tin, gold, silver, and tungsten than for
copper or zinc. Copper, lead, and zinc also display similar patterns at 1-
year resolution, whereas the periods of greatest activity for tin come later.
This perhaps reflects the instability caused by the collapse of the tin buffer
stock and the temporary suspension of tin trading on the LME.

The agricultural commodities are more dissimilar, according to their
patios. This is to be expected, since differences exist in their patterns
of production and consumption. For example, wheat, corn, and rice are
grains grown annually. Coffee, cocoa, and tea are derived from perennial
crops in order to produce beverages. Cotton, jute, rubber, and wood are
raw materials. In their case, fluctuations in derived or industrial demand
affect the behavior of their prices.

If we first consider the grains, it appears that corn and wheat display
strong movements at the four-year resolution, and this occurs early in the
sample period. This may reflect the fact that wheat was one of the com-
modities where upward price movements actually preceded the petroleum
price jump. Soybean and wheat prices were particularly volatile during the
market upheavals of the mid-seventies.

Movements at a resolution of two years are prominent for coffee, cocoa,
sugar, and tea, as well as for rice, soybeans, and wheat. All of these except
tea display volatility at the annual level, though once again it comes earlier
for soybeans and wheat. This displacement could be due to their price
volatility being caused by climatic disturbances.
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The raw materials, including cotton, jute, rubber, and wool show
greater price activity at the longer-run or four-year resolution. This is
an important result, since it confirms the relatively greater influence on
demand for them of business cycles. For petroleum, the greatest activity
at the longer-run resolution comes early in the sample period, reflecting
the jump in price trend caused by the imposed price shock. Volatility in
short-term price movements comes later, reflecting the troublesome interval
in which oil prices fluctuated downwards.

Our graphical results show that commodity price volatility has not
grown over time at any but the shortest of time scales and not for all
commodities. Annual movements vary in intensity over the sample period,
but they do not increase towards the end of the sample. At longer time
scales, price movements do not seem to be most intense at any particular
frequency. The darkest tiles are to be found at different time scales at differ-
ent periods of the sample. The residual plots, however, show that volatility
at resolutions of less than a year does increase markedly for almost all the
commodities just after the oil shocks. Outliers occur often in the upheaval
period of 1973-76, but they seem to have only short-term consequences.
Lastly, differences do exist in the time locations of the most intense price
activity for different commodities. Leads and lags among periods of intense
activity can accordingly be observed, as we saw with tin as opposed to cop-
per and zinc. If this observation can be generalized, it would lend support
to the traditional view that commodity prices do not move together, a view
that has recently been questioned.

7. Conclusions

In this paper, we have developed a semi-nonparametric approach to data
analysis, based on wavelets, that to our knowledge has not been applied
in other contexts. We make use of the fact that the father and mother
wavelets used in multi-resolution analysis are simply new special functions,
with properties that make them particularly attractive for many purposes.
This fact allows us to overcome many of the limitations of the wavelet
transforms conventionally used in signal analysis. The fast wavelet trans-
forms that have been developed in recent years make it simple to compute
the values of these new special functions for any argument we wish. The
regressors used in the semi-nonparametric regressions that gave rise to all
the results in this paper are just vectors whose elements are such values of
the wavelet functions. There is no restriction on the number of elements in
these vectors, and there is no requirement of equal spacing.

The results obtained here indicate that our approach has considerable
potential when applied to economic data. In particular, the patio plots
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provide valuable information on both the time location and the time scale
of price movements. Since this wavelet-based methodology is new, the
interpretation of the results it provides is as yet tentative. However, because
of the international importance of commodity price behavior, econometric
results are readily available from other sources, and these have helped us
to interpret the numerical results we obtain. In particular, the wavelet
analysis seems effective in the analysis of several complex problem areas
which exist in price analysis. Among these, we may cite:

(1) the tendency towards greater volatility or heteroskedasticity;
(2)
(3) the impact of market conditions in giving rise to structural breaks; and
(4)

the effect of random shocks in giving rise to outliers;

the possible common influence of economic events causing commodity
prices to move or not to move together.

A great many issues await further research. We have paid very scant
attention to the treatment of edge effects — what worked well enough here
may not, continue to do so in other contexts. A related issue is the precise
choice of the time scales corresponding to the different resolutions. Here
we took the entire sample period and divided it into eight subintervals. It
would have been possible to choose the year as the base subinterval instead
of the approximate year used here, and it would be interesting to see to what
extent our results would change if we did so. The Daubechies wavelet with
m = 2 works well enough for our purposes, but other choices seem equally
reasonable. These should be investigated. The fact that our approach uses
a semi-nonparametric regression means that standard inference procedures
can be used for hypothesis testing. So far, we have done none of that.
Even so, a little further knowledge has been added to our understanding of
commodity price behavior.

Appendix

Data Description and Sources

Aluminum

London Metal Exchange, high grade, cash. From February 1970 to December
1978: virgin ingot, 99.5% purity, c.i.f. Europe. London (Metal Bulletin, London),
1970.01-1995.12.

Cocoa

Average of daily prices of the nearest three active future trading months on the
London Terminal Market and on the New York Coffee, Sugar, and Cocoa Ex-
change at time of the London close. Article 26 of the International Cocoa Agree-
ment, 1986 (International Cocoa Organization, London), 1960.01-1995.12.
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Coffee

Average of daily prices (secretariat of the International Coffee Organization, Lon-
don). Robustas, weighted average of ex-dock New York (60 percent), Angola
Ambriz 2 BB, Uganda standard, 1960.01-1995.12.

Copper

London Metal Exchange, electrolytic wire bars, high grade, cash (Metal Bulletin,
London), 1960.01-1995.12.

Cotton

Medium: U.S. Memphis Territory (medium staple), Middling 1-3/32. Prior to
July 1981: S.M. 1-1/16 (USDA, Washington, DC), 1960.01-1995.12.

Gold

United Kingdom, 99.5% fine, London afternoon fixing, average of daily prices
(Metal Bulletin, London), 1970.01-1995.12.

Jute

Raw Bangladesh, B.W.D., f.o.b. Chittagong-Chalna, actual market prices (The
Public Ledger, Watford, United Kingdom). Prior to March 1980: minimum
export price (Bangladesh Ministry of Jute), 1960.01-1995.12.

Lead

London Metal Exchange settlement and cash seller’s price in warehouse exclud-
ing duty, range main United Kingdom ports; Purity 99.97% Pb (Lead and Zinc
Statistics, International Study Group, London), 1960.01-1995.12.

Maize/Corn
U.S. Yellow, No. 3, Average Cash Price, Chicago (USDA), 1960.01-1995.10.
Crude Petroleum

Average of Dubai, United Kingdom Brent, and Alaska N. slope crude prices, re-
flecting relatively equal consumption of medium, light, and heavy crudes world-
wide. Dubai Fateh 32 API, spot, f.o.b. Dubai; United Kingdom, Brent Bland 38
API, spot, f.o.b. United Kingdom ports; United States, Alaskan N. slope 27 API,
spot, f.o.b. U.S. Gulf of Mexico ports, 1970.01-1995.12.

Rice

Thailand. White, 5% broken, end of month price, f.o.b. Bangkok, including
export duty (IMF Secretariat, Washington, DC), 1960.01-1995.12.

Rubber

Singapore, f.o.b. in bales, No. 1 RSS. closing quotations (The Public Ledger,
Watford, United Kingdom), 1960.01-1995.12.

Silver

Handy and Harman, 99.9% grade refined, average of daily quotations, New York
(Metal Bulletin, London), 1960.01-1995.12.

Soybeans

U.S. Yellow, No. 1, Average Cash Price, Chicago (USDA, Washington, DC),
1960.01-1995.07.
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Sugar

International Sugar Agreement, daily prices (f.o.b. Caribbean ports, bulk basis)
calculated in accordance with article 61 of the International Sugar Agreement,
1977 (International Sugar Organization, London), 1960.01-1995.12.

Tea

London, auction prices, all tea (Monthly Statistical Summary, International Tea
Committee, London). 1960.01-1995.12.

Tin
Ex-works price Kuala Lumpur market (ITC reference price since July 4, 1972).

Tin trade was suspended from October 24 to end of January 1986. (Metals Week,
New York), 1960.01-1995.12.

Tungsten

Wolfram, c.i.f. European ports concentrates, basis minimum 65% WO3s (Metal
Bulletin, London), 1960.01-1995.12.

Wheat

U.S. No. 2, Hard Red Winter (ordinary), f.o.b. Gulf (International Wheat Coun-
cil), 1960.01-1995.12.

Wool

UK64’s (dry-combed basis) (New Zealand Wool Marketing Corporation, Clacton-
on-Sea, United Kingdom), 1960.01-1995.12.

Zinc
London Metal Exchange, settlement and cash seller’s price in warehouse excluding

duty, range main United Kingdom ports; Virgin zinc, high grade (Lead and Zinc
Statistics, International Study Group, London), 1960.01-1995.12.
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