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Preface

This book is part two of an updated and abbeviated version of our 2004 text-
book Econometric Theory and Methods (ETM). A plan to create a full second
edition of that book never came to fruition, but the first several chapters of
the book have served both of us well, not only as a text for a first, one-term,
graduate course, but also for the Honours course in econometrics at McGill
University. But even in those early chapters, there have been more and more
things, over the years since the book was published, that we wished to up-
date and change. In the first book, of which this book is the second part, we
included only those chapters actually used in our one-term courses. For this
book, five more chapters are included, duly updated, for the purposes of a
graduate course that Davidson teaches at the Aix-Marseille School of Econ-
omics (AMSE). Some of it is also used in the graduate course he currently
teaches at McGill. Some remarks follow, taken from the preface to the first
book, intended to provide information on how best to use this second book.

Some of the exercises provided at the end of each chapter are really quite
challenging, as we discovered many years ago while preparing solutions to
them. These exercises are starred, as are a number of other exercises for
which we think that the solutions are particularly illuminating, even if they
are not especially difficult. In some cases, these starred exercises allow us to
present important results without proving them in the text. In other cases,
they are designed to allow instructors to cover advanced material that is not
in the text itself. Because the solutions to the starred exercises should be of
considerable value to students, they are available from the website for ETM.
All the data needed for the exercises are also available from the website,
although these are necessarily not at all recent. Instructors might prefer to
ask students to go online themselves to find more recent data that they can
use instead of the older data on the website.

There are several types of exercises, intended for different purposes. Some of
the exercises are empirical, designed to give students the opportunity to be-
come familiar with a variety of practical econometric methods. Others involve
simulation, including some that ask students to conduct small Monte Carlo
experiments. Many are fairly straightforward theoretical exercises that good
students should find illuminating and, we hope, not too difficult. Although
most of the exercises have been taken over unchanged from ETM, some have
been modified, and a fair number of new exercises introduced.

An instructor’s manual was provided for ETM, with solutions to all the exer-
cises of that book. It can be found online by anyone willing to spend a little
time with Google. In a sense this is a shame, as it means that instructors
can no longer safely use exercises given here for exams or assignments, since
some students may be tempted to copy the solutions from the manual. We
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fear that this is likely to be a problem that university instructors will have
to face more and more frequently, even if most instruction is no longer being
given online. However, for our purposes here, the most important point is
that solutions for the starred exercises are readily available without access to
Google or any other search engine.

Organization

In the first book of this update of parts of ETM, no nonlinear models are
considered. Some of these are given a reasonably full treatment here. The first
chapter deals with nonlinear least squares (NLS), the simplest of the nonlinear
models discussed here. As in part 1, much use is made of estimating functions
and estimating equations. The asymptotic properties of NLS are developed
in this chapter, and serve as a model for those of the other nonlinear models
dealt with in later chapters. Similarly, attention is given to the methods
of estimation used for nonlinear models, which, being iterative, are quite
different from the methods presented in part 1 for linear models. Artificial
regressions play a large part in nonlinear estimation, and it is here that the
Gauss-Newton regression is presented. It too serves as a model for the other
artificial regressions found in later chapters. Inference can be based either on
asymptotic methods or the bootstrap — both are treated here.

The topic of Chapter 2 is the Generalized Method of Moments (GMM). This
very general technique of estimation, and, to a lesser extent, also of inference,
was developed much more recently than the classical method of Maximum
Likelihood (ML), and so it might seem appropriate to discuss ML before
GMM. We chose to do things in the opposite order, because some of the clas-
sical theory of ML is specific to that technique, while the theory and methods
of GMM are much more general. Nonetheless, we begin by developing the
linear regression model, as seen from the viewpoint of GMM, before looking
at other, nonlinear, models. In this chapter, the very intimate connection
between GMM and linear models estimated by use of instrumental variables
(IV) is presented. The concept of over-identifying restrictions is seen to be as
important in this more general context as with linear IV models, and several
methods for testing these restrictions are presented. It is in this chapter, too,
that inference robust to heteroskedasticity, or to that and serial correlation,
is explained for nonlinear models.

Maximum Likelihood is the topic of Chapter 3. As with GMM, the starting
point here is the linear regression model, for which the distribution of the
disturbances must be specified more completely than for least squares. Here,
we make the usual assumption of normal disturbances. After a brief exposi-
tion of the asymptotic properties of ML, we present the three classical tests
associated with ML, likelihood ratio, Wald, and Lagrange Multiplier. Some
special topics broached in this chapter are how the first observations in an
autoregressive time-series model can be handled by ML, and how ML can
handle transformations of the dependent variable in regression models.

Preface v

Chapter 4 discusses some examples of models with discrete, or otherwise lim-
ited, dependent variables. The first of these models are binary-choice, or
binary-response, models, where the most frequently used are the Probit and
Logit. Estimation and inference for these are treated in this chapter, and the
artificial regression suitable for use with binary-response models is presented.
The rest of the chapter discusses other models with limited dependent vari-
ables: models with more than two discrete responses, models with count data,
with censored or truncated data, with duration data. Another important topic
found in this chapter is that of sample selectivity.

Multivariate models are used increasingly in econometric research. They, or
some of them, at least, are discussed in Chapter 5. We start with the long-
standing problem of so-called Seemingly Unrelated Regressions, the name
hinting at the fact that the regressions are in fact related, but only through
the joint covariance matrix of the disturbances. This leads on to a treatment of
the classical linear simultaneous-equations model, about which the literature
dates back most of a century. Maximum likelihood and GMM are both used
in the analysis of these models.

Even with this second part, the abbreviated version of the original ETM can-
not treat more than a limited number of topics of current interest to econo-
metricians. We may hope, however, that what is presented in these two books
is enough for students to embark on study of the recent research literature,
and to find research problems of their own.
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dependent variable; regressand
matrix of explanatory variables; regressors
matrix of instrumental variables
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vector of estimated parameters
vector of parameters estimated under restrictions
vector of disturbances
variance (usually of disturbances)
cumulative distribution function (CDF)
probability density function
CDF of standard normal distribution N(0,1)
density of standard normal distribution
identity matrix
column vector of zeros
matrix of zeros
column vector of ones
linear span of the columns of X
orthogonal complement of $(X)
orthogonal projection matrix on to §(X)
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a data-generating process (DGP)
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set of n-vectors
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r a variance or a covariance matrix
a covariance matrix
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Chapter 1

Nonlinear Regression

1.1 Introduction

For each observation t of any regression model, there is an information set 24
and a suitably chosen vector X; of explanatory variables that belong to ;.
A linear regression model consists of all DGPs for which the expectation of
the dependent variable y; conditional on €); can be expressed as a linear com-
bination X;3 of the components of X, and for which the disurbances satisfy
suitable requirements, such as being IID. Since the elements of X; may be
nonlinear functions of the variables originally used to define €;, many types
of nonlinearity can be handled within the framework of the linear regression
model. However, many other types of nonlinearity cannot be handled within
this framework. In order to deal with them, we often need to estimate non-
linear regression models. These are models for which E(y; | ©;) is a nonlinear
function of the parameters.

A typical nonlinear regression model can be written as

yr = 24(B) +up, up ~I1D(0,0%), t=1,...,n, (1.01)
where, just as for the linear regression model, v, is the ¢t observation on
the dependent variable, and 3 is a k-vector of parameters to be estimated.
The scalar function x¢(3) is a nonlinear regression function. It determines
the expectation of y; conditional on 4, which is made up of some set of
explanatory variables. These explanatory variables, which may include lagged
values of y; as well as exogenous variables; are not shown explicitly in (1.01).
However, the ¢ subscript of z;(3) indicates that the regression function varies
from observation to observation. This variation usually occurs because x;(3)
depends on explanatory variables, but it can also occur because the functional
form of the regression function actually changes over time. The number of
explanatory variables, all of which must belong to €2, need not be equal to k.

The disturbances in (1.01) are specified to be IID. By this, we mean something
very similar to, but not precisely the same as, the two conditions in (F5.46). In
order for the disturbances to be identically distributed, the distribution of each
disturbance wu¢, conditional on the corresponding information set 2;, must be
the same for all ¢. In order for them to be independent, the distribution of wu,,
conditional not only on ; but also on all the other disturbances, should be
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the same as its distribution conditional on 2; alone, without any dependence
on the other disturbances.

Another way to write the nonlinear regression model (1.01) is
y=z(8)+u, u~IID(0,5%I), (1.02)

where y and w are n—vectors with typical elements y; and w;, respectively,
and x(3) is an n-vector of which the ¢'!' element is x,(3). Thus z(B3) is the
nonlinear analog of the vector X3 in the linear case.

As a very simple example of a nonlinear regression model, consider the model

1
Y = B1 + oz + PR 1ID(0,°), (1.03)
2

where z;; and z;o are explanatory variables. For this model,
1
zt(B) = B1 + Pazu + EZQ'

Although the regression function z;(3) is linear in the explanatory variables,
it is nonlinear in the parameters, because the coefficient of z;2 is constrained
to equal the inverse of the coefficient of z;;. In practice, many nonlinear
regression models, like (1.03), can be expressed as linear regression models in
which the parameters must satisfy one or more nonlinear restrictions.

The Linear Regression Model with AR(1) Disturbances

We now consider a particularly important example of a nonlinear regression
model that is also a linear regression model subject to nonlinear restrictions
on the parameters. This arises in connection with the phenomenon of serial
correlation, in which nearby disturbances in a regression model are (or appear
to be) correlated. Serial correlation is very commonly encountered in applied
work using time-series data, and many techniques for dealing with it have
been proposed. One of the simplest and most popular ways of dealing with
serial correlation is to assume that the disturbances follow the first-order
autoregressive, or AR(1), process

up = pug_1 +e, e ~1ID(0,02), |p| < 1. (1.04)

According to this model, the disturbance at time ¢ is equal to p times the
disturbance at time ¢ — 1, plus a new disturbance ¢;. The vector € with
typical component e; satisfies the IID condition we discussed above. This
condition is enough for £; to be an innovation. Thus the &; are homoskedastic
and independent of all past and future innovations. We see from (1.04) that,
in each period, part of the disturbance u; is the previous period’s disturbance,
shrunk somewhat toward zero and possibly changed in sign, and part is the
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innovation ;. We discussed serial correlation, including the AR(1) process
and other autoregressive processes, in Chapter 9 of Part 1. At present, we
are concerned solely with the nonlinear regression model that results when
the disturbances of a linear regression model are assumed to follow an AR(1)
process.

If we combine (1.04) with the linear regression model

ye = Xi B+ wy (1.05)

by substituting pu;—1 + & for u; and then replacing us—1 by y1—1 — X¢—13,
we obtain the nonlinear regression model

Y= pyi—1+ XiB—pXi18+¢er, e ~1ID(0,072). (1.06)

Since the lagged dependent variable y;_; appears among the regressors, this
is a dynamic model. As with the other dynamic models that are treated
in the exercises, we have to drop the first observation, because yy and X
are assumed not to be available. The model is linear in the regressors but
nonlinear in the parameters 3 and p, and it therefore needs to be estimated
by nonlinear least squares or some other nonlinear estimation method.

In the next section, we study estimators for nonlinear regression models gen-
erated by the method of moments, and we establish conditions for asymptotic
identification, asymptotic normality, and asymptotic efficiency. Then, in Sec-
tion 1.3, we show that, under the assumption that the disturbances are 11D,
the most efficient estimator is nonlinear least squares, or NLS. In Section 1.4,
we discuss various methods by which NLS estimates may be computed. The
method of choice in most circumstances is some variant of Newton’s Method.
One commonly-used variant is based on an artificial linear regression called
the Gauss-Newton regression. We introduce this artificial regression in Sec-
tion 1.5 and show how to use it to compute NLS estimates and estimates
of their covariance matrix. In Section 1.6 we introduce the important con-
cept of one-step estimation. Then, in Section 1.7, we show how to use the
Gauss-Newton regression to compute hypothesis tests.

1.2 Estimating Equations for Nonlinear Models

The OLS estimator for linear models may be derived by using the fact that, for
each observation, the expectation of the disturbance in the regression model
is zero conditional on the vector of explanatory variables. This implied that

E(Xyuy) = E(Xy(y: — X:8)) = 0. (1.07)

The sample analog of the middle expression here is n~'X '(y — X3). Setting
this to zero and ignoring the factor of n~!, we obtained the vector of estimating
equations

X'(y— XB) =0, (1.08)
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and these conditions were easily solved to yield the OLS estimator ,3 We now
want to employ the same type of argument for nonlinear models.

An information set {2; is typically characterized by a set of variables that
belong to it. But, since the realization of any deterministic function of these
variables is known as soon as the variables themselves are realized, {2; must
contain not only the variables that characterize it but also all determinis-
tic functions of them. As a result, an information set §; contains precisely
those variables which are equal to their expectations conditional on ;. In
Exercise 1.1, readers are asked to show that the conditional expectation of a
random variable is also its expectation conditional on the set of all determin-
istic functions of the conditioning variables.

For the nonlinear regression model (1.01), the disturbance u; has expectation 0
conditional on all variables in ;. Thus, if W; denotes any 1 X k vector of
which all the components belong to €1,

E(Wiu) = E(Wi (3 — 2.(8))) = 0. (1.09)

Just as the estimating equations that correspond to (1.07) are (1.08), the
estimating equations that correspond to (1.09) are

W'y —z(8)) =0, (1.10)

where W is an n x k matrix with typical row W,. There are k nonlinear
equations in (1.10). These equations can, in principle, be solved to yield an
estimator of the k-vector 8. Geometrically, the estimating equations (1.10)
require that the vector of residuals should be orthogonal to all the columns
of the matrix W.

How should we choose W7 There are infinitely many possibilities. Using
almost any matrix W, of which the ¢*® row depends only on variables that
belong to €2;, and which has full column rank k asymptotically, yields a con-
sistent estimator of 8. However, these estimators in general have different
asymptotic covariance matrices, and it is therefore of interest to see if any
particular choice of W leads to an estimator with smaller asymptotic var-
iance than the others. Such a choice would then lead to an efficient estimator,
judged by the criterion of the asymptotic variance.

Identification and Asymptotic Identification

Let us denote by B the estimator defined implicitly by (1.10). In order to
show that 3 is consistent, we must assume that the parameter vector 3 in the
model (1.01) is asymptotically identified. In general, a vector of parameters

is said to be identified by a given data set and a given estimation method if,
for that data set, the estimation method provides a unique way to determine
the parameter estimates. In the present case, B is identified by a given data
set if equations (1.10) have a unique solution.

1.2 Estimating Equations for Nonlinear Models 5

For the parameters of a model to be asymptotically identified by a given
estimation method, we require that the estimation method should provide a
unique way to determine the parameter estimates in the limit as the sample
size n tends to infinity. In the present case, asymptotic identification can be
formulated in terms of the probability limit of the vector n_1WT(y — :B(,B))
as n — oo. Suppose that the true DGP is a special case of the model (1.02)
with parameter vector By. Then we have

W (y - 2(Bo)) = %iwﬁut. (1.11)
t=1

By (1.09), every term in the sum above has expectation 0, and the IID as-
sumption in (1.02) is enough to allow us to apply a law of large numbers to
that sum. It follows that the right-hand side, and therefore also the left-hand
side, of (1.11) tends to zero in probability as n — co.

Let us now define the k-vector of deterministic functions a(3) as

a(B) = plim - W' (y — z(8)), (1.12)
n—oo

where we continue to assume that y is generated by the model (1.02) with
B = Bp. Since a law of large numbers can be applied to the right-hand side
of equation (1.12) whatever the value of 3, the components of « are deter-
ministic. In the preceding paragraph, we explained why «a(By) = 0. The
parameter vector 3 is asymptotically identified if 3 is the unique solution to
the equations a(3) = 0, that is, if a(3) # 0 for all 8 # Bo.

Although most parameter vectors that are identified by data sets of reasonable
size are also asymptotically identified, neither of these concepts implies the
other. It is possible for an estimator to be asymptotically identified without
being identified by many data sets, and it is possible for an estimator to
be identified by every data set of finite size without being asymptotically
identified. To see this, consider the following two examples.

As an example of the first possibility, suppose that y; = 1 + [22¢, where z;
is a random variable which follows the Bernoulli distribution. Such a random
variable is often called a binary variable, because there are only two possible
values it can take on, 0 and 1. The probability that z; = 1 is p, and so the
probability that z; = 0 is 1 — p. If p is small, there could easily be samples of
size n for which every z; was equal to 0. For such samples, the parameter S
cannot be identified, because changing 32 can have no effect on y; — 81 — B2 2¢.
However, provided that p > 0, both parameters are identified asymptotically.
As n — oo, a law of large numbers guarantees that the proportion of the z;
that are equal to 1 tends to p.

As an example of the second possibility, consider the following model

1
Y 261+52¥ + uy, (1.13)
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where t is a time trend. The OLS estimators of 81 and f2 can, of course, be
computed for any finite sample of size at least 2, and so the parameters are
identified by any data set with at least 2 observations. But s is not identified
asymptotically. Suppose that the true parameter values are 3 and 89. Let
us use the two regressors for the variables in the information set £2;, so that
W, = [1 1/] and the Z-estimator is the same as the OLS estimator. Then,
using the definition (1.12), we obtain

S0 ((BY = Bu) + Ve (B3 — B2) + we)
nT i (Ve (BY = Br) + 1/82(B3 — B2) + V)
It is known that the deterministic sums n='Y " | (1/t) and n=1>°1 | (1/t?)
both tend to 0 as n — oo. Further, the law of large numbers tells us that the

limits in probability of n™*>"" | u; and n='>"}" | (u4/t) are both 0. Thus the
right-hand side of (1.14) simplifies to

(B, B2) = plim

n— 00

]. (1.14)

(B, B) = {59_51}

0

Since a(B1, 32) vanishes for 81 = B) and for any value of 8, whatsoever, we
see that (B3 is not asymptotically identified. It can be shown that, although
the OLS estimator of (5 is unbiased, it is not consistent. The simultaneous
failure of consistency and asymptotic identification in this example is not a
coincidence: It will turn out that asymptotic identification is a necessary and
sufficient condition for consistency.

Consistency

Suppose that the DGP is a special case of the model (1.02) with true parameter
vector (3g. Under the assumption of asymptotic identification, the equations
a(B3) = 0 have a unique solution, namely, 3 = By. This can be shown to imply
that, as n — oo, the probability limit of the estimator 3 defined by (1.10) is
precisely Bg. We will not attempt a formal proof of this result, since it would
have to deal with a number of technical issues that are beyond the scope of
this book. See Amemiya (1985, Section 4.3) or Davidson and MacKinnon
(1993, Section 5.3) for more detailed treatments.

However, an intuitive, heuristic, proof is not at all hard to provide. If we
make the assumption that ,@ has a deterministic probability limit, say B,
the result follows easily. What makes a formal proof more difficult is showing
that B exists. Let us suppose that 8., # Bg. We will derive a contradiction
from this assumption, and we will thus be able to conclude that B, = B, in
other words, that B is consistent.

For all finite samples large enough for 3 to be identified by the data, we have,
by the definition (1.10) of 3, that

LW (y - =(B)) =0. (1.15)
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If we take the limit of this as n — oo, we have 0 on the right-hand side. On
the left-hand side, because we assume that plim 3 = B, the limit is the same
as the limit of

%WT('!/ - w(ﬁ%))

By (1.12), the limit of this expression is a(8). We assumed that B, # Bo,
and so, by the asymptotic identification condition, a(B) # 0. But this
contradicts the fact that the limits of both sides of (1.15) are equal, since the
limit of the right-hand side is O.

We have shown that, if we assume that a deterministic B, exists, then asymp-
totic identification is sufficient for consistency. Although we will not attempt
to prove it, asymptotic identification is also necessary for consistency. The
key to a proof is showing that, if the parameters of a model are not asymp-
totically identified by a given estimation method, then no deterministic limit
like B exists in general. An example of this is provided by the model (1.13);
see also Exercise 1.2.

The identifiability of a parameter vector, whether asymptotic or by a data set,
depends on the estimation method used. In the present context, this means
that certain choices of the variables in W, may identify the parameters of a
model like (1.01), while others do not. We can gain some intuition about this
matter by looking a little more closely at the limiting functions a(3) defined
by (1.12). We have

() = plim 2 Wy — 2(3))
= plim W (x(8y) — =(8) + v)
n—o0 o . (1.16)
= a(By) + 711)51510 W' (2(Bo) — =(8))

= plim LW (2(30) - 2(9)).

Therefore, for asymptotic identification, and so also for consistency, the last
expression in (1.16) must be nonzero for all 8 # Bo.

Evidently, a necessary condition for asymptotic identification is that there is
no 31 # Bo such that (B1) = x(Bp). This condition is the nonlinear analog of
the requirement of linearly independent regressors for linear regression models.
We can now see that this requirement is in fact a condition necessary for the
identification of the model parameters, both by a data set and asymptotically.
Suppose that, for a linear regression model, the columns of the regressor
matrix X are linearly dependent. This implies that there is a nonzero vector b
such that Xb = 0. Then it follows that X3y = X(8p + b). For a linear
regression model, (3) = XB. Therefore, if we set 31 = By + b, the linear
dependence means that x(81) = x(Bo), in violation of the necessary condition
stated at the beginning of this paragraph.
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For a linear regression model, linear independence of the regressors is both
necessary and sufficient for identification by any data set. We saw above that
it is necessary, and sufficiency follows from the fact that XX is nonsingu-
lar if the columns of X are linearly independent. If XTX is nonsingular,
the OLS estimator (X 'X)~'X 'y exists and is unique for any y, and this is
precisely what is meant by identification by any data set.

For nonlinear models, however, things are more complicated. In general, more
is needed for identification than the condition that no 31 # By exists such
that x(81) = x(Bp). The relevant issues will be easier to understand after
we have derived the asymptotic covariance matrix of the estimator defined
by (1.10), and so we postpone study of them until later.

The estimator 3 defined by (1.10) is actually consistent under considerably
weaker assumptions about the disturbances than those we have made. The
key to the consistency proof is the requirement that the disturbances satisfy
the condition

plim L W = 0. (1.17)

n— 00
Under reasonable assumptions, it is not difficult to show that this condition
holds even when the u; are heteroskedastic, and it may also hold even when
they are serially correlated. However, difficulties can arise when the wu; are
serially correlated and x:(3) depends on lagged dependent variables. In this
case, it will be seen later that the expectation of u; conditional on the lagged
dependent variable is nonzero in general. Therefore, in this circumstance, con-
dition (1.17) does not hold whenever W includes lagged dependent variables,
and such estimators are generally not consistent.

Asymptotic Normality

The estimator 3 defined by (1.10) for different possible choices of W' is asymp-
totically normal under appropriate conditions. This means that the vector
nt/ 2([3' — Bo) follows the multivariate normal distribution with expectation
vector 0 and a covariance matrix that will be determined shortly.

Before we start our analysis, we need some notation, which will be used exten-
sively in the remainder of this chapter. In formulating the generic nonlinear
regression model (1.01), we deliberately used z:(-) to denote the regression
function, rather than f;(-) or some other notation, because this notation makes
it easy to see the close connection between the nonlinear and linear regression
models. It is natural to let the derivative of x;(3) with respect to 5; be de-
noted X;;(3). Then we can let X;(8) denote a 1 x k vector, and X(3) denote
an n X k matrix, each having typical element X3;(3). These are the analogs of
the vector X; and the matrix X for the linear regression model. In the linear
case, when the regression function is X3, it is easy to see that X;(3) = X;
and X(8) = X. The big difference between the linear and nonlinear cases is
that, in the latter case, X;(8) and X(8) depend on 3.

1.2 Estimating Equations for Nonlinear Models 9

If we multiply equation (1.10) by n~'/2, replace y by what it is equal to under
the DGP (1.01) with parameter vector By, and replace 3 by 3, we obtain

nil/ZWT(u +x(B8o) — w([;‘)) = 0. (1.18)

The next step is to apply Taylor’s Theorem at the point 8 = Bg to the
components of the vector z(3). We apply the formula (I6.58) with m = £,
replacing f(x) by x4(8Bo) and h by the vector 3 — Bg. We thus obtain, for

t=1,...,n,

k
21(B) = 2:(B0) + Y Xui(Be) (Bi — i), (1.19)
i=1

where SBo; is the i*" element of By, and the B;, which play the role of  + Ah
in equation (F6.58), satisfy the condition

1B = Bol| < B - Bol|- (1.20)

Substituting the Taylor expansion (1.19) into (1.18) yields

nVPW T — 0" VPWTX(B) (8 — Bo) = 0. (1.21)
The notation X(3) is convenient, but slightly inaccurate. According to (1.19),
we need different parameter vectors 3 for each row of that matrix. But, since
all of these vectors satisfy (1.20), it is not necessary to make this fact explicit
in the notation. Thus here, and in subsequent chapters, we will refer to a
vector 3 that satisfies (1.20), without implying that it must be the same
vector for every row of the matrix X(3). This is a legitimate notational
convenience, because, since [3' is consistent, as we have seen that it is under
the requirement of asymptotic identification, then so too are all of the B;.
Consequently, (1.21) remains true asymptotically if we replace 3 by By. Doing
this, and rearranging factors of powers of n so as to work only with quantities
which have suitable probability limits, yields the result that

n"V2Wlu —n W X(8o) nt/2(8 — Bo) £ 0. (1.22)

This result is the starting point for all our subsequent analysis.
We need to apply a law of large numbers to the first factor of the second term
of (1.22), namely, n~'W T X,, where for notational ease we write Xy = X(3y).
Under reasonable regularity conditions, not unlike those needed for (F4.23)
to hold, we have

. 1 T . 1 T —

where Syyrx is a deterministic k£ x k matrix. It turns out that a sufficient
condition for the parameter vector 3 to be asymptotically identified by the
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estimator B defined by the estimating equations (1.10) is that SyTx should
have full rank. To see this, observe that (1.22) implies that

Swxn/2(8 - Bo) £ n VW . (1.23)

Because Syytx is assumed to have full rank, its inverse exists. Thus we can
multiply both sides of (1.23) by this inverse to obtain a well-defined expression
for the limit of n'/2(8 — By):

n?(B8 - Bo) £ (Swrx)'n*W . (1.24)

From this, we conclude that 3 is asymptotically identified by B. The condition
that Syyrx be nonsingular is called strong asymptotic identification. It is a
sufficient but not necessary condition for ordinary asymptotic identification.

The second factor on the right-hand side of (1.24) is a vector to which we
should, under appropriate regularity conditions, be able to apply a central
limit theorem. Since, by (1.09), E(Wju;) = 0, we can show that n~"/2WTu
is asymptotically multivariate normal, with expectation vector 0 and a finite
covariance matrix. To do this, we can show that the vector v of (F5.48) is
asymptotically multivariate normal. Because the components of n'/ 2(,@ - Bo)
are, asymptotically, linear combinations of the components of a vector that
follows the multivariate normal distribution, we conclude that n'/ 2(,@ - Bo)
itself must be asymptotically normally distributed with expectation vector
zero and a finite covariance matrix. This implies that B is root-n consistent.

Asymptotic Efficiency

The asymptotic covariance matrix of n~'/2WTu, the second factor on the
right-hand side of (1.24), is,

o plim L WTW = 03 Syrw, (1.25)

n—oo
where o2 is the disturbance variance for the true DGP, and where we make the

definition Sy = plimn W TW. From (1.24) and (1.25), it follows imme-
diately that the asymptotic covariance matrix of the vector n'/2(8 — By) is

U(Z](Swa)71SWTW (S;}FVTX)il, (126)

which has the form of a sandwich. By the definitions of Sy, and Sy x,
expression (1.26) can be rewritten as

o plim (n ' W'Xo) 'n "W W (n ' X W)™ 1)
n— 00
— o2 plim (n™ X W (WTW)'WX,) "
n—oo

= 02 plim (n ™' Xo Py X)), (1.27)

n—o0
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where Py is the orthogonal projection on to 8(W), the subspace spanned by
the columns of W. Expression (1.27) is the asymptotic covariance matrix of
the vector nt/ 2(,@ — Bo). However, it is common to refer to it as the asymp-
totic covariance matrix of 3, and we will allow ourselves this slight abuse of
terminology when no confusion can result.

It is clear from the result (1.27) that the asymptotic covariance matrix of the
estimator ,é depends on the variables W used to obtain it. Most choices of W
lead to an inefficient estimator by the criterion of the asymptotic covariance
matrix, as we would be led to suspect by the fact that (1.26) has the form of
a sandwich. It is not hard to show that an estimator which is asymptotically
efficient is given by the choice W = Xj. To demonstrate this, we need to
show that this choice of W minimizes the asymptotic covariance matrix, in
the sense used in the Gauss-Markov theorem. Recall that one covariance
matrix is said to be “greater” than another if the difference between it and
the other is a positive semidefinite matrix.

If we set W = X to define the estimator, the asymptotic covariance matrix
(1.27) becomes o2 plim(n~1 X X)L It is often easier to establish efficiency
by reasoning in terms of the precision matrix, that is, the inverse of the
covariance matrix, rather than in terms of the (asymptotic) covariance matrix
itself. Since

X0 Xo — Xo PwXo = Xo MwXo,

which is a positive semidefinite matrix, it follows at once that the precision
of the estimator obtained by setting W = X, is greater than or equal to
that of the estimator obtained by using any other choice of W. The same
precision can be obtained only if Mw X, = O, that is, if every column of
the matrix Xy is in the subspace 8(W'). In other words, the estimator is
asymptotically efficient whenever Xj belongs to §(W).

Of course, we cannot actually use Xy for W in practice, because Xy = X(8o)
depends on the unknown true parameter vector (By. The estimator that
uses Xo for W' is therefore said to be infeasible. In the next section, we
will see how to overcome this difficulty. The nonlinear least-squares estimator
that we will obtain turns out to have exactly the same asymptotic properties
as the infeasible estimator.

1.3 Nonlinear Least Squares

There are at least two ways in which we can approximate the asymptotically
efficient, but infeasible, estimator that uses Xy for W. The first, and perhaps
the simpler of the two, is to begin by choosing any W for which W; belongs
to the information set 2; and using this W to obtain a preliminary consistent
estimate, say ,é, of the model parameters. We can then estimate 3 once more,
setting W = X = X(ﬂ) The consistency of 3 ensures that X tends to the
efficient choice Xy as n — oo.
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A more subtle approach is to recognize that the above procedure estimates the
same parameter vector twice, and to compress the two estimation procedures
into one. Consider the estimating equations

X'(B)(y —z(8)) = 0. (1.28)

If the estimator ,@ obtained by solving the k equations (1.28) is consistent,
then X = X(ﬁ) tends to Xy as n — oo. Therefore, it must be the case
that, for sufficiently large samples, 3 is very close to the infeasible, efficient
estimator.

The estimator ,é based on (1.28) is known as the nonlinear least-squares, or
NLS, estimator. The name comes from the fact that the estimating equations
(1.28) are just the first-order conditions for the minimization with respect
to B of the sum-of-squared-residuals (or SSR) function. The SSR function is
defined just as in (F2.48), but for a nonlinear regression function:

SSR(B) = (v —2(8))” = (v —=(0)) (v — =(8)). (1.29)

t=1

It is easy to check (see Exercise 1.4) that the estimating equations (1.28) are
equivalent to the first-order conditions for minimizing (1.29).

Equations (1.28), which define the NLS estimator, closely resemble equa-
tions (1.08), which define the OLS estimator. Like the latter, the former can
be interpreted as orthogonality conditions: They require that the columns of
the matrix of derivatives of x(8) with respect to B should be orthogonal to
the vector of residuals. There are, however, two major differences between
(1.28) and (1.08). The first difference is that, in the nonlinear case, X(3)
is a matrix of functions that depend on the explanatory variables and on 3,
instead of simply a matrix of explanatory variables. The second difference is
that equations (1.28) are nonlinear in 3, because both x(3) and X (3) are, in
general, nonlinear functions of 8. Thus there is no closed-form expression for
B comparable to the famous formula (F2.45). As we will see in Section 1.4,
this means that it is substantially more difficult to compute NLS estimates
than it is to compute OLS ones.

Consistency of the NLS Estimator

Since it has been assumed that every variable on which z;(8) depends belongs
to ¢, it must be the case that x;(3) itself belongs to €, for any choice of 8.
Therefore, the partial derivatives of x4(3), that is, the elements of the row
vector X;(8), must belong to €, as well, and so

E(X:(B)u) = 0. (1.30)

If we define the limiting functions a(3) for the estimator based on (1.28)
analogously to (1.12), we have

() = plim = X(8)(y — =(83)).

n— 00

1.3 Nonlinear Least Squares 13

It follows from (1.30) and the law of large numbers that a(By) = 0 if the true
parameter vector is By. Thus the NLS estimator is consistent provided that
it is asymptotically identified. We will have more to say in the next section
about identification and the NLS estimator.

Asymptotic Normality of the NLS Estimator

The discussion of asymptotic normality in the previous section needs to be
modified slightly for the NLS estimator. Equation (1.21), which resulted from
applying Taylor’s Theorem to w(,é‘)7 is no longer true, because the matrix W
is replaced by X(3), which, unlike W, depends on the parameter vector (3.
When we take account of this fact, we obtain a rather messy additional term
in (1.21) that depends on the second derivatives of x(3). However, it can
be shown that this extra term vanishes asymptotically. Therefore, equation
(1.22) remains true, but with X, = X(8) replacing W. This implies that,
for NLS, the analog of equation (1.24) is

~ —1
n'’?(B — Bo) = (plim %XOTXO) n 12X, (1.31)

n—r00
from which the asymptotic normality of the NLS estimator follows by essen-
tially the same arguments as before.

Slightly modified versions of the arguments for estimators of the previous
section also yield expressions for the asymptotic covariance matrix of the
NLS estimator 8. The consistency of 3 means that

plim %XTX = plim %XJ X, and plim %X‘TXO = plim %XOT Xo.

n—oo n—oo n—oo n—oo

Thus, on setting W = X, (1.27) gives for the asymptotic covariance matrix
of n'/2(8 — By) the matrix

—1 —1
o2 plim (%XOT PXX()) = 02 plim (% X X0> : (1.32)
n—oo n— o0
from which we see that the NLS estimator 3 is asymptotically efficient. More-
over, it follows that a consistent estimator of the covariance matrix of 3 is
Var(B) = s2(X X)), (1.33)
where, by analogy with (F4.63),
2 1 S ~2 1 - V)2
= =) (- n(d) (1.34)
t=1

n —
t=1

Of course, s2 is not the only consistent estimator of o2 that we might reason-

ably use. Another possibility is to use

3=

6’2

> g (1.35)
t=1

However, we will see shortly that (1.34) has particularly attractive properties.



14 Nonlinear Regression

NLS Residuals and the Variance of the Disturbances

Not very much can be said about the finite-sample properties of nonlinear
least squares. The techniques that we used in Part 1, Chapter 4 to obtain the
finite-sample properties of the OLS estimator simply cannot be used for the
NLS one. However, it is easy to show that, if the DGP is

y=a(B) +u, u~I1D(0,03L), (1.36)

which means that it is a special case of the model (1.02) that is being esti-
mated, then

E(SSR(8)) < na?. (1.37)
The argument is just this. From (1.36), y — (Bp) = u. Therefore,

E(SSR(Bo)) = E(u'u) = nog.

Since 3 minimizes the sum of squared residuals and By in general does not,
it must be the case that SSR(3) < SSR(By). The inequality (1.37) follows
immediately. Thus, just like OLS residuals, NLS residuals have variance less

than the variance of the disturbances.

The consistency of B implies that the NLS residuals @; converge to the distur-
bances u; as n — oo. This means that it is valid asymptotically to use either
52 from (1.34) or 2 from (1.35) to estimate o2. However, we see from (1.37)
that the NLS residuals are too small on average. Therefore, by analogy with
exact results for the OLS case, it seems plausible to divide by n — k instead of
by n when we estimate o2. In fact, as we now show, there is an even stronger
justification for doing this.

Now let us apply Taylor’s Theorem to a typical residual, @y = y; — ¢ (,[3) If
we expand this quantity around the true value By and substitute u; + x+(Bo)
for y;, we obtain

iy = yo — 21(Bo) — Xi(B — Bo)
=u +24(80) — z:(Bo) — Xi(B — Bo)
= Ut — Xt(/é - 60)7
where X, denotes the ' row of the matrix X(3), for some 3 that satisfies

condition (1.20); recall the discussion of that condition. This implies that, for
the entire vector of residuals, we have

a=u—X(8- ). (1.38)
For the NLS estimator G, the asymptotic result (1.24) becomes

n'2(8—Bo) £ (Sxx) 'n VX, (1.39)
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where

Sxx = plim L X' Xo. (1.40)

n—oo

We have redefined Sxtx here. The old definition, (F4.23), applies only to
linear regression models. The new definition, (1.40), applies to both linear
and nonlinear regression models, since it reduces to the old one when the
regression function is linear.

When we substitute n~'/2 times the right-hand side of equation (1.39) into

equation (1.38) and replace X with X because 3 tends asymptotically to By,
we find that

a2 u—n"2X(Sxx) tn V2 X0 u
Zu—n 1 Xo(n X0 Xo) 1 X u

(1.41)
=u — Xo(Xo Xo) ' Xou

=u — Px,u = Mx,u,

where Px, and Mx, project orthogonally on to 8(X) and 8+ (Xj), respec-
tively. This asymptotic result for NLS looks very much like the exact result
that @ = Mxwu for OLS. A somewhat more intricate argument can be used to
show that the difference between 44 and w'" M. x,u tends to zero as n — oo;
see Exercise 1.8. Since X is an n x k matrix, precisely the same argument
that was used for the linear case in (F4.62) shows that E(a'a) < 02 (n — k).
Thus we see that, in the case of nonlinear least squares, s provides an ap-

proximately unbiased estimator of o2

1.4 Computing NLS Estimates

We have not yet said anything about how to compute nonlinear least-squares
estimates. This is by no means a trivial undertaking. Computing NLS esti-
mates is always much more expensive than computing OLS ones for a model
with the same number of observations and parameters. Moreover, there is a
risk that the program may fail to converge or may converge to values that
do not minimize the SSR. However, with modern computers and well-written
software, NLS estimation is usually not excessively difficult.

In order to find NLS estimates, we need to minimize the sum-of-squared-
residuals function SSR(8) with respect to 8. Since SSR(/3) is not a quadratic
function of B, there is no analytic solution like the classic formula (F2.45) for
the linear regression case. What we need is a general algorithm for minimizing
a sum of squares with respect to a vector of parameters. In this section, we
discuss methods for unconstrained minimization of a smooth function Q(8).
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It is easiest to think of Q(8) as being equal to SSR(83), but much of the
discussion is applicable to minimizing any sort of criterion function. Since
minimizing Q(3) is equivalent to maximizing —Q(3), it is also applicable to
maximizing any sort of criterion function, such as the loglikelihood functions
that we will encounter in Chapter 3.

We will give an overview of how numerical minimization algorithms work,
but we will not discuss many of the important implementation issues that can
substantially affect the performance of these algorithms when they are incor-
porated into computer programs. References on the art and science of numeri-
cal optimization, especially as it applies to nonlinear regression, include Bard
(1974), Gill, Murray, and Wright (1981), Quandt (1983), Bates and Watts
(1988), Seber and Wild (1989, Chapter 14), Press, Flannery, Teukolsky, and
Vetterling (1992a; 1992b, Chapter 10), McCullough (2003), and McCullough
and Vinod (2003).

There are many algorithms for minimizing a smooth function Q(8). Most
of these operate in essentially the same way. The algorithm goes through a
series of iterations, or steps, at each of which it starts with a particular value
of B and tries to find a better one. It first chooses a direction in which to
search and then decides how far to move in that direction. After completing
the move, it checks to see whether the current value of 3 is sufficiently close to
a local minimum of Q(3). If it is, the algorithm stops. Otherwise, it chooses
another direction in which to search, and so on. There are three principal
differences among minimization algorithms: the way in which the direction
to search is chosen, the way in which the size of the step in that direction
is determined, and the stopping rule that is employed. Numerous choices for
each of these are available.

Newton’s Method

All of the techniques that we will discuss are based on Newton’s Method.
Suppose that we wish to minimize a function Q(3), where 3 is a k-vector and
Q(B) is assumed to be twice continuously differentiable. Given any initial
value of B3, say B(g), we can perform a second-order Taylor expansion of QB
around B(g) in order to obtain an approximation Q*(8) to Q(3):

Q"(B) = QB)) + 9.0y (B — B) + 5B~ Bioy) 'Hio) (B~ By),  (1.42)

where g(3), the gradient of Q(83), is a column vector of dimension k with
typical element 0Q(3)/9p;, and H(3), the Hessian of Q(3), is a k X k matrix
with typical element 92Q(3)/0;05;. For notational simplicity, g(o) and H g
denote g(B(0)) and H (B g)), respectively.

It is easy to see that the first-order conditions for a minimum of Q*(3) with
respect to 3 can be written as

9(0) + H)(8 — By) = 0.
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B2

Figure 1.1 Newton’s Method in two dimensions

Solving these yields a new value of 8, which we will call 3(y):
Bay = By — Higy 90)- (1.43)

Equation (1.43) is the heart of Newton’s Method. If the quadratic approxima-
tion Q*(B) is a strictly convex function, which it is if and only if the Hessian
H ) is positive definite, then B(;) is the global minimum of Q*(8). If, in
addition, Q*(8) is a good approximation to Q(8), B(1) should be close to
3, the minimum of Q(8). Newton’s Method involves using equation (1.43)
repeatedly to find a succession of values B(1), B(2).... When the original
function Q(8) is quadratic and has a global minimum at 3, Newton’s Method
evidently finds ,@ in a single step, since the quadratic approximation is then
exact. When Q(8) is approximately quadratic, as all sum-of-squares func-
tions are when sufficiently close to their minima, Newton’s Method generally
converges very quickly.

Figure 1.1 illustrates how Newton’s Method works. It shows the contours of
the function Q(8) = SSR(1, B2) for a regression model with two parameters.
Notice that these contours are not precisely elliptical, as they would be if
the function were quadratic. The algorithm starts at the point marked “0”
and then jumps to the point marked “1.” On the next step, it goes in almost
exactly the right direction, but it goes too far, moving to “2.” It then retraces
its own steps to “3,” which is essentially the minimum of SSR(f1, 82). After
one more step, which is too small to be shown in the figure, it has essentially
converged.
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Figure 1.2 Cases for which Newton’s Method will not work

Although Newton’s Method works very well in this example, there are many
cases in which it fails to work at all, especially if Q(83) is not convex in the
neighborhood of B(;) for some j in the sequence. Some of the possibilities
are illustrated in Figure 1.2. The one-dimensional function shown there has
a global minimum at B, but when Newton’s Method is started at points such
as B or B”, it may never find 3. In the former case, Q(p) is concave at [’
instead of convex, and this causes Newton’s Method to head off in the wrong
direction. In the latter case, the quadratic approximation at 5", Q*(3), which
is shown by the dashed curve, is extremely poor for values away from 3",
because Q(fB) is very flat near 5”. Tt is evident that Q*(8) must have a
minimum far to the left of 3. Thus, after the first step, the algorithm is very
much further away from 3 than it was at its starting point.

One important feature of Newton’s Method and algorithms based on it is that
they must start with an initial value of 3. It is impossible to perform a Tay-
lor expansion around By without specifying B(). As Figure 1.2 illustrates,
where the algorithm starts may determine how well it performs, or whether it
converges at all. In most cases, it is up to the econometrician to specify the
starting values.

Quasi-Newton Methods

Most effective nonlinear optimization techniques for minimizing smooth crite-
rion functions are variants of Newton’s Method. These quasi-Newton methods
attempt to retain the good qualities of Newton’s Method while surmounting
problems like those illustrated in Figure 1.2. They replace (1.43) by the
slightly more complicated formula

B+ =By — D 90) (1.44)
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which determines B(; 1), the value of 3 at step j + 1, as a function of B;.
Here ;) is a scalar which is determined at each step, and D(;) = D(8;))
is a matrix which approximates H(;y near the minimum but is constructed
so that it is always positive definite. In contrast to quasi-Newton methods,
modified Newton methods set D(;) = H(;), and Newton’s Method itself sets
D) = Hj) and ag) = 1.

Quasi-Newton algorithms involve three operations at each step. Let us denote
the current value of B by B(;). If j = 0, this is the starting value, Bg);
otherwise, it is the value reached at iteration j. The three operations are

1. Compute g(;) and D;y and use them to determine the direction D(*];g(j).

2. Find «(j). Often, this is done by solving a one-dimensional minimization
problem. Then use (1.44) to determine B;1).

3. Decide whether B(;41) provides a sufficiently accurate approximation
to B. If so, stop. Otherwise, return to 1.

Because they construct D(3) in such a way that it is always positive definite,
quasi-Newton algorithms can handle problems where the function to be mini-
mized is not globally convex. The various algorithms choose D(3) in a number
of ways, some of which are quite ingenious and may be tricky to implement
on a digital computer. As we will shortly see, however, for sum-of-squares
functions there is a very easy and natural way to choose D([3).

The scalar a;y is often chosen so as to minimize the function
_ —1
Q'(@) = Q(By) — aD(;)9(7)).

regarded as a one-dimensional function of «. It is fairly clear that, for the
example in Figure 1.1, choosing « in this way would produce even faster
convergence than setting a = 1. Some algorithms do not actually minimize
Q' (a) with respect to a, but merely choose ;) so as to ensure that Q(B(;+1))
is less than Q(B;)). It is essential for this to be the case if we are to be sure
that the algorithm always makes progress at each step. The best algorithms,
which are designed to economize on computing time, may choose «a quite
crudely when they are far from /3, but they almost always perform an accurate
one-dimensional minimization when they are close to B.

Stopping Rules

No minimization algorithm running on a digital computer ever finds 3 exactly.
Without a rule telling it when to stop, the algorithm would just keep on going
forever. There are many possible stopping rules. We could, for example, stop
when Q(B(j—1)) — Q(B;)) is very small, when every element of g,y is very
small, or when every element of the vector B(;)—B;—1) is very small. However,
none of these rules is entirely satisfactory, in part because they depend on the
magnitude of the parameters. This means that they yield different results
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if the units of measurement of any variable are changed or if the model is
reparametrized in some other way. A more logical rule is to stop when

T -1

where ¢, the convergence tolerance, is a small positive number that is chosen
by the user. Sensible values of ¢ might range from 10~'2 to 10=% The
advantage of (1.45) is that it weights the various components of the gradient in
a manner inversely proportional to the precision with which the corresponding
parameters are estimated. We will see why this is so in the next section.

Of course, any stopping rule may work badly if € is chosen incorrectly. If
is too large, the algorithm may stop too soon, when B(; is still far away
from B. On the other hand, if ¢ is too small, the algorithm may keep going
long after B(; is so close to 3 that any differences are due solely to round-off
error. It may therefore be a good idea to experiment with the value of ¢ to see
how sensitive to it the results are. If the reported 8 changes noticeably when &
is reduced, then either the first value of ¢ was too large, or the algorithm is
having trouble finding an accurate minimum.

Local and Global Minima

Numerical optimization methods based on Newton’s Method generally work
well when Q(8) is globally convex. For such a function, there can be at
most one local minimum, which is also the global minimum. When Q(3) is
not globally convex but has only a single local minimum, these methods also
work reasonably well in many cases. However, if there is more than one local
minimum, optimization methods of this type often run into trouble. They
generally converge to a local minimum, but there is no guarantee that it is
the global one. In such cases, the choice of the starting values, that is, the
vector Bg), can be extremely important.

This problem is illustrated in Figure 1.3. The one-dimensional criterion func-
tion Q(B) shown in the figure has two local minima. One of these, at [3’, is
also the global minimum. However, if a Newton or quasi-Newton algorithm
is started to the right of the local maximum at 8", it is likely to converge to
the local minimum at S’ instead of to the global one at B

In practice, the usual way to guard against finding the wrong local minimum
when the criterion function is known, or suspected, not to be globally convex
is to minimize Q(8) several times, starting at a number of different starting
values. Ideally, these should be quite dispersed over the interesting regions of
the parameter space. This is easy to achieve in a one-dimensional case like
the one shown in Figure 1.3. However, it is not feasible when (3 has more
than a few elements: If we want to try just 10 starting values for each of k
parameters, the total number of starting values is 10*. Thus, in practice, the
starting values generally cover only a very small fraction of the parameter
space. Nevertheless, if several different starting values all lead to the same
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B BN Bl

Figure 1.3 A criterion function with multiple minima

local minimum B, with Q(B) less than the value of Q(B) observed at any
other local minimum, then it is plausible, but by no means certain, that 3 is
actually the global minimum.

Numerous more formal methods of dealing with multiple minima have been
proposed. See, among others, Veall (1990), Goffe, Ferrier, and Rogers (1994),
Dorsey and Mayer (1995), and Andrews (1997). In difficult cases, one or more
of these methods should work better than simply using a number of starting
values. However, they tend to be computationally expensive, and none of
them works well in every case.

Many of the difficulties of computing NLS estimates are related to the iden-
tification of the model parameters by different data sets. The identification
condition for NLS is rather different from the identification condition for the
estimators discussed in Section 1.2. For NLS, it is simply the requirement
that the function SSR(3) should have a unique minimum with respect to 8.
This is not at all the same requirement as the condition that the estimating
equations (1.28) should have a unique solution. In the example of Figure 1.3,
the estimating equations, which for NLS are first-order conditions, are satis-
fied not only at the local minima 3 and 4/, but also at the local maximum /3.
However, 3 is the unique global minimum of SSR(3), and so § is identified
by the NLS estimator.

The analog for NLS of the strong asymptotic identification condition that
Swx should be nonsingular is the condition that Sxrx should be nonsin-
gular, since the variables W of the estimator are replaced by X, for NLS.
The strong condition for identification by a given data set is simply that the
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Figure 1.4 NLS estimation of a nonlinear model

matrix XX should be nonsingular, and therefore positive definite. It is easy
to see that this condition is just the sufficient second-order condition for a
minimum of the sum-of-squares function at 3.

The Geometry of Nonlinear Regression

For nonlinear regression models, it is not possible, in general, to draw faithful
geometrical representations of the estimation procedure in just two or three
dimensions, as we can for linear models. Nevertheless, it is often useful to
illustrate the concepts involved in nonlinear estimation geometrically, as we
do in Figure 1.4. Although the vector x(8) lies in E™, we have supposed for
the purposes of the figure that, as the scalar parameter 8 varies, x(3) traces
out a curve that we can visualize in the plane of the page. If the model were
linear, x(8) would trace out a straight line rather than a curve. In the same
way, the dependent variable y is represented by a point in the plane of the
page, or, more accurately, by the vector in that plane joining the origin to
that point.

For NLS, we seek the point on the curve generated by x(8) that is closest
in Euclidean distance to y. We see from the figure that, although the first-
order conditions are satisfied at three points, only one of them yields the
NLS estimator. Geometrically, the sum-of-squares function is just the square
of the Euclidean distance from y to x(5). Its global minimum is achieved

at x(8), not at either x(8') or x(8").
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We can also use Figure 1.4 to see how estimation with a fixed matrix W works.
Since there is just one parameter, we need a single variable w that does not
depend on the model parameters, and such a variable is shown in the figure.
The estimating equation defining the estimator is that the residuals should
be orthogonal to w. It can be seen that this condition is satisfied only by the
residual vector y — w(B) In the figure, a dotted line is drawn continuing this
residual vector so as to show that it is indeed orthogonal to w. There are
cases, like the one in the figure, in which the NLS first-order conditions can
be satisfied for more than one value of 3 while the conditions for estimation
are satisfied for just one value, and there are cases in which the reverse is true.
Readers are invited to use their geometrical imaginations.

Instrumental Variables

The results of Section 1.2 are almost all conserved, subject to slight modifica-
tions, if some or all of the regression functions contain endogenous explanatory
variables. Nonlinear least squares no longer gives a consistent estimator, for
the same reasons that OLS fails to be consistent with endogenous regressors.
But if a matrix W can be found that satisfies the condition (1.09), the es-
timating equations (1.10) yield a consistent estimator. When W has more
columns than the parameter vector 3 has elements, over-identified estima-
tion works just as in the linear case, and leads to the following estimating
equations:

X'(8)Pw(y —z(8)) = 0. (1.46)

A consistent estimate of the covariance matrix of the estimator ﬁw that solves
(1.46) is given by

Var(Brv) = s*(X Py X) ™!, (1.47)

where X = X (Bv).

1.5 The Gauss-Newton Regression
When the function we are trying to minimize is a sum-of-squares function,
we can obtain explicit expressions for the gradient and the Hessian used in

Newton’s Method. It is convenient to write the criterion function itself as
SSR(B) divided by the sample size n:

Q(B) =n"1SSR(B) = £ 3" (. — (8))"
t=1

Therefore, using the fact that the partial derivative of x;(3) with respect to 3;
is X;;(8), we find that the i*" element of the gradient is

9i(B) = =23 Xu(B) (v — 24(B)).
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The gradient can be written more compactly in vector-matrix notation as

9(8) = —2n7'X(8)(y — 2(8))- (1.48)

Similarly, it can be shown that the Hessian H (3) has typical element

10 = =23 (0 - () 5

t=1

- Xu(@X5(8)  (149)

When this expression is evaluated at By, it is asymptotically equivalent to

:Iw

Z i(Bo) X5 (Bo). (1.50)

The reason for this asymptotic equivalence is that, since y; = x4(Bo) + uy, the
first term inside the large parentheses in (1.49) becomes

8Xt1
Z aﬂj . (1.51)

Because z4(3) and all its first- and second-order derivatives belong to €4, the
expectation of each term in (1.51) is 0. Therefore, by a law of large numbers,
expression (1.51) tends to 0 as n — co.

Gauss-Newton Methods

The above results make it clear that a natural choice for D(3) in a quasi-
Newton minimization algorithm based on (1.44) is

D(B) =2n"'X(8)X(B). (1.52)

By construction, this D(3) is positive definite whenever X(3) has full rank.
Substituting equations (1.52) and (1.48) into equation (1.44) yields

— T —1 _ T
B+ = By +ag (20 X X)) (207X () (y — z(5)))

. ot (1.53)
=By +ap (X X)) Xpy—=).
The classic Gauss-Newton method would set o ;) = 1, so that
Biis) = By + (X5 X)Xy (y — 2 () (1.54)
G+1) = PO) @) 0G) NH\Y = TH) :

but it is generally better to use a good one-dimensional search routine to
choose a optimally at each iteration. This modified type of Gauss-Newton
procedure often works quite well in practice.
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The second term on the right-hand side of (1.54) can most easily be computed
by means of an artificial regression called the Gauss-Newton regression, or
GNR. This artificial regression can be expressed as follows:

y —x(8) = X(B)b + residuals. (1.55)

This is the simplest version of the Gauss-Newton regression. It is called
“artificial” because the variables that appear in it are not the dependent and
explanatory variables of the nonlinear regression (1.02). Instead, they are
functions of these variables and of the model parameters. Before (1.55) can
be run as a regression, it is necessary to choose the parameter vector 3 at
which the regressand and regressors are to be evaluated.

The regressand in (1.55) is the difference between the actual values of the
dependent variable and the values predicted by the regression function x((3)
evaluated at the chosen (3. There are k regressors, each of which is a vector
of derivatives of x(3) with respect to one of the elements of 3. It therefore
makes sense to think of the i*® regressor as being associated with 3;. The
vector b is a vector of artificial parameters, and we write “+ residuals” rather
than the usual “+u” to emphasize the fact that (1.55) is not a statistical
model in the usual sense.

The connection between the Gauss-Newton method of numerical optimiza-
tion and the Gauss-Newton regression should now be clear. If the variables
n (1.55) are evaluated at Bj), the OLS parameter estimates of the artificial
parameters are
T —ly T
b = (X5 X)) Xy —2(),
from which it follows using (1.53) that the Gauss-Newton method gives
Bii+1) = By) + e bg)-

Thus the GNR conveniently and cheaply performs two of the operations nec-
essary for a step of the Gauss-Newton method. It yields a matrix which
approximates the Hessian of SSR(3) and is always positive semidefinite. In

addition, it computes a vector of artificial parameter estimates which is equal
to —D(;)l d(j), the direction in which the algorithm looks at iteration j.

One potential difficulty with the Gauss-Newton method is that the matrix
XT(B)X(8) may sometimes be very close to singular, even though the model
is reasonably well identified by the data. If the strong identification condi-
tion is satisfied by a given data set, then XTX is positive definite. However,
when XT(8)X(8) is evaluated far away from 3, it may well be close to sin-
gular. When that happens, the algorithm gets into trouble, because b no
longer lies in the same k-dimensional space as @3, but rather in a subspace of
dimension equal to the effective rank of X (3)X(3). In this event, a Gauss-
Newton algorithm can cycle indefinitely without making any progress. The
best algorithms for nonlinear least squares check whether this is happening
and replace X (3)X(B) with another estimate of H(3) whenever it does.
See the references cited at the beginning of Section 1.4.
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Properties of the GNR

As we have seen, when x(8) is a linear regression model with X being the
matrix of independent variables, X (8) is simply equal to X. Thus, in the
case of a linear regression model, the GNR is simply a regression of the vector
y — X3 on X. A special feature of the GNR for linear models is that the
classic Gauss-Newton method converges in one step from an arbitrary starting
point. To see this, let By be the starting point. The GNR is

Yy — XB(g) = Xb + residuals,
and the artificial parameter estimates are
b= (X"X)"'X"(y — XB)) =B - By
where ,@ is the OLS estimator. It follows at once that
By = By +b=B. (1.56)

This property has a very useful analog for nonlinear models that we will
explore in the next section.

The properties of the GNR (1.55) depend on the choice of 8. One interest-
ing choice is ﬁ, the vector of NLS parameter estimates. With this choice,
regression (1.55) becomes

y — @& = Xb + residuals, (1.57)
where & = (8) and X = X(8). The OLS estimate of b from (1.57) is
b= (X"X)"'XT(y—&). (1.58)

Because 3 must satisfy the first-order conditions (1.28), the factor XT(y—x)
must be a zero vector. Therefore, b =0, and the GNR (1.57) can have no
explanatory power whatsoever.

This may seem an uninteresting result. After all, why would anyone want to
run an artificial regression all the coefficients of which are known in advance
to be zero? There are in fact two very good reasons for doing so.

The first reason is to check that the vector ﬁ reported by a program for NLS
estimation really does satisfy the first-order conditions (1.28). Computer pro-
grams use many different techniques for calculating NLS estimates, and many
programs do not yield reliable answers in every case; see McCullough (1999).
By running the GNR (1.57), we can see whether the first-order conditions
are satisfied reasonably accurately. If all the ¢ statistics are less than about
1074, and the R? is less than about 1078, then the value of ,[§ reported by
the program should be reasonably accurate. If not, there may be a problem.
Possibly the estimation should be performed again using a tighter convergence
criterion, possibly we should switch to a more accurate program, or possibly
the model in question simply cannot be estimated reliably with the data set
we are using. Of course, some programs run the GNR (1.57) and perform
the requisite checks automatically. Once we have verified that they do so, we
need not bother doing it ourselves.
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Computing Covariance Matrices

The second reason to run the GNR (1.57) is to calculate an estimate of Var(3).
The usual OLS covariance matrix from this regression is, by (F4.64),

Var(b) = s>(XTX), (1.59)

where, since the regressors have no explanatory power, s? is the same as
the one defined in equation (1.34). It is equal to the SSR from the original
nonlinear regression, divided by n — k. Evidently, the right-hand side of
equation (1.59) is identical to the right-hand side of equation (1.33), which is

the standard estimator of Var(3). Thus running the GNR (1.57) provides an

easy way to calculate Var(3).

Good programs for NLS estimation normally use the right-hand side of equa-
tion (1.59) to estimate the covariance matrix of ,3 Not all programs can be
relied upon to do this, however, and running the GNR (1.57) is a simple way to
check whether they do so and get better estimates if they do not. Sometimes,
B may be obtained by a method other than fully nonlinear estimation. For
example, the regression function may be linear conditional on one parameter,
and NLS estimates may be obtained by searching over that parameter and
performing OLS estimation conditional on it. In such a case, it will be neces-
sary to calculate the matrix (1.59) explicitly, and running the GNR (1.57) is
an easy way to do so.

The GNR (1.57) can also be used to compute a heteroskedasticity-consistent
covariance matrix estimate. Any HCCME for the parameters b of the GNR is
also perfectly valid for 8. To see this, we start from the result (1.39), rewritten
as

plim [n/2(8 — By) — (Sx7x) " 'n~ /2 Xgu] = 0.

n—oo

If E(uu") = £2, then
n 2 X 0w -4 N(0,n " X, 2X,),
and this shows that
n'2(B — By) -5 N(0, (Sxx) " 'n 1 X 2 X0(Sxrx) ).

Therefore, a reasonable way to estimate Var (,@) is to use the sandwich covar-
iance matrix

Vary(8) = (X X)) ' XT02X(XTX), (1.60)

where £2 is an n x n diagonal matrix with the squared residual 42 as the t*™"
diagonal element. This is precisely the HCCME (F6.29) for the GNR (1.57).
Of course, §2 can, and probably should, be replaced by a modified version
with better finite-sample properties.
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1.6 One-Step Estimation

The result (1.56) for linear regression models has a counterpart for nonlinear
models: If we start with estimates that are root-n consistent but inefficient, a
single Newton, or quasi-Newton, step is all that is needed to obtain estimates
that are asymptotically equivalent to NLS estimates. This important result
may initially seem astonishing, but the intuition behind it is not difficult.

Let B denote the initial root-n consistent estimates. The GNR (1.55) evalu-
ated at these estimates is

y — & = Xb + residuals,
where # = x(8) and X = X(8). The estimate of b from this regression is
b= (X"X)"'XT(y—4). (1.61)
Then a one-step estimator is defined by the equation
B=p8+b. (1.62)

This one-step estimator turns out to be asymptotically equivalent to the NLS
estimator 3, by which we mean that the difference between n'/ 2([3 — Bo) and
nl/Q(ﬁ — Bo) tends to zero as n — oo. In other words, after both are centered
and multiplied by n!/2 the one-step estimator 3 and the NLS estimator 3
tend to the same random variable asymptotically. In particular, this means
that the asymptotic covariance matrix of ,8 is the same as that of ,[3 Thus [3
shares with 3 the property of asymptotic efficiency. For this reason, ,8 is
sometimes called a one-step efficient estimator.

In order to demonstrate the asymptotic/equivalence of ,B and ,é, we begin by
Taylor expanding the expression n~Y/ 2X T(y — ) around B = By. This yields

nV2X Ny — 2) = n V2 X (y — x0) + AB) n*(B - Bo), (1.63)
where 2o = x(8y), B is a parameter vector that satisfies (1.20), in the sense

explained just after that equation, with ﬁ in place of [3', and A(Q) is the k x k
matrix with typical element

Ai;(B) = 8ﬂj< ;th yt—l’t(ﬁ))>

—%;Xu‘(ﬁ)Xm ZaXn v — z(8)). (1.64)

0B;

It can be shown that, when (1.64) is evaluated at B3, or at any root-n consistent
estimator of B3y, the second term tends to zero but the first term does not. We
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have seen why this is so if we evaluate (1.64) at By. In that case, the second
term, like expression (1.51), becomes an average of quantities each of which
has expectation zero, while the first term is an average of quantities each of
which has a nonzero expectation. Essentially the same result holds when we
evaluate (1.64) at any root-n consistent estimator. Thus we conclude that

AB) £ - XTX £ —n1 X X, (1.65)

where the second equality is also a consequence of the consistency of 8.
Using the result (1.65) in (1.63) shows that

n_l/ZXT(y —z) < n~ Y2 X0 uw —n""Xo Xo nl/z(,é' — Bo),
which can be solved to yield
n'2(B - Bo) £ (n' X Xo) " (n P Xou —n P X (y - #))

) (1.66)
£ (Sxx) "' Xou — (Sxx ) ' X Ty — #).

By (1.39), the first term in the second line here is asymptotically equal
to nl/Z(,B/fﬂo). By (1.61), the second term is asymptotically equivalent
to —n'/2b. Thus (1.66) implies that

n'’?(8 — Bo) £ n'/*(B — By) —n'/?b.
Rearranging this and using the definition (1.62), we see that
n'/2(B — Bo) = n'"*(B+b— Bo) £ n'/*(B - Bo), (1.67)

which is the result that we wished to show.

Despite the rather complicated asymptotic theory needed to prove (1.67), the
fundamental reason that makes a one-step efficient estimator based on the
GNR asymptotically equivalent to the NLS estimator is really quite simple.
The GNR minimizes a quadratic approximation to SSR(3) around [3 Asymp-
totically, the function SSR(/3) is quadratic in the neighborhood of By. If the
sample size is large enough, the consistency of ﬁ implies that we must be
taking the quadratic approximation at a point very near By. Therefore, the
approximation coincides with SSR(3) itself asymptotically.

Although this result is of great theoretical interest, it is typically of limited
practical utility with modern computing equipment. Once the GNR, or some
other method for taking Newton or quasi-Newton steps, has been programmed
for a particular model, we might as well let it iterate to convergence, because
the savings in computer time from stopping after a single step are rarely
substantial. Moreover, a one-step estimator is consistent if and only if we start
from an initial estimator that is consistent, while NLS is consistent no matter
where we start from, provided we converge to a global minimum of SSR(/3).
Therefore, it may well require more effort on the part of the investigator to
obtain one-step estimates than to obtain NLS ones.
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One-step estimators may be useful when the sample size is very large and each
step in the minimization process is, perhaps in consequence, very expensive.
The large sample size often ensures that the initial, consistent estimates are
reasonably close to the NLS ones. If they are, then the one-step estimates
should be very close to the latter. One-step estimators can also be useful
when the estimation needs to be repeated many times, as is often required by
the bootstrap and other simulation-based methods. Bootstrap methods that
use one-step estimators are discussed by Davidson and MacKinnon (1999a).

The Linear Regression Model with AR (1) Disturbances

An excellent example of one-step efficient estimation is provided by the model
(1.06), which is a linear regression model with AR(1) disturbances. The GNR
that corresponds to (1.06) is

Ye — pPYi—1 — Xe B+ pXy 18

. (1.68)
= (Xt — pXe—1)b+ 0y (ye—1 — Xy—18) + residual,

where b corresponds to 3 and b, corresponds to p. As with every GNR, the
regressand is y; minus the regression function for (1.06). The last regressor,
which is the derivative of the regression function with respect to p, looks very
much like a lagged residual from the original linear regression model (1.05).
The remaining k regressors are the derivatives of the regression function with
respect to the elements of 3.

It is easy to obtain root-n consistent estimates of the parameters p and 8 of
the model (1.06), because it can be written as a linear regression subject to
nonlinear restrictions on its parameters. The linear regression is

Yo = pYi—1 + X B+ X417 + 4. (1.69)

If we impose the nonlinear restrictions that v + p3 = 0, this regression is
just (1.06). Thus the model (1.06) is a special case of the model (1.69).
Therefore, if (1.06) is a correctly specified model, that is, if the true DGP is a
special case of (1.06), then (1.69) must be a correctly specified model as well,
because every DGP in (1.06) automatically belongs to (1.69). Since (1.69) is
correctly specified, the standard theory of the linear regression with predeter-
mined regressors applies to it, with the consequence that the OLS estimates p
and B obtained from (1.69) are root-n consistent.

If we evaluate the variables of the GNR (1.68) at 4 and B, we obtain

Yt — PYt—1 — Xtﬁ, + féXt—l/é

) (1.70)
= (X3 — pXi—1)b+ by(ye—1 — X¢—18) + residual.

We can run this regression to obtain the art1ﬁc1a1 parameter estimates b and b,,,
and the one-step efficient estimates are just ,8 +b and P+ b
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1.7 Hypothesis Testing

Hypotheses about the parameters of nonlinear regression models can be for-
mulated in much the same way as hypotheses about the parameters of linear
regression models. Let us partition the parameter vector 8 as 8 = [ i B2],
where 31 is k1 X 1, B is ko x 1, and B is k x 1, with k = ky + ko. Then the
generic nonlinear regression model (1.02) can be written as

y=x(B1,62) +u, u~IID(0,0°T).

If we wish to test the hypothesis that 3s = 0, we can set up the models that
correspond to the null and alternative hypotheses as follows:

Hy: y==(81,0)+u; (1.71)
Hy: y=z=(81,8)+u. (1.72)

Here, Hy denotes the null hypothesis, and H; denotes the alternative.

If the regression models (1.71) and (1.72) were linear, we could test the null
hypothesis by means of the F statistic (F5.27). In fact, we can do this even
though they are nonlinear. The test statistic

(RSSR — USSR) /r
>~ TUSSR/(n— k)

Fs (1.73)

is computed in exactly the same way as (F5.27), but with RSSR and USSR the
sums of squared residuals from NLS estimation of (1.71) and (1.72), respec-
tively. Here r = ks, since the hypothesis that 32 = 0 imposes ko restrictions.
It is not difficult to show that (1.73) is asymptotically valid: Under the null
hypothesis, it follows the F(r,c0) distribution asymptotically.

First, we establish some notation. Let X(3) denote the n x k matrix of partial
derivatives of the vector of regression functions x(8) = x(81, B2) of (1.72).
Similarly, let X;(8) and X5(3) denote the n x ki and n x ky submatrices of
partial derivatives with respect to the components of 3; and (35, respectively.
Finally, let M; denote the orthogonal projection on to 8*(X(8y)), which we
previously called Mx,, and let M, denote the orthogonal projection on to
81 (X1(Bp)). The projection My corresponds to the null hypothesis Hy, and
the projection M, corresponds to the alternative hypothesis H;.

By the result (1.41), under both the null and alternative hypotheses, the vector
of residuals @ from NLS estimation of H; is asymptotically equal to Mju
By essentially the same argument, under the null hypothesis, the vector of
residuals @ from NLS estimation of HO is asymptotically equal to Myu. This
implies (see Exercise 1.8) that @' = u " Mju and @'a = u"Myu. Therefore,
under Hy, r times the numerator of (1.73) is asymptotically equal to

u Mou —u Myu=u'(My — M))u =u' (P, — Py)u
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where Py and P are the projections complementary to My and M. By the
result of Part 1, Exercise 3.18, P; — Py is an orthogonal projection matrix,
which projects on to a space of dimension k — k1 = ko. Thus the numerator
of (1.73) is asymptotically o2 times a x? variable with ks degrees of freedom,
divided by r = ko; recall Part 1, Exercise 5.15. The denominator of (1.73) is
just a consistent estimate of o2, and so, under Hy, the statistic (1.73) itself is
asymptotically distributed as F(ky, 00) = x2(kz)/k2.

For linear models, it can be seen that the F' statistic could be written
as (F6.18). Not surprisingly, it is also possible to calculate test statistics
to test the hypothesis that B3 = 0 in the nonlinear model (1.72). This type
of test statistic is often called a Wald statistic, because the approach was
suggested by Wald (1943). It can be written as

Wa, = B (Var(B2)) ' Bs, (1.74)

where B2 is a vector of NLS estimates from the unrestricted model (1.72), and
Var(,ég) is the NLS estimate of its covariance matrix. This is just a quadratic
form in the vector ,52 and the inverse of an estimate of its covariance matrix.
When ks = 1, the signed square root of (1.74) is equivalent to a t statistic.
We will see below that the Wald statistic (1.74) is asymptotically equivalent
to the F' statistic (1.73), except for the factor of 1/ks.

Tests Based on the Gauss-Newton Regression

Since the GNR provides a one-step estimator asymptotically equivalent to the
NLS estimator, and it also provides the NLS estimate of the covariance matrix
of B,, a statistic asymptotically equivalent to (1.74) can be computed by
means of a GNR. This statistic also turns out to be asymptotically equivalent
to the F statistic (1.73), except for the factor of 1/ks.

The Gauss-Newton regression corresponding to the model (1.72) is

y —x(B1, B2) = X1(B1, B2)b1 + Xa(B1, B2)bs + residuals, (1.75)

where the vector of artificial parameters b has been partitioned as [b;y i bs],
conformably with the partition of X(3). If the GNR is to be used to test the
null hypothesis that 32 = 0, the regressand and regressors must be evaluated
at parameter estimates which satisfy the null. We will suppose that they are
evaluated at the point ,@ = [,3,170]7 where Bl may be any root-n consistent
estimator of 31. Then the one-step estimator of 3 can be written as

,

B"Fb: ,é1+61

oo | (1.76)

By the results of Section 1.6, nt/ 2132 is asymptotically equivalent to n'/ 2,32
under the null, where B, is the NLS estimator of 35 from (1.72).
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In practice, the two estimators that are most likely to be used for Bl are B1,
the restricted NLS estimator, and 31, a subvector of the unrestricted NLS
estimator. Here we are once more adopting the convention, previously used
in Part 1, Chapter 5, whereby a tilde denotes restricted estimates and a hat
denotes unrestricted ones. Both these estimators are root-n consistent under
the null hypothesis, but ﬁl is generally more efficient than 3;. Whether we
want to use ,@1, Bl, or some other root-n consistent estimator when perform-
ing GNR-based tests depends on how difficult the various estimators are to
compute and on the finite-sample properties of the test statistics that result
from the various choices.

Now consider the vector of residuals 4 from OLS estimation of the GNR (1.75)
evaluated at 3, when the true DGP is characterized by the parameter vector
Bo = [B? i 0]. Under the null, we have

U=y w(,él,()) - Xll;l - Xzéz
=y —z(8Y,0) — X1 (B)(B1 — BY) — X1b; — Xoby
Lo — X (81 + by — BY) — Xoby. (1.77)

Here, B is a parameter vector between By and ,6' To obtain the asymp-
totic equality in the last line, we have used the fact that X;(3) = X;. The
one-step estimator (1.76) is consistent, and so the last two terms in (1.77)
tend to zero as n — oco. Thus the residuals %; are asymptotically equal to
the disturbances uy, and so n~ "4 is asymptotically equal to o2, the true
variance of the disturbances. In fact, because of the asymptotic equivalence
of the one-step estimator 3 and the NLS estimator 8, (1.77) tells us that
42 u— X(8—B). An argument like that of (1.41) then shows that 4 is
asymptotically equivalent to Mx,u. For the moment, however, we do not

need this more refined result.
The GNR. (1.75) evaluated at 3 is

y — & = X1by + Xoby + residuals. (1.78)

Since this is a linear regression, we can apply the FWL Theorem to it. Writing
M, for the projection on to SL(Xl)7 we see that the FWL regression can
be written as

Mx,(y — &) = Mx, X2by + residuals.

This FWL regression yields the same estimates by as does (1.78). Thus,
inserting the factors of powers of n that are needed for asymptotic analysis,
we find that

n2by = (n7' Xy Mx, Xo) " 'n V2 X My, (y — 4). (1.79)
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In addition to yielding the same parameter estimates I;g, the FWL regression
has the same residuals as regression (1.78) and the same estimated covariance
matrix for by. The latter is 62(X2TMX1X2)71, where 62 is the disturbance
variance estimator from (1.78), which, as we just saw, is asymptotically equal
to o2. If X7 and X5 denote X1(Bp) and Xa(Bp), respectively, we see that

TL_lXQ—rMXlXQ = ’I’L_1X2TX2 — TL_1X2TX1 (n_l)lflTX'l)_ln_l)’(lTXQ
Z 7 Xy — I X X (n T X X)) T e T X X
= n"1 X, Mx, X,

where the asymptotic equality follows, as usual, from the consistency of B
Thus n times the covariance matrix estimator for by given by the GNR (1.78)
provides a consistent estimate of the asymptotic covariance matrix of the
vector n'/2(By, — B9), as would be given by the lower right block of (1.32) if
that matrix were partitioned appropriately.

The Wald test statistic (1.74) can be rewritten as
n'/2By (nVar(By)) 'n'/?B. (1.80)

Under the null, this is asymptotically equivalent to the statistic

1 , . . ,
,—2n1/2bg—r(nleg—rMXng)nl/sz, (1.81)
G

which is based entirely on quantities from the GNR (1.78). That (1.80) and
(1.81) are asymptotically equal relies on (1.79) and the fact, which we have
just shown, that the covariance matrix estimator for bs is also valid for 35.

By equation (1.79), the GNR~based statistic (1.81) can also be expressed as

%n_lm(y — &) "Mx, Xo(n ' Xy Mx, Xo) ' n V2 X Mx, (y — &). (1.82)
When this statistic is divided by r = ko, we can see by comparison with
(F5.30) that it is precisely the F statistic for a test of the artificial hypothesis
that by = 0 in the GNR (1.78). In particular, 52 is just the sum of squared
residuals from equation (1.78), divided by n—k. Thus a valid test statistic can
be computed as an ordinary F statistic using the sums of squared residuals

from the “restricted” and “unrestricted” GNRs,

GNRg: y— ¢ = X1by + residuals, and (1.83)
GNR;: y —& = X,b; + Xoby + residuals. (1.84)

In Exercise 1.9, readers are invited to show that such an F' statistic is asymp-
totically equivalent to the F' statistic computed from the sums of squared
residuals from the two nonlinear regressions (1.71) and (1.72).
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In the quite common event that Bl = f3;, the first-order conditions for B,
imply that regression (1.83) can have no explanatory power. There is no need
to run regression (1.83) in this case, because its SSR is always identical to the
SSR from NLS estimation of the restricted model. We will see an example of
this in the next subsection.

The principal advantage of tests based on the GNR is that they can be cal-
culated without computing two nonlinear regressions, one for each of the null
and alternative hypotheses. The principal disadvantage is that a number of
derivatives must be calculated, one for each parameter of the unrestricted
model. In many cases, it is necessary to run one nonlinear regression, so as to
obtain root-n consistent estimates of the parameters under the null. However,
it may sometimes happen that either the null or the alternative hypothesis
corresponds to a linear model. In such cases, no nonlinear estimation at all is
necessary to carry out a GNR-based test.

The IV Variant of the GNR

In many circumstances, the easiest way to obtain asymptotically valid test
statistics for models estimated using instrumental variables is to use a variant
of the Gauss-Newton regression. For the model (1.02), this variant, called the
IVGNR, takes the form

y — z(8) = PwX(8)b + residuals. (1.85)

As with the usual GNR, the variables of the IVGNR must be evaluated at
some prespecified value of 3 before the regression can be run, in the usual
way, using ordinary least squares.

The IVGNR has the same properties relative to model (1.02) as the ordi-
nary GNR has relative to linear and nonlinear regression models estimated
by least squares. The first property is that, if (1.85) is evaluated at 8 = Brv,
then the regressors Py X (BIV) are orthogonal to the regressand, because the
orthogonality conditions, namely,

X" (Brv)Pw (y — z(Brv)) = 0,

are just the estimating equations (1.46) that define Brv.

The second property is that, if (1.85) is again evaluated at B = ﬁAI\h the
estimated OLS covariance matrix is asymptotically valid. This matrix is

X TPy X)L (1.86)

Here s is the sum of squared residuals from (1.85), divided by n — k, and
X=X (BIV). Since b = 0 because of the orthogonality of the regressand and
the regressors, those residuals are the components of the vector y — ac(,éw),
that is, the IV residuals from (1.02). It follows that (1.86), which is equal
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to (1.47), is a consistent estimator of the covariance matrix of Bry. As with
the ordinary GNR, the estimator §2 obtained by running (1.85) with 3 = 3
is consistent for the variance o2 of the disturbances if 3 is root-n consistent.

The third property is that, like the ordinary GNR, the IVGNR permits one-
step efficient estimation. For linear models, this is true if any value of 3
is used in (1.85). If we set @ = 3, then running (1.85) gives the artificial
parameter estimates

b= (X"PwX) ' X Pw(y — XB) = Brv - B,

from which it follows that ,8+b = By for all ,8 In the context of nonlinear IV
estimation, this result, like the one above for $2, becomes an approximation
that is asymptotically valid only if 3 is a root-n consistent estimator of the
true Go.

GNR-Based Tests for Autoregressive Disturbances

An example of a model which is linear under the null hypothesis is furnished
by the linear regression model with autoregressive disturbances. With time-
series data, serial correlation of the disturbances is a frequent occurrence,
and so one of the most frequently performed tests in all of econometrics is
a test in which the null hypothesis is a linear regression model with serially
uncorrelated disturbances and the alternative is the same model with AR(1)
disturbances. In this case, we may think of H; as being the model (1.06) and
Hj as being the model

v = XiB +uy,  ug ~1ID(0,02). (1.87)

When GNRs like (1.83) and (1.84) are used for testing, all the variables in
them must be evaluated at a parameter vector ,8 which satisfies the null
hypothesis. In this case, the null hypothesis corresponds to the restriction
that p = 0. Therefore, we must set p = 0 in the GNRs corresponding to the
restricted model (1.87) and the unrestricted model (1.06). The natural choice
for ,[3 is then ,@, the vector of OLS parameter estimates for (1.87).

The GNR for (1.06) was given in (1.68). If this artificial regression is evaluated
at 8 =3 and p = 0, it becomes

yr — X3 = X;b + bp(yt—1 — X;_13) + residual, (1.88)

where b corresponds to B and b, corresponds to p. If we denote the OLS
residuals from (1.87) by @, the GNR (1.88) takes on the very simple form

Uy = X3b + byty—1 + residual. (1.89)

This is just a linear regression of the residuals from (1.87) on the regressors
of (1.87) and one more regressor, namely, the residuals lagged once. Since
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only one restriction is to be tested, a suitable test statistic is the ¢ statistic
for the artificial parameter b, in (1.89) to equal 0. This is the square root of
the F statistic, which we have seen to be asymptotically valid.

Almost as simple as the above test is a test of the null hypothesis (1.87)
against an alternative in which the disturbances follow the AR(2) process

Up = PrUs—1 + PoUi—o + ¢, €4 ~ IID(O,O‘Q).

It is not hard to show that an appropriate artificial regression for testing (1.87)
against the AR(2) alternative that is analogous to (1.06) is

Uy = Xyb + by, Uy—1 + by, Uy—o + residual; (1.90)

see Exercise 1.10. Since, in this case, we have a test with two degrees of
freedom, we cannot use a t test. However, it is still not necessary to run two
regressions in order to compute an F' statistic. Consider the form taken by
GNR in this case:

u; = X;b + residual. (1.91)

This is just the GNR corresponding to the linear regression (1.87). Since the
regressand is the vector of residuals from estimating (1.87), it is orthogonal
to the explanatory variables. Therefore, by (1.58), the artificial parameter
estimates b are zero, and (1.91) has no explanatory power. As a result, the
SSR from (1.91) is equal to the total sum of squares (TSS). But this is also
the TSS from the GNR (1.90) corresponding to the alternative. Thus the
difference between the SSRs from (1.91) and (1.90) is the difference between
the T'SS and the SSR from (1.90), or, more conveniently, the explained sum
of squares (ESS) from (1.90). The GNR-based F statistic can therefore be
computed by running (1.90) alone. In fact, since the denominator is just the
estimate 32 of the disturbance variance from (1.90), the F statistic is simply!

ESS n—-—k—-—r ESS
F = o = X —,
rs r SSR

(1.92)

where k is the number of regressors in (1.87) and » = 2 in this particular case.

Asymptotically, we can obtain a valid test statistic by using any consistent
estimate of the true disturbance variance o2 as the denominator. If we were
to use the estimate under the null rather than the estimate under the alter-
native, the denominator of the test statistic would be (n — ki)~ > 1 a?.
Asymptotically, it makes no difference whether we divide by n — k; or n when

L We are assuming here that regression (1.90) is run over all n observations. This
requires either that data for observations 0 and —1 are available, or that the
unobserved residuals g and @_1 are replaced by zeros.
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we estimate o2 Therefore, if R? is the uncentered R squared from (1.90),
another perfectly valid test statistic is

nESS  ESS

TLR2 = = )
TSS n=ty ., a?

(1.93)

which follows the x2(2) distribution asymptotically. If the regressors include
a constant, the residuals @; must have expectation zero, and the uncentered
R? (1.93) is identical to the centered R? that is printed by most regression
packages.

Whether we use the F statistic (1.92) or the nR? statistic (1.93), the GNR
provides a very easy way to test the null hypothesis that the disturbances
are serially uncorrelated against all sorts of autoregressive alternatives. Of
course, neither statistic follows its asymptotic distribution exactly in finite
samples. However, there is some evidence — for example, Kiviet (1986)—
that the former tends to have better finite-sample properties than the latter.
This evidence accords with theory, because, as (1.41) shows, the relationship
between NLS residuals and disturbances is approximately the same as the
relationship between OLS residuals and disturbances. Therefore, it makes
sense to use the F' form of the statistic, which treats the estimate 52 based on
the GNR as if it were based on an ordinary OLS regression.

The above example generalizes to all cases in which ,B is taken to be 8 from
estimating the null hypothesis, whether or not the restricted model is linear.
In such cases, because GNR has no explanatory power, its SSR is equal to
its T'SS, which in turn is equal to the TSS of GNR;. In consequence, we only
need to run GNR;, which in this case is

Yy—x= lel + ngg + residuals.

Under the null hypothesis, nR? from this test regression is asymptotically
distributed as x2(r). This is not the case for GNR; when B # 3. However,
the F' test of (1.83) against (1.84) is asymptotically valid even when B+ 8.
It is merely required that ,3 should satisfy the null hypothesis and be root-n
consistent.

Most GNR-based tests are like the ones for serial correlation that we have just
discussed, in which the GNR is evaluated at least-squares estimates under the
null hypothesis. However, it is also possible to evaluate the GNR at estimates
obtained under the alternative hypothesis. We will encounter tests of this
type when we discuss common factor restrictions in Chapter 6.

Bootstrap Tests

Because none of the tests discussed in this section is exact in finite samples,
it is often desirable to compute bootstrap P values, which, in most cases,
are more accurate than ones based on asymptotic theory. The procedures for
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computing bootstrap P values for nonlinear regression models are essentially
the same as the ones for linear models. We use estimates under the null
to generate B bootstrap samples, usually either generating the disturbances
from the N(0, §%) distribution or resampling the rescaled residuals, and we then
compute a bootstrap test statistic 7/ using each of the bootstrap samples. For
a test that rejects when the test statistic 7 is large, the bootstrap P value
is then 1 — F*(7), where F*(7) denotes the EDF of the 7 evaluated at 7.
Of course, this procedure can sometimes be computationally expensive; see

Davidson and MacKinnon (1999a) for a way of making it somewhat less so.

1.8 Final Remarks

In this chapter, we have dealt only with the estimation of nonlinear regres-
sion models by nonlinear least squares. However, many of the results will
reappear, in slightly different forms, when we consider estimation methods
for other sorts of models. The NLS estimator is an extremum estimator, or
M-estimator, that is, an estimator obtained by minimizing or maximizing a
criterion function. In the next few chapters, we will encounter several other
extremum estimators: the generalized method of moments (Chapter 2) and
maximum likelihood (Chapter 3). Most of these estimators, like the NLS es-
timator, can be derived from the principles of estimating functions. All ex-
tremum estimators share a number of common features. Similar asymptotic
results, and similar methods of proof, apply to all of them.

1.9 Exercises

1.1 Let the expectation of a random variable Y conditional on a set of other ran-
dom variables X7i,..., Xy be the deterministic function h(X1,..., Xg) of the
conditioning variables. Let €2 be the information set consisting of all determin-
istic functions of the X;, ¢ = 1,...,k. Show that E(Y |Q) = h(X1,..., Xk).
Hint: Use the Law of Iterated Expectations for 2 and the information set
defined by the Xj.

*1.2 Consider a model similar to (F4.18), but with disturbances that are normally
distributed:
vt = B+ B2l/t +ur,  ur ~ NID(0,07),

wheret = 1,2,... n. If the true value of 3 is 58 and Bg is the OLS estimator,
show that the limit in probability of 82 — 33 is a normal random variable with
expectation 0 and variance 602/ 72 In order to obtain this result, you will
need to use the results that

Sy = w2

t=1
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1.3

1.4

1.5

1.6

1.7

*1.8
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and that, if s(n) = Y.} | (1/t), then lim n~1s(n) = 0 and limn~"1s%(n) = 0.
Show that the estimator defined by (1.10) depends on W only through the
span 8(W) of its columns. This is equivalent to showing that the estimator
depends on W only through the orthogonal projection matrix Py .

Show algebraically that the first-order conditions for minimizing the SSR func-
tion (1.29) have the same solutions as the moment conditions (1.28).

Apply Taylor’s Theorem to n~! times the left-hand side of the estimating
equations (1.28), expanding around the true parameter vector 8. Show that
the extra term which appears here, but was absent in (1.21), where the in-
struments are fixed and we multiply by n=1/ 2 tends to zero as n — co. Make
clear where and how you use a law of large numbers in your demonstration.

For the nonlinear regression model
ye =B1z* +up, up~1ID(0,0%),

write down the sum of squared residuals as a function of 51, S2, y¢, and zt.
Then differentiate it to obtain two first-order conditions. Show that these
equations are equivalent to special cases of the estimating equations (1.28).

In each of the following regressions, y; is the dependent variable, x; and z¢
are explanatory variables, and «, (3, and v are unknown parameters.

(a) yt =+ Boe+v/ze 4wt
Yyt = o+ Bat +wt /v + ue
yr =+ o+ 2t /v +ur
Yyt =+ Bxy + 2 /B + wy
Yt =+ Brrae + ut

a+ Byze + vz + ut
Yt = o+ Boe + i + we
Yt = o+ Bry +yai +w
yr = o+ By} +uy
yr =+ Bry + (1 — Bz +ut
1) ye=a+Bze+ (v — Bzt +w
For each of these regressions, is it possible to obtain a least-squares estimator
of the parameters? In other words, is each of these models identified? If not,
explain why not. If so, can the estimator be obtained by ordinary (that is,

linear) least squares? If it can, write down the regressand and regressors for
the linear regression to be used.

Yt

)
)
)
)
) Yyt = a4+ Bywez + vz + u
)
)
)
)
)

Show that a Taylor expansion to second order of an NLS residual gives
iy = up — Xe(Bo) (B — Bo) — 5(B — Bo) 'H(B — Bo), (1.94)

where Bp is the parameter vector of the DGP, and the k x k matrix H; =

H;(B) is the matrix of second derivatives with respect to 3 of the regression
function x¢(3), evaluated at some B that satisfies (1.20).
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1.9

1.10

1.13

Define b = nl/z(ﬁ —Bo). As n — oo, b tends to the normal random variable
plim(nilXoTXO)fln71/2X0Tu. By expressing equation (1.94) in terms of b,
show that the difference between @ 4 and uTMXOu tends to 0 as n — oo.
Here Mx, =1 — P, is the orthogonal projection on to SL(XO).

Using the result (1.41) on NLS residuals, show that the F' statistic computed
using the sums of squared residuals from the two GNRs (1.83) and (1.84)
is asymptotically equivalent to the F' statistic computed using the sums of
squared residuals from the nonlinear regressions (1.71) and (1.72).

Consider a linear regression with AR(2) disturbances. This can be written as
vt = XiB+u, ur=prus_1+ paus_2+er, e~ 1D(0,0%).

Explain how to test the null hypothesis that p; = pa = 0 by means of a GNR.

Consider again the ADL model (F4.90) of Part 1, Exercise 4.32, which is
reproduced here with a minor notational change:

ct = a+ fei—1 + Yoyt +MYt—1 + €t (1.95)

Recall that ¢; and y; are the logarithms of consumption and income, respec-
tively. Show that this model contains as a special case the following linear
model with AR(1) disturbances:

ct = 0o + (51yt +ug, with wg = pur—1 + ¢, (1.96)

where g4 is IID. Write down the relation between the parameters dg, 41,
and p of this model and the parameters «, f, 70, and 1 of (1.95). How
many and what restrictions are imposed on the latter set of parameters by
the model (1.96)7

Using the data in the file consumption.data, estimate the nonlinear model
defined implicitly by (1.96) for the period 1953:1 to 1996:4 by nonlinear least
squares. Since pre-sample data are available, you should use all 176 obser-
vations for the estimation. Do not use a specialized procedure for AR(1)
estimation. For starting values, use the estimates of dg, d1, and p implied by
the OLS estimates of equation (1.95). Finding them requires the solution to
the previous exercise.

Repeat this exercise, using 0 as the starting value for all three parameters.
Does the algorithm converge as rapidly as it did before? Do you obtain the
same estimates? If not, which ones are actually the NLS estimates?

Test the restrictions that the nonlinear model imposes on the model (1.95)
by means of an asymptotic F' test.

Using the estimates of the model (1.96) from the previous question, generate a
single set of simulated data c} for the period 1953:1 to 1996:4. The simulation
should be conditional on the pre-sample value (that is, the value for 1952:4) of
log consumption. Do this in two different ways. First, generate disturbances
uy that follow an AR(1) process, and then generate the c; in terms of these ;.
Next, perform the simulation directly in terms of the innovations &}, using the
nonlinear model obtained by imposing the appropriate restrictions on (1.95).
Show that, if you use the same realizations for the €}, the simulated values
i are identical. Estimate the model (1.96) using your simulated data.
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The nonlinear model obtained from (1.96) has just three parameters: dg, 1,
and p. It can therefore be estimated by the method of moments using three
exogenous or predetermined variables. Estimate the model using the constant
and the three possible choices of two variables from the set of nonconstant
explanatory variables in (1.95).

Formulate a GNR, based on estimates under the null hypothesis, that allows
you to use a ¢ test to test the restriction imposed on the model (1.95) by the
model (1.96). Compare the P value for this (asymptotic) ¢ test with the one
for the F' test of Part 1, Exercise 7.12.

Starting from the unconstrained estimates provided by (1.95), obtain one-
step efficient estimates of the parameters of (1.96) using the GNR, associated
with that model. Use the GNR iteratively so as to approach the true NLS
estimates more closely, until such time as the sum of squared residuals from
the GNR is within 1078 of the one obtained by NLS estimation. Compare
the number of iterations of this GNR-based procedure with the number used
by the NLS algorithm of your software package.

Formulate a GNR, based on estimates under the alternative hypothesis, to
test the restriction imposed on the model (1.95) by the model (1.96). Your
test procedure should just require two OLS regressions.

Using 199 bootstrap samples, compute a parametric bootstrap P value for the
test statistic obtained in Part 1, Exercise 7.17. Assume that the disturbances
are normally distributed.

Test the hypothesis that y9++1 = 0 in (1.95). Do this in three different ways,
two of which are valid in the presence of heteroskedasticity of unknown form.

For the nonlinear regression model defined implicitly by (1.96) and estimated
using the data in the file consumption.data, perform three different tests of the
hypothesis that all the coefficients are the same for the two subsamples 1953:1
to 1970:4 and 1971:1 to 1996:4. Firstly, use an asymptotic F' test based on
nonlinear estimation of both the restricted and unrestricted models. Secondly,
use an asymptotic F test based on a GNR which requires nonlinear estimation
only under the null. Finally, use a test that is robust to heteroskedasticity of
unknown form.

The original HRGNR proposed by Davidson and MacKinnon (1985a) is
L= UMXngbQ + residuals, (1.97)

where U, Xl, and Xg are as defined in Section 1.8, b% is a ko-vector, and Mx,
is the matrix that projects orthogonally on to 8 (X1). The test statistic for
the null hypothesis that B2 = 0 is n minus the SSR from regression (1.97).

Use regression (1.97), where all the matrices are evaluated at restricted NLS
estimates, to retest the hypothesis of the previous question. Comment on the
relationship between the test statistic you obtain and the heteroskedasticity-
robust test statistic of the previous question.

Suppose that P is a projection matrix with rank r. Without loss of generality,
we can assume that P projects on to the span of the columns of an n xr matrix
Z. Suppose further that the n-vector z is distributed as IID(0,I). Show
that the quadratic form 2Pz follows the XQ(’I“) distribution asymptotically
as n — oo. (Hint: See the proof of Theorem 4.1.)

Chapter 2

The Generalized
Method of Moments

2.1 Introduction

The models we have considered in earlier chapters have all been regression
models of one sort or another. In this chapter and the next, we introduce
more general types of models, along with a general method for performing
estimation and inference on them. This technique is called the generalized
method of moments, or GMM, and it includes as special cases all the methods
we have so far developed for regression models.

As we explained in Part 1, Section 4.1, a model is represented by a set of
DGPs. Each DGP in the model is characterized by a parameter vector, which
we will normally denote by 3 in the case of regression functions and by 6 in the
general case. The starting point for GMM estimation is to specify functions,
which, for any DGP in the model, depend both on the data generated by that
DGP and on the model parameters. When these functions are evaluated at
the parameters that correspond to the DGP that generated the data, their
expectation must be zero.

As a simple example, consider the linear regression model y; = X; 8 + uy.
An important part of the model specification is that the disturbances have
mean zero. These disturbances are unobservable, because the parameters 3
of the regression function are unknown. But we can define the residuals
w(B) =y — X B as functions of the observed data and the unknown model
parameters, and these functions provide what we need for GMM estimation.
If the residuals are evaluated at the parameter vector By associated with the
true DGP, they have mean zero under that DGP, but if they are evaluated
at some 3 # By, they do not have mean zero. In Part 1, Chapter 2, we used
this fact to develop a method-of-moments (MM) estimator for the parameter
vector B of the regression function. As we will see in the next section, the
various GMM estimators of B include as a special case the OLS estimator
developed in Chapter 2.

In Chapter 1, when we dealt with nonlinear regression models, and again
in Part 1, Chapter 8, we used instrumental variables along with residuals in
order to develop estimating functions. The use of instrumental variables is

43
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also an essential aspect of GMM, and in this chapter we will once again make
use of the various kinds of optimal instruments that were useful in Chapter 1
and Part 1, Chapter 8 in order to develop a wide variety of estimators that
are asymptotically efficient for a wide variety of models.

We begin by considering, in the next section, a linear regression model with
endogenous explanatory variables and a disturbance covariance matrix that is
not proportional to the identity matrix. Such a model requires us to combine
the insights of both Part 1, Chapter 8 and Part 1, Chapter 9 in order to
obtain asymptotically efficient estimates. In the process of doing so, we will
see how GMM estimation works more generally, and we will be led to develop
ways to estimate models with both heteroskedasticity and serial correlation of
unknown form. In Section 2.3, we study in some detail the heteroskedasticity
and autocorrelation consistent, or HAC, covariance matrix estimators that
we introduced in Part 1, Section 6.5. Then, in Section 2.4, we introduce
a set of tests, based on GMM criterion functions, that are widely used for
inference in conjunction with GMM estimation. In Section 2.5, we move
beyond regression models to give a more formal and advanced presentation
of GMM, and we postpone to this section most of the proofs of consistency,
asymptotic normality, and asymptotic efficiency for GMM estimators.

2.2 GMM Estimators for Linear Regression Models
Consider the linear regression model
y=XB+u, Euu')=20, (2.01)

where there are n observations, and §2 is an n X n covariance matrix. As in
the previous chapter, some of the explanatory variables that form the n x k
matrix X may not be predetermined with respect to the disturbances u. How-
ever, there is assumed to exist an n x [ matrix of predetermined instrumental
variables, W, with n > [ and [ > k, satisfying the condition E(u; | W;) = 0 for
eachrow W of W, t =1,...,n. Any column of X that is predetermined must
also be a column of W. In addition, we assume that, for all t,s = 1,...,n,
E(usus | Wi, W,) = wys, where wy, is the ts*™® element of 2. We will need this
assumption later, because it allows us to see that

_ 1 1 n n
Var(n 2 Wu) = ~E(W TuuW) = -3 " E(u,u, W, W)
t=1 s=1

LN B(B(uu Wi WL | W, WL))
t=1 s=1

n

YN Bw W Wi) = LE(WTew). (2.02)
t=1 s=1

S|
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The assumption that E(u; | W;) = 0 implies that, for all t = 1,...,n,
E(W, (y, — X,8)) = 0. (2.03)

These equations form a set of what we may call theoretical moment conditions.
They were used in Part 1, Chapter 8 as the starting point for estimation of
the regression model (2.01). Each theoretical moment condition corresponds
to a sample moment, or empirical moment, of the form

n
1 1
n Z wi (ye — XuB) = gwiT(y - X3), (2.04)
t=1
where w;, i = 1,...,1, is the i*" column of W, and wy; is the ti*" element.

When [ = k, we can set these sample moments equal to zero and solve the
resulting k estimating equations to obtain the simple IV estimator (F8.13).
When [ > k, we must do as we did in Part 1, Chapter 8 and select k£ indepen-
dent linear combinations of the sample moments (2.04) in order to obtain an
estimator.

Of course, what we have been calling a sample moment is in fact an estimat-
ing function. The terminology in the above paragraph is nevertheless more
familiar to most econometricians than that of estimating functions, and so we
will continue to use it, although in Section 2.5 we discuss estimating functions
more formally than we have done so far, and explain the correspondences be-
tween the terminology of moment conditions and that of estimating functions.

Now let J be an [ x k matrix with full column rank %, and consider the
estimator obtained by using the k columns of WJ as instruments. This
estimator solves the k equations

JWT(y—XB8) =0, (2.05)

which are referred to as sample moment conditions, or just moment conditions
when there is no ambiguity. They are also sometimes called orthogonality
conditions, since they require that the vector of residuals should be orthogonal
to the columns of WJ. Let us assume that the data are generated by a DGP
which belongs to the model (2.01), with coefficient vector By and covariance
matrix £2p. Under this assumption, we have the following explicit expression,
suitable for asymptotic analysis, for the estimator 3 that solves (2.05):

n2(B8 - Bo) = (n T TTWTX) 02T TW T, (2.06)

From this, recalling (2.02), we find that the asymptotic covariance matrix
of B, that is, the limiting covariance matrix of n'/2(8 — By), is

(phm %JTWTX)_I( plim %JTWTQOWJ) (plim %XTWJ)_l. (2.07)

n— 00 n—o0 n— 00
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This matrix has the familiar sandwich form that we expect to see when an
estimator is not asymptotically efficient.

The next step, as in Part 1, Section 8.3, is to choose J so as to minimize the
covariance matrix (2.07). We may reasonably expect that, with such a choice
of J, the covariance matrix would no longer have the form of a sandwich. The
simplest choice of J that eliminates the sandwich in (2.07) is

J=W'QW)'w'x; (2.08)

notice that, in the special case in which §2; is proportional to I, this expres-
sion reduces to the result (F8.25) that we found in Part 1, Section 8.3 as the
solution for that special case. We can see, therefore, that (2.08) is the ap-
propriate generalization of (F8.25) when §2 is not proportional to an identity
matrix. With J defined by (2.08), the covariance matrix (2.07) becomes

—1
plim (% XTW(WTQOW)*WTX) : (2.09)

n— 00

and the efficient GMM estimator is
Bavv = (XTWWTW) ' WIX) ' X TWWT W) 'WTy. (2.10)

When §2) = 021, this estimator reduces to the generalized IV estimator
(F8.30). In Exercise 2.1, readers are invited to show that the difference be-
tween the covariance matrices (2.07) and (2.09) is a positive semidefinite ma-
trix, thereby confirming (2.08) as the optimal choice for J. The estimator
B is efficient in the class of estimators defined by the moment conditions
(2.05), but we will see that a more efficient estimator is available if we know
£2y and are prepared to exploit that knowledge.

The GMM Criterion Function

With both GLS and IV estimation, we showed that the efficient estimators
could also be derived by minimizing an appropriate criterion function; this
function was (F9.06) for GLS and (F8.31) for IV. Similarly, the efficient GMM
estimator (2.10) minimizes the GMM criterion function

QB.y) = (y — XB) W(W'2W)"'W(y — XB), (2.11)

as can be seen at once by noting that the first-order conditions for minimiz-
ing (2.11) are
X' WW'QW)'Wi(y - X3) = 0.

If 29 = 021, (2.11) reduces to the IV criterion function (F8.31), divided
by o2. In Part 1, Section 9.6, we saw that the minimized value of the IV cri-
terion function, divided by an estimate of o2, serves as the statistic for the
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Sargan test for overidentification. We will see in Section 2.4 that the GMM
criterion function (2.11), with the usually unknown matrix £2¢ replaced by
a suitable estimate, can also be used as a test statistic for overidentification.
The criterion function (2.11) is a quadratic form in the vector WT(y — X23)
of sample moments and the inverse of the matrix W T2,W. Equivalently, it
is a quadratic form in n~/2WT(y — XB) and the inverse of n= W T2,W,
since the powers of n cancel. Under the sort of regularity conditions we have
used in earlier chapters, n=%/2 W T(y — X[3) satisfies a central limit theorem,
and so tends, as n — o0, to a normal distribution, with mean vector 0 and
covariance matrix the limit of n ='W T#2,W. It follows that (2.11) evaluated
using the true By and the true §2y is asymptotically distributed as x? with
[ degrees of freedom; recall Part 1, Theorem 5.1, and see Exercise 2.2.

This property of the GMM criterion function is simply a consequence of its
structure as a quadratic form in the sample moments used for estimation and
the inverse of the asymptotic covariance matrix of these moments evaluated
at the true parameters. As we will see in Section 2.4, this property is what
makes the GMM criterion function useful for testing. The argument leading
to (2.10) shows that this same property of the GMM criterion function leads
to the asymptotic efficiency of the estimator that minimizes it.

Provided the instruments are predetermined, so that they satisfy the condition
that E(u; | W;) = 0, we still obtain a consistent estimator, even when the
matrix J used to select linear combinations of the instruments is different
from (2.08). Such a consistent, but in general inefficient, estimator can also
be obtained by minimizing a quadratic criterion function of the form

(y — XB) WAW '(y — X3), (2.12)

where the weighting matrix A is [ x [, positive definite, and must be at least
asymptotically nonrandom. Without loss of generality, A can be taken to be
symmetric; see Exercise 2.3. The inefficient GMM estimator is

B=(X"WAW X)) ' XTWAW Ty, (2.13)

from which it can be seen that the use of the weighting matrix A corresponds
to the implicit choice J = AW TX. For a given choice of J, there are various
possible choices of A that give rise to the same estimator; see Exercise 2.4.

When | = k, the model is exactly identified, and J is a nonsingular square
matrix which has no effect on the estimator. This is most easily seen by
looking at the moment conditions (2.05), which are equivalent, when | = k, to
those obtained by premultiplying them by (JT)~!. Similarly, if the estimator
is defined by minimizing a quadratic form, it does not depend on the choice
of A whenever | = k. To see this, consider the first-order conditions for
minimizing (2.12), which, up to a scalar factor, are

X "WAW '(y — X3) = 0.



48 The Generalized Method of Moments

If ] = k, X"W is a square matrix, and the first-order conditions can be
premultiplied by A=}(XTW)~L. Therefore, the estimator is the solution to
the equations WT(y — X3) = 0, independently of A. This solution is just
the simple IV estimator defined in (F8.13).

When | > k, the model is overidentified, and the estimator (2.13) depends
on the choice of J or A. The efficient GMM estimator, for a given set of
instruments, is defined in terms of the true covariance matrix 2y, which is
usually unknown. If §2¢ is known up to a scalar multiplicative factor, so
that 2y = 02Ay, with o2 unknown and Ay known, then Ay can be used in
place of §2y in either (2.10) or (2.11). This is true because multiplying 2o
by a scalar leaves (2.10) invariant, and it also leaves invariant the B3 that
minimizes (2.11).

GMM Estimation with Heteroskedasticity of Unknown Form

The assumption that 2y is known, even up to a scalar factor, is often too
strong. What makes GMM estimation practical more generally is that, in
both (2.10) and (2.11), £2y appears only through the [ x ! matrix product
WT,W. As we saw first in Part 1, Section 6.4, in the context of het-
eroskedasticity consistent covariance matrix estimation, n~! times such a ma-
trix can be estimated consistently if £2y is a diagonal matrix. What is needed
is a preliminary consistent estimate of the parameter vector 3, which furnishes
residuals that are consistent estimates of the disturbances.

The preliminary estimates of B must be consistent, but they need not be
asymptotically efficient, and so we can obtain them by using any convenient
choice of J or A. One choice that is often convenient is A = (W W)™,
in which case the preliminary estimator is the generalized IV estimator
(F8.30). We then use the preliminary estimates 8 to calculate the residu-
als 4, = yy — X,é A typical element of the matrix n~ "W T20W can then be
estimated by

n
1 ~
- E u?wtiwtj. (2.14)
t=1

This estimator is very similar to (F6.26), and the estimator (2.14) can be
proved to be consistent by using arguments just like those employed in Part 1,
Section 6.4.

The matrix with typical element (2.14) can be written as n~'WTQW, where
§2 is an n x n diagonal matrix with typical diagonal element #2. Then the
feasible efficient GMM estimator is

Browm = (XTWWTQW) 'WX) ' X WWTQW)'WTy, (215)
which is just (2.10) with £2y replaced byA.(AZ. Since n~!WT2W consistently

estimates n~ W T820W, it follows that Bramu is asymptotically equivalent
to (2.10). It should be noted that, in calling (2.15) efficient, we mean that
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it is asymptotically efficient within the class of estimators that use the given
instrument set W.

Like other procedures that start from a preliminary estimate, this one can
be iterated. The GMM residuals y; — XﬁFGMM can be used to calculate a
new estimate of 2, which can then be used to obtain second-round GMM
estimates, which can then be used to calculate yet another estimate of 2,
and so on. We will refer to this iterative procedure as continuously updated
GMM, although it is not quite the same as the procedure by that name
investigated by Hansen, Heaton, and Yaron (1996). Whether we stop after one
round or continue until the procedure converges, the estimates have the same
asymptotic distribution if the model is correctly specified. However, there is
evidence that performing more iterations improves finite-sample performance.
In practice, the covariance matrix is estimated by

Var (Breum) = (X W(WTQW) 'WTX) . (2.16)

It is not hard to see that n times the estimator (2.16) tends to the asymptotic
covariance matrix (2.09) as n — oo.

Fully Efficient GMM Estimation

In choosing to use a particular matrix of instrumental variables W, we are
choosing a particular representation of the information sets {); appropriate
for each observation in the sample. It is required that W; € €, for all ¢,
and it follows from this that any deterministic function, linear or nonlinear,
of the elements of W, also belongs to ;. It is quite clearly impossible to
use all such deterministic functions as actual instrumental variables, and so
the econometrician must make a choice. What we have established so far is
that, once the choice of W is made, (2.08) gives the optimal set of linear
combinations of the columns of W to use for estimation. What remains to be
seen is how best to choose W out of all the possible valid instruments, given
the information sets ;.

In Part 1, Section 8.3, we saw that, for the model (2.01) with £ = oI,
the best choice, by the criterion of the asymptotic covariance matrix, is the
matrix X given in (F8.19) by the defining condition that E(X;| ) = X,
where X, and X are the t**rows of X and X, respectively. However, it is easy
to see that this result does not hold unmodified when §2 is not proportional
to an identity matrix. Consider the GMM estimator (2.10), of which (2.15)
is the feasible version, in the special case of exogenous explanatory variables,
for which the obvious choice of instruments is W = X. If| for notational ease,
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we write §2 for the true covariance matrix £2y, (2.10) becomes

Bovv = (XTX(XT2X) ' X'X) ' X X(XT2X)'XTy
= (X' X)X 2X( X' X)X X(X'2X)'Xy

(XX X'2X(X'2X) Xy

= (X'X)"'X "y = Bovs.

However, we know from the results of Part 1, Section 9.2 that the efficient
estimator is actually the GLS estimator

Bars = (XT27X) X2 1y, (2.17)

which, except in special cases, is different from Bors.

The GLS estimator (2.17) can be interpreted as an IV estimator, in which
the instruments are the columns of 271X. Thus it appears that, when §2 is
not a multiple of the identity matrix, the optimal instruments are no longer
the explanatory variables X, but rather the columns of £2~'X. This suggests
that, when at least some of the explanatory variables in the matrix X are
not predetermined, the optimal choice of instruments is given by £2~'X. This
choice combines the result of Part 1, Chapter 9 about the optimality of the
GLS estimator with that of Part 1, Chapter 8 about the best instruments to
use in place of explanatory variables that are not predetermined. It leads to
the theoretical moment conditions

E(X'2 ' (y-XB)) =0. (2.18)

Unfortunately, this solution to the optimal instruments problem does not
always work, because the moment conditions in (2.18) may not be correct. To
see why not, suppose that the disturbances are serially correlated, and that §2
is consequently not a diagonal matrix. The i*" element of the matrix product
in (2.18) can be expanded as

ZZXM W (ys — X.B8), (2.19)

t=1 s=1

where w?® is the ts*" element of £271. If we evaluate at the true parameter
vector By, we find that y, — X80 = us. But, unless the columns of the
matrix X are exogenous, it is not in general the case that E(u, | X;) = 0 for
s # t, and, if this condition is not satisfied, the expectation of (2.19) is not
zero in general. This issue was discussed at the end of Part 1, Section 9.3,
and in more detail in Part 1, Section 9.8, in connection with the use of GLS
when one of the explanatory variables is a lagged dependent variable.
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Choosing Valid Instruments

As in Part 1, Section 9.2, we can construct an n X n matrix ¥, usually tri-
angular, that satisfies the equation 27! = ¥W¥'. As in equation (F9.03) of
Part 1, Section 9.2, we can premultiply regression (2.01) by &' to get

Uy =0'X8+ ¥y, (2.20)

with the result that the covariance matrix of the transformed disturbance
vector, W'u, is just the identity matrix. Suppose that we propose to use a
matrix Z of instruments in order to estimate the transformed model, so that
we are led to consider the theoretical moment conditions

E(Z'®'(y— XB3)) = 0. (2.21)

If these conditions are to be correct, then what we need is that, for each t,
E((W'u)¢ | Z;) = 0, where the subscript ¢ is used to select the ¢*™ row of the
corresponding vector or matrix.

If X is exogenous, the optimal instruments are given by the matrix 271X, and
the moment conditions for efficient estimation are E(X 027! (y — X8)) =0,
which can also be written as

E(X'ww'(y - XB)) =0. (2.22)

Comparison with (2.21) shows that the optimal choice of Z is ¥'X. Even if
X is not exogenous, (2.22) is a correct set of moment conditions if

E((#u), | (Z'X)) =0. (2.23)

But this is not true in general when X is not exogenous. Consequently, we
seek a new definition for X, such that (2.23) becomes true when X is replaced
by X.

In most cases, it is possible to choose ¥ so that (¥ 'u); is an innovation, that
is, so that E((J’Tu)t | Qt) = 0. As an example, see the analysis of models
with AR(1) disturbances in Part 1, Section 9.8, especially the discussion sur-
rounding (19.44). What is then required for condition (2.23) is that (¥'X),
should be predetermined in period t. If §2 is diagonal, and so also ¥, the
old definition of X works, because (#'X), = ¥;; X;, where ¥y, is the t*" di-
agonal element of ¥, and this belongs to 2; by construction. If 2 contains
off-diagonal elements, however, the old definition of X no longer works in
general. Since what we need is that (&'X); should belong to Q;, we instead
define X implicitly by the equation

E(T'X) | ) = (F'X),. (2.24)

This implicit definition must be implemented on a case-by-case basis. One
example is given in Exercise 2.5.
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By setting Z = ¥'X, we find that the moment conditions (2.21) become
E(X'w¥'(y - XB)) =E(X'2 Yy — XB)) =0. (2.25)

These conditions do indeed use 271X as instruments, albeit with a possibly
redefined X. The estimator based on (2.25) is

Branm = (XT27'X) ' XT0 1y, (2.26)

where EGMM denotes “fully efficient GMM.” The asymptotic covariance ma-
trix of (2.26) can be computed using (2.09), in which, on the basis of (2.25),
we see that W is to be replaced by $'X, X by ¥'X, and £ by I. We cannot
apply (2.09) directly with instruments §27X, because there is no reason to
suppose that the result (2.02) holds for the untransformed disturbances u and
the instruments $27'X. The result is

_ _ _\-1 _\!
plim (1 X2 X (1 XT2'X) 1x"n'x) . (2.27)
n n n

n— 00

By exactly the same argument as that used in (F8.21), we find that, for any
matrix Z that satisfies Z; € €,

plim - ZT@TX = plim L ZT¥'X. (2.28)

Since (¥'X); € €, this implies that

plim £ X'27'X = plim L X @@’ X

n—oo n—oo
= plim LXTow'x = plim LxT1x.

Therefore, the asymptotic covariance matrix (2.27) simplifies to

plim (l XTQ*X) : (2.29)
n— 00 n

Although the matrix (2.09) is less of a sandwich than (2.07), the matrix (2.29)
is still less of one than (2.09). This is a clear indication of the fact that the
instruments 27X, which yield the estimator BEGMM7 are indeed optimal.
Readers are asked to check this formally in Exercise 2.7.

In most cases, X is not observed, but it can often be estimated consistently.
The usual state of affairs is that we have an n x [ matrix W of instruments,
such that §(X) C §(W) and

(TTW); € Q. (2.30)
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This last condition is the form taken by the predeterminedness condition
when 2 is not proportional to the identity matrix. The theoretical moment
conditions used for (overidentified) estimation are then

EW'2 Yy - XB)) =E(W'¥¥'(y— XB)) =0, (2.31)

from which it can be seen that what we are in fact doing is estimating the
transformed model (2.20) using the transformed instruments TW. The re-
sult of Exercise 2.8 shows that, if indeed §(X) C §(W), the asymptotic covar-
iance matrix of the resulting estimator is still (2.29). Exercise 2.9 investigates
what happens if this condition is not satisfied.

The main obstacle to the use of the efficient estimator Brca is thus not the
difficulty of estimating X, but rather the fact that §2 is usually not known.
As with the GLS estimators we studied in Part 1, Chapter 9, ,@EGMM cannot
be calculated unless we either know §2 or can estimate it consistently, usually
by knowing the form of §2 as a function of parameters that can be estimated
consistently. But whenever there is heteroskedasticity or serial correlation of
unknown form, this is impossible. The best we can then do, asymptotically,
is to use the feasible efficient GMM estimator (2.15). Therefore, when we
later refer to GMM estimators without further qualification, we will normally
mean feasible efficient ones.

2.3 HAC Covariance Matrix Estimation

Up to this point, we have seen how to obtain feasible efficient GMM estimates
only when the matrix §2 is known to be diagonal, in which case we can use
the estimator (2.15). In this section, we also allow for the possibility of serial
correlation of unknown form, which causes {2 to have nonzero off-diagonal
elements. When the pattern of the serial correlation is unknown, we can still,
under fairly weak regularity conditions, estimate the covariance matrix of the
sample moments by using a heteroskedasticity and autocorrelation consistent,
or HAC, estimator of the matrix n='W T2 W. This estimator, multiplied
by n, can then be used in place of WT£2W in the feasible efficient GMM
estimator (2.15).

The asymptotic covariance matrix of the vector n~1/2 W (y — X3) of sample
moments, evaluated at 8 = By, is defined as follows:

X = plim 2W(y — XBo)(y — XBo)'W = plim LW QW.  (2.32)

n— 00 n—r00

A HAC estimator of ¥ is a matrix 3 constructed so that 3 consistently es-
timates X' when the disturbances u; display any pattern of heteroskedasticity
and/or autocorrelation that satisfies certain, generally quite weak, conditions.
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In order to derive such an estimator, we begin by rewriting the definition of
Y in an alternative way:

— T}EEOHZZ (ueus Wy ' W), (2.33)

in which we assume that a law of large numbers can be used to justify replacing
the probability limit in (2.32) by the expectations in (2.33).

For regression models with heteroskedasticity but no autocorrelation, only
the terms with ¢ = s contribute to (2.33). Therefore, for such models, we
can estimate X' consistently by simply ignoring the expectation operator and
replacing the disturbances u; by least-squares residuals u;, possibly with a
modification designed to offset the tendency for such residuals to be too small.
The obvious way to estimate (2.33) when there may be serial correlation is
again simply to drop the expectations operator and replace usus by U:ts,
where 4; denotes the ¢ residual from some consistent but inefficient estima-
tion procedure, such as generalized IV. Unfortunately, this approach does not
work. To see why not, we need to rewrite (2.33) in yet another way. Let us
define the autocovariance matrices of the W, 'u, as follows:

n

LN E(wu W, W) for j >0,
) t=j+1
()= . (2.34)
% Z E(utﬂutVVtIJVV}) fOI‘j < 0.
t=—j+1

Because there are [ moment conditions, these are [ x | matrices. It is easy to
check that I'(j) = I''(—j). Then, in terms of the matrices I'(j), expression
(2.33) becomes

n—1 n—1
= lim > r()=lim (0O)+ > (TG + (7). (235)
j=—n+1 Jj=1

Therefore, in order to estimate X', we apparently need to estimate all of the
autocovariance matrices for 7 =0,...,n — 1.

If 4, denotes a typical residual from some preliminary estimator, the sample
autocovariance matrix of order j, f( 7), is just the appropriate expression in
(2.34), without the expectation operator, and with the random variables v,
and u;—; replaced by 4; and %;_;, respectively. For any j > 0, this is

()= % Z Qpiie— ;W' Wi (2.36)
t=j+1
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Unfortunately, the sample autocovariance matrix r (4) of order j is not a con-
sistent estimator of the true autocovariance matrix for arbltrary 4. Suppose,
for instance, that j = n—2. Then, from (2.36), we see that I'(j) has only two
terms, and no conceivable law of large numbers can apply to only two terms.
In fact, I'(n — 2) must tend to zero as n — oo because of the factor of n=! in
its definition.

The solution to this problem is to restrict our attention to models for which
the actual autocovariances mimic the behavior of the sample autocovariances,
and for which therefore the actual autocovariance of order j tends to zero as
j — oo. A great many stochastic processes generate disturbances for which
the I'(j) do have this property. In such cases, we can drop most of the
sample autocovariance matrices that appear in the sample analog of (2.35) by
eliminating ones for which |j| is greater than some chosen threshold, say p.
This yields the following estimator for X

Suw = I(0) + Z(f“(j) +I7(j)), (2.37)

We refer to this estimator as the Hansen-White estimator, because it was
originally proposed by Hansen (1982) and White and Domowitz (1984); see
also White (2000).

For the purposes of asymptotic theory, it is necessary to let the parameter p,
which is called the lag truncation parameter, go to infinity in (2.37) at some
suitable rate as the sample size goes to infinity. A typical rate would be n'/4.
This ensures that, for large enough n, all the nonzero I'(j) are estimated
consistently. Unfortunately, this type of result does not say how large p should
be in practice. In most cases, we have a given, finite, sample size, and we need
to choose a specific value of p.

The Hansen-White estimator (2.37) suffers from one very serious deficiency: In
finite samples, it need not be positive definite or even positive semidefinite. If
one happens to encounter a data set that yields a nondefinite 2HW, then, since
the weighting matrix for GMM must be positive definite, (2.37) is unusable.
Luckily, there are numerous ways out of this difficulty. The one that is most
widely used was suggested by Newey and West (1987). The Newey-West
estimator they propose is

Saw = I(0) i:( —7>(A(J')+1:'T(j))a (2.38)

Jj=1 p+1

in which each sample autocovariance matrix f( j) is multiplied by a weight
1—34/(p+ 1) that decreases linearly as j increases. The weight is p/(p + 1) for
j =1, and it then decreases by steps of 1/(p + 1) down to a value of 1/(p + 1)
for j = p. This estimator evidently tends to underestimate the autocovariance
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matrices, especially for larger values of j. Therefore, p should almost certainly
be larger for (2.38) than for (2.37). As with the Hansen-White estimator, p
must increase as n does, and the appropriate rate is n'/3. A procedure for
selecting p automatically was proposed by Newey and West (1994), but it is
too complicated to discuss here.

Both the Hansen-White and the Newey-West HAC estimators of X can be
written in the form

Z=1iwow (2.39)

for an appropriate choice of 2. This fact, which we will exploit in the next
section, follows from the observation that there exist n x n matrices U (j) such
that the f(]) can be expressed in the form n_1WTU(j)W7 as readers are
asked to check in Exercise 2.10.

The Newey-West estimator is by no means the only HAC estimator that is
guaranteed to be positive definite. Andrews (1991) provides a detailed treat-
ment of HAC estimation, suggests some alternatives to the Newey-West esti-
mator, and shows that, in some circumstances, they may perform better than
it does in finite samples. A different approach to HAC estimation is suggested
by Andrews and Monahan (1992). Since this material is relatively advanced
and specialized, we will not pursue it further here. Interested readers may
wish to consult Hamilton (1994, Chapter 10) as well as the references already
given.

Feasible Efficient GMM Estimation

In practice, efficient GMM estimation in the presence of heteroskedasticity and
serial correlation of unknown form works as follows. As in the case with only
heteroskedasticity that was discussed in Section 2.2, we first obtain consistent
but inefficient estimates, probably by using generalized IV. These estimates
yield residuals ¢, from which we next calculate a matrix X that estimates X
consistently, using (2.37), (2.38), or some other HAC estimator. The feasible
efficient GMM estimator, which generalizes (2.15), is then

Bravv = (X TWETIWTX) I XTWE Wy, (2.40)

As before, this procedure may be iterated. The first-round GMM residuals
may be used to obtain a new estimate of X', which may be used to obtain
second-round GMM estimates, and so on. For a correctly specified model,
iteration should not affect the asymptotic properties of the estimates.

We can estimate the covariance matrix of (2.40) by
Var(Bramm) = n(X WETWTX) L, (2.41)

which is the analog of (2.16). The factor of n here is needed to offset the
factor of n~! in the definition of . We do not need to include such a factor
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in (2.40), because the two factors of n=! cancel out. As usual, the covariance
matrix estimator (2.41) can be used to construct pseudo-t tests and other
Wald tests, and asymptotic confidence intervals and confidence regions may
also be based on it. The GMM criterion function that corresponds to (2.40) is

Hy— XB)WETW(y - XB). (2.42)

Once again, we need a factor of n=! here to offset the one in 3.

The feasible efficient GMM estimator (2.40) can be used even when all the
columns of X are valid instruments and OLS would be the estimator of choice
if the disturbances were not heteroskedastic and/or serially correlated. In this
case, W typically consists of X augmented by a number of functions of the
columns of X, such as squares and cross-products, and 2 has squared OLS
residuals on the diagonal. This estimator, which was proposed by Cragg
(1983) for models with heteroskedastic disturbances, is asymptotically more
efficient than OLS whenever {2 is not proportional to an identity matrix.

2.4 Tests Based on the GMM Criterion Function

For models estimated by instrumental variables, we saw in Part 1, Section 8.5
that any set of r equality restrictions can be tested by taking the difference
between the minimized values of the IV criterion function for the restricted
and unrestricted models, and then dividing it by a consistent estimate of the
disturbance variance. The resulting test statistic is asymptotically distributed
as x2(r). For models estimated by (feasible) efficient GMM, a very similar
testing procedure is available. In this case, as we will see, the difference
between the constrained and unconstrained minima of the GMM criterion
function is asymptotically distributed as x2(r). There is no need to divide by
an estimate of o2, because the GMM criterion function already takes account
of the covariance matrix of the disturbances.

Tests of Overidentifying Restrictions

Whenever I > k, a model estimated by GMM involves [ — k overidentifying
restrictions. As in the IV case, tests of these restrictions are even easier
to perform than tests of other restrictions, because the minimized value of
the optimal GMM criterion function (2.11), with n ='W T#2,W replaced by
a HAC estimate, provides an asymptotically valid test statistic. When the
HAC estimate 3 is expressed as in (2.39), the GMM criterion function (2.42)
can be written as

QByY) =(y—XB) WWTQW)'W(y — X3). (2.43)

Since HAC estimators are consistent, the asymptotic distribution of (2.431,
for given 3, is the same whether we use the unknown true £2y or a matrix 2
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that provides a HAC estimate. For simplicity, we therefore use the true 2y,
omitting the subscript 0 for ease of notation. The asymptotic equivalence of
the Bramu of (2.15) or (2.40) and the Bamm of (2.10) further implies that
what we will prove for the criterion function (2.43) evaluated at Bamwm, with
£2 replaced by £2, is equally true for (2.43) evaluated at Breyu.

We remarked in Section 2.2 that Q(Bo,y), where By is the true parameter
vector, is asymptotically distributed as x%(l). In contrast, the minimized
criterion function Q(Bawmw,y) is distributed as x2(I — k), because we lose
k degrees of freedom as a consequence of having estimated k parameters.
In order to demonstrate this result, we first express (2.43) in terms of an
orthogonal projection matrix. This allows us to reuse many of the calculations
performed in Part 1, Chapter 8.

As in Section 2.2, we make use of a possibly triangular matrix ¥ that satisfies
the equation 2= = $¥, or, equivalently,

=whH g (2.44)
If the n x [ matrix A is defined as @ ~'W, and Py = A(A'A)"'A", then
QB.y) = (y— XB) e W(W@) e ' W) W@ (y - XB)
= (y— XB) ' WP,¥'(y — XP). (2.45)
Since Bgyvu minimizes (2.45), we see that one way to write it is
Bovu = (X WPAP X)X WP, y; (2.46)

compare (2.10). Expression (2.46) makes it clear that Baa can be thought
of as a generalized IV estimator for the regression of ¥'y on ¥'X using
instruments A = W~1W. As in (F8.62), it can be shown that

PaW'(y — XBanm) = Pa(I - Pp,grx) Py,

where Pp,g7x is the orthogonal projection on to the subspace S(PAPTX).
It follows that

Q(BGMM y) = yT!p(PA - PPA\I/TX)WTZL (2-47)

which is the analog for GMM estimation of expression (F8.62) for generalized
IV estimation.

Now notice that
(Pa— Ppyrx)¥'X
= PAU'X - PAV'X (X' OP, ' X)) ' XTWP,P'X
= PA¥U'X — P,¥'X = 0.
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Since y = XB + u if the model we are estimating is correctly specified, this
implies that (2.47) is equal to

Q(BGMMa y) = UTEP(PA - PpAupTx)!I’T’UJ. (248)

This expression can be compared with the value of the criterion function
evaluated at By, which can be obtained directly from (2.45):

Q(Bo,y) = u' WPA¥ "u. (2.49)

The two expressions (2.48) and (2.49) show clearly where the k degrees of
freedom are lost when we estimate 8. We know that E(@'u) = 0 and that
E(WTuu'¥) = QW =1, by (2.44). The dimension of the space $(A) is
equal to [. Therefore, the extension of Theorem 4.1 treated in Exercise 2.2
allows us to conclude that (2.49) is asymptotically distributed as x?({). Since
S(Pa¥TX) is a k-dimensional subspace of 8(A), it follows (see Part 1, Ex-
ercise 3.18) that Pa — Pp,g7x is an orthogonal projection on to a space of
dimension [ — k, from which we see that (2.48) is asymptotically distributed
as x2(I — k). Replacing By by Bamu in (2.48) thus leads to the loss of the
k dimensions of the space §(Psa¥'X), which are “used up” when we ob-
tain BGMM-

The statistic Q(ﬁGMM, y) is the analog, for efficient GMM estimation, of the
Sargan test statistic that was discussed in Part 1, Section 8.6. This statistic
was suggested by Hansen (1982) in the famous paper that first proposed GMM
estimation under that name. It is often called Hansen’s overidentification sta-
tistic or Hansen’s J statistic. However, we prefer to call it the Hansen-Sargan
statistic to stress its close relationship with the Sargan test of overidentifying
restrictions in the context of generalized IV estimation.

As in the case of IV estimation, a Hansen-Sargan test may reject the null
hypothesis for more than one reason. Perhaps the model is misspecified, either
because one or more of the instruments should have been included among the
regressors, or for some other reason. Perhaps one or more of the instruments is
invalid because it is correlated with the disturbances. Or perhaps the finite-
sample distribution of the test statistic just happens to differ substantially
from its asymptotic distribution. In the case of feasible GMM estimation,
especially involving HAC covariance matrices, this last possibility should not
be discounted. See, among others, Hansen, Heaton, and Yaron (1996) and
West and Wilcox (1996).

Tests of Linear Restrictions

Just as in the case of generalized IV, both linear and nonlinear restrictions
on regression models can be tested by using the difference between the con-
strained and unconstrained minima of the GMM criterion function as a test
statistic. Under weak conditions, this test statistic is asymptotically dis-
tributed as x? with as many degrees of freedom as there are restrictions to
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be tested. For simplicity, we restrict our attention to zero restrictions on the
linear regression model (2.01). This model can be rewritten as

y=X161+ X208 +u, E(uuT) =1, (2.50)

where 37 is a ky-vector and B3s is a ko-vector, with k = k1 + ko. We wish to
test the restrictions By = 0.

If we estimate (2.50) by feasible efficient GMM using W as the matrix of
instruments, subject to the restriction that 3, = 0, we obtain the restricted
estimates Bramm = [B1 | 0]. By the reasoning that leads to (2.48), we see
that, if indeed B2 = 0, the constrained minimum of the criterion function is

QBravm,y) = (y — X181) WW QW) 'W(y — X, 8:)
=u'W(Pay — Ppyx,)¥ u. (2.51)

If we subtract (2.48) from (2.51), we find that the difference between the
constrained and unconstrained minima of the criterion function is

Q(Brevm, ¥) — Q(Bravmt, y) = u'¥(Ppprx — Ppyurx,) ¥ u.  (2.52)

Since §(Pa¥'X:) C 8(Pa¥'X), we see that Pp,yrx — Pp,gTx, is an or-
thogonal projection matrix of which the image is of dimension k — k; = ks.
Once again, the result of Exercise 2.2 shows that the test statistic (2.52) is
asymptotically distributed as x2 (ko) if the null hypothesis that B2 = 0 is true.
This result continues to hold if the restrictions are nonlinear, as we will see
in Section 2.5.

The result that the statistic Q(BFGMM, y) — Q(BFGMM, y) is asymptotically
distributed as x2(k2) depends on two critical features of the construction of
the statistic. The first is that the same matrix of instruments W is used
for estimating both the restricted and unrestricted models. This was also re-
quired in Part 1, Section 8.5, when we discussed testing restrictions on linear
regression models estimated by generalized IV. The second essential feature
is that the same weighting matrix (WTQ W)~! is used when estimating both
models. If; as is usually the case, this matrix has to be estimated, it is impor-
tant that the same estimate is used in both criterion functions. If different
instruments or different weighting matrices are used for the two models, (2.52)
is no longer in general asymptotically distributed as x2 (ko).

One interesting consequence of the form of (2.52) is that we do not always
need to bother estimating the unrestricted model. The test statistic (2.52)
must always be less than the constrained minimum Q(ﬁ~ reMM, Y)- Therefore,
if Q(Bramm, y) is less than the critical value for the x2(ky) distribution at
our chosen significance level, we can be sure that the actual test statistic is
even smaller and would not lead us to reject the null.

The result that tests of restrictions may be based on the difference between
the constrained and unconstrained minima of the GMM criterion function
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holds only for efficient GMM estimation. It is not true for nonoptimal crite-
rion functions like (2.12), which do not use an estimate of the inverse of the
covariance matrix of the sample moments as a weighting matrix. When the
GMM estimates minimize a nonoptimal criterion function, the easiest way to
test restrictions is probably to use a Wald test; see Section 1.7 and Part 1,
Section 8.5. However, we do not recommend performing inference on the basis
of nonoptimal GMM estimation.

2.5 GMM Estimators for Nonlinear Models

The principles underlying GMM estimation of nonlinear models are the same
as those we have developed for GMM estimation of linear regression models.
For every result that we have discussed in the previous three sections, there is
an analogous result for nonlinear models. In order to develop these results, we
will take a somewhat more general and abstract approach than we have done
up to this point. This approach, which is based on the theory of estimating
functions, was originally developed by Godambe (1960) and Durbin (1960);
see also Godambe and Thompson (1978).

The method of estimating functions employs the concept of an elementary
zero function. Such a function plays the same role as a residual in the esti-
mation of a regression model. It depends on observed variables, at least one
of which must be endogenous, and on a k-vector of parameters, 6. As with
a residual, the expectation of an elementary zero function must vanish if it is
evaluated at the true value of 6, but not in general otherwise.

We let f1(0,y;) denote an elementary zero function for observation t. It is
called “elementary” because it applies to a single observation. In the linear
regression case that we have been studying up to this point, € would be
replaced by 8 and we would have f;(8,y:) = v — Xi3. In general, we may
well have more than one elementary zero function for each observation.

We consider a model M, which, as usual, is to be thought of as a set of DGPs.
To each DGP in M there corresponds a unique value of 6, which is what
we often call the “true” value of @ for that DGP. It is important to note
that the uniqueness goes just one way here: A given parameter vector  may
correspond to many DGPs, perhaps even to an infinite number of them, but
each DGP corresponds to just one parameter vector. In order to express the
key property of elementary zero functions, we must introduce a symbol for
the DGPs of the model M. It is conventional to use the Greek letter u for this
purpose, but then it is necessary to avoid confusion with the conventional use
of y to denote a population mean. It is usually not difficult to distinguish the
two uses of the symbol.

The key property of elementary zero functions can now be written as

E,.(f:(6,,4:)) =0, (2.53)



62 The Generalized Method of Moments

where E,(-) denotes the expectation under the DGP p, and 6, is the (unique)
parameter vector associated with u. It is assumed that property (2.53) holds
for all ¢ and for all € M.

If estimation based on elementary zero functions is to be possible, these func-
tions must satisfy a number of conditions in addition to condition (2.53). Most
importantly, we need to ensure that the model is asymptotically identified.
We therefore assume that, for some observations, at least,

E.(f:(6, yt)) #0 forall @ #6,. (2.54)

This just says that, if we evaluate f; at a 6 that is different from the 6,
that corresponds to the DGP under which we take expectations, then the
expectation of f;(0,y:) must be nonzero. Condition (2.54) does not have to
hold for every observation, but it must hold for a fraction of the observations
that does not tend to zero as n — co.

In the case of the linear regression model, if we write 3y for the true parameter
vector, condition (2.54) is satisfied for observation ¢ if, for all 8 # By,

E(y: — X:8) = E(Xt(ﬁo -B)+ Ut) = E(Xt(ﬁo - 5)) # 0. (2.55)

It is clear from (2.55) that condition (2.54) must be satisfied whenever the
fitted values actually depend on all the components of the vector 3 for at
least some fraction of the observations. This is equivalent to the more familiar
condition that
Sxtx = plim %XTX
n—oo

is a positive definite matrix; see Section 1.2 for a discussion of similar asymp-
totic identification conditions.

We also need to make some assumption about the variances and covariances of
the elementary zero functions. If there is just one elementary zero function per
observation, we let f(0,y) denote the n-vector with typical element f;(8,y;).
If there are m > 1 elementary zero functions per observation, then we can
group all of them into a vector f(0,y) with nm elements. In either event, we
then assume that

E(f(6.9)f'(6.y)) = £2, (2.56)

where §2, which implicitly depends on p, is a finite, positive definite matrix.
Thus we are assuming that, under every DGP p € M, each of the f; has a
finite variance and a finite covariance with every f; for s # t.

Estimating Functions and Estimating Equations

The method of estimating functions replaces relationships like (2.53) that hold
in expectation with their empirical, or sample, counterparts. Because 0 is a
k-vector, we need k estimating functions in order to estimate it. In general,
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these are weighted averages of the elementary zero functions. Equating the
estimating functions to zero yields k estimating equations, which must be
solved in order to obtain the GMM estimator.

As for the linear regression model, the estimating equations are, in fact, just
sample moment conditions which, in most cases, are based on instrumental
variables. There are generally more instruments than parameters, and so we
need to form linear combinations of the instruments in order to construct
precisely k estimating equations. Let W be an n x [ matrix of instruments,
which are assumed to be predetermined. Usually, one column of W' is a vector
of 1s. Now define Z = W J, where J is an [ x k matrix with full column rank k.
Later, we will discuss how J, and hence Z, should optimally be chosen, but,
for the moment, we take Z as given.

If 6, is the parameter vector for the DGP p under which we take expectations,
the theoretical moment conditions are

E(Z/fi(6u:90)) = O, (2.57)

where Z, is the t* row of Z. Later on, when we take explicit account of the
covariance matrix §2 in formulating the estimating equations, we will need to
modify these conditions so that they take the form of conditions (2.31), but
(2.57) is all that is required at this stage. In fact, even (2.57) is stronger than
we really need. It is sufficient to assume that Z; and f;(0) are asymptotically
uncorrelated, which, together with some regularity conditions, implies that

plim = > Z/ (8, 5:) = 0. (2.58)
t=1

The vector of estimating functions that corresponds to (2.57) or (2.58) is the
k-vector n~'ZT£(0,y). Equating this vector to zero yields the system of
estimating equations .
T _
LZTf(6,y) =0, (2.59)

and solving this system yields 6, the nonlinear GMM estimator.

Consistency

If we are to prove that the nonlinear GMM estimator is consistent, we must
assume that a law of large numbers applies to the vector n='Z (6, y). This
allows us to define the k-vector of limiting estimating functions,

o(6; 1) = plim, 3. Z'f(6,y). (2.60)

In words, a(0; 1) is the probability limit, under the DGP p, of the vector of
estimating functions. Setting «(@; 1) to 0 yields a set of limiting estimating
equations.
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Either (2.57) or the weaker condition (2.58) implies that a(6,; ) = 0 for all
u € M. We then need an asymptotic identification condition strong enough
to ensure that a(@; ) # O for all 8 # 6,,. In other words, we require that the
vector 8, must be the unique solution to the system of limiting estimating
equations. If we assume that such a condition holds, it is straightforward to
prove consistency in the nonrigorous way we used in Section 1.2 and Part 1,
Section 8.3. Evaluating equations (2.59) at their solution 6, we find that

LZ'f(6,y) = 0. (2.61)

As n — o0, the left-hand side of this system of equations tends under u
to the vector a(plimﬂé; w), and the right-hand side remains a zero vector.
Given the asymptotic identification condition, the equality in (2.61) can hold
asymptotically only if

plim ué =0,.

n—oo
Therefore, we conclude that the nonlinear GMM estimator é, which solves the
system of estimating equations (2.59), consistently estimates the parameter
vector 8, for all 4 € M, provided the asymptotic identification condition is
satisfied.

Asymptotic Normality

For ease of notation, we now fix the DGP p € M and write 8, = 6y. Thus
0y has its usual interpretation as the “true” parameter vector. In addition,
we suppress the explicit mention of the data vector y. As usual, the proof
that nt/ 2(9 — 0p) is asymptotically normally distributed is based on a Taylor
series approximation, a law of large numbers, and a central limit theorem. For
the purposes of the first of these, we need to assume that the zero functions
fi are continuously differentiable in the neighborhood of 6y. If we perform
a first-order Taylor expansion of n'/2 times (2.59) around @y and introduce
some appropriate factors of powers of n, we obtain the result that

n"Y2ZTf(00) + n 1 Z F(0)n/?(6 — 6,) =0, (2.62)
where the n x k matrix F(6) has typical element

Fi(0) = aj;éig)7 (2.63)

where 6; is the i*" element of 8. This matrix, like £(8) itself, depends implic-
itly on the vector y and is therefore stochastic. The notation F(0) in (2.62)
is the convenient shorthand we introduced in Section 1.2: Row ¢ of the matrix
is the corresponding row of F(0) evaluated at 8 = 8;, where the 6; all satisfy
the inequality

16: — 6o < |6 = |-
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The consistency of 0 then implies that the 6, also tend to 6y as n — oo.
The consistency of the 0, implies that

plim - ZTF(0) = plim = Z F(6y). (2.64)

n—oo n—oo
Under reasonable regularity conditions, we can apply a law of large numbers
to the right-hand side of (2.64), and the probability limit is then determinis-
tic. For asymptotic normality, we also require that it should be nonsingular.
This is a condition of strong asymptotic identification, of the sort used in
Section 1.2. By a first-order Taylor expansion of a(8; ) around 6y, where it
is equal to 0, we see from the definition (2.60) that

o (6; 1) = plim = ZTF(8,)(6 — o). (2.65)
n— o0
Therefore, the condition that the right-hand side of (2.64) is nonsingular is a
strengthening of the condition that € is asymptotically identified. Because it
is nonsingular, the system of equations

plim = ZF(6,)(0 — 8) = 0
n— oo

has no solution other than 8 = 6. By (2.65), this implies that a(0; ) # 0
for all 8 # 6, which is the asymptotic identification condition.

Applying the results just discussed to equation (2.62), we find that

n/%(6 — 6y) = 7<plim %ZTF(00)> 1n—l/ZZTf(ﬁvo). (2.66)
n—oo

Next, we apply a central limit theorem to the second factor on the right-hand
side of (2.66). Doing so demonstrates that n'/2(8 — 6,) is asymptotically
normally distributed. By (2.57), the vector n='/2Z7Tf(0y) must have mean 0,
and, by (2.56), its covariance matrix is plimn~'Z 42 Z. In stating this result,
we assume that (2.02) holds with the f(6y) in place of the disturbances.
Then (2.66) implies that the vector n'/2(@ — @) is asymptotically normally
distributed with mean vector 0 and covariance matrix

( plim 1 ZTF(QO))_1 ( plim 22702 Z) ( plim %FT(OO)Z)_ | (2.67)

n— 00 n— 00 n— 00

Since this is a sandwich covariance matrix, it is evident that the nonlinear
GMM estimator @ is not, in general, an asymptotically efficient estimator.

Asymptotically Efficient Estimation

In order to obtain an asymptotically efficient nonlinear GMM estimator, we
need to choose the estimating functions n~'ZT£(0) optimally. This is equiv-
alent to choosing Z optimally. How we should do this depends on what
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assumptions we make about F'(6) and f2, the covariance matrix of f(6). Not
surprisingly, we will obtain results very similar to the results for linear GMM
estimation obtained in Section 2.2.

We begin with the simplest possible case, in which §2 = oI, and F(6y) is
predetermined in the sense that

E(F;(60)f:(60)) = 0, (2.68)

where Fy(6y) is the t" row of F(8y). If we ignore the probability limits
and the factors of n~!, the sandwich covariance matrix (2.67) is in this case
proportional to

(Z'F)) 'Z"Z(FyZ)™ !, (2.69)

where, for ease of notation, Fy = F(0p). The inverse of (2.69), which is
proportional to the asymptotic precision matrix of the estimator, is

F\Z(Z'Z)'Z"F, = F) P;F,. (2.70)

If we set Z = Fyp, (2.69) is no longer a sandwich, and (2.70) simplifies to
FJ'F,. The difference between Fy' Fy and the general expression (2.70) is

F)F, — FyPzF, = Fy Mz F,

which is a positive semidefinite matrix because Mz = I— Py is an orthogonal
projection matrix. Thus, in this simple case, the optimal instrument matrix
is just Fp.

Since we do not know 6, it is not feasible to use F directly as the matrix of
instruments. Instead, we use the trick that leads to the estimating equations
(1.28) which define the NLS estimator. This leads us to solve the estimating
equations

LF(0)f(0) =0. (2.71)

If 2 = 021, and F(0y) is predetermined, solving these equations yields an
asymptotically efficient GMM estimator.

It is not valid to use the columns of F'(0) as instruments if condition (2.68)
is not satisfied. In that event, the analysis of Part 1, Section 8.3, taken up
again in Section 2.2, suggests that we should replace the rows of Fy by their
expectations conditional on the information sets €2; generated by variables
that are exogenous or predetermined for observation ¢. Let us define an n x k
matrix F, in terms of its typical row F, and another n x k matrix V, as
follows:

F,=E(F,(60)|Q) and V =F,-F. (2.72)

The matrices F and V are entirely analogous to the matrices X and V used
in Part 1, Section 8.3. The definitions (2.72) imply that

plim £ F'Fy = plim = F'(F + V) = plim - F'F. (2.73)

n— 00 n— 00 n— 00
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The term plimn~'F TV equals O because (2.72) implies that E(V;[Q;) = 0,
and the conditional expectation F; belongs to the information set ;.

To find the asymptotic covariance matrix of n1/2(é —6y) when F is used in
place of Z and the covariance matrix of f(0) is 21, we start from expression
(2.67). Using (2.73), we obtain

_ —1 o N1
e ( plim %FTFO) ( plim FTF) ( plim LFyl F)
n— 00 n— oo n— 00

= o2 (plim %FTF_‘)_l. (2.74)

n— 00

For any other choice of instrument matrix Z, the argument giving (2.73) shows
that plimn='ZTFy = plimn~'ZTF, and so the covariance matrix (2.67) be-
comes ) )

Uz(plim lZTF) <plim %ZTZ) (plim %FTZ) . (2.75)

n— 00 n—r00 n— 00

The inverse of (2.75) is 1/02 times the probability limit of

LF'2(2'2)'Z'F = LF'PzF. (2.76)

1
n
This expression is analogous to expression (F8.22) for the asymptotic pre-
cision of the IV estimator for linear regression models with endogenous ex-
planatory variables. Since the difference between n~!FTF and (2.76) is the
positive semidefinite matrix n ! FTMzF, we conclude that (2.74) is indeed
the asymptotic covariance matrix that corresponds to the optimal choice of
Z. Therefore, when F(0) is not predetermined, we should use its expectation
conditional on €); in the matrix of instruments.

In practice, of course, the matrix F is rarely observed. We therefore need to
estimate it. The natural way to do so is to regress F(0) on an n x [ matrix
of instruments W, where [ > k, with the inequality holding strictly in most
cases. This yields fitted values Py F(6). If we estimate F' in this way, the
optimal estimating equations become

LF'(0)Pwf(6) =0. (2.77)

By reasoning like that which led to (F8.28) and (2.73), it can be seen that these
estimating equations are asymptotically equivalent to the same equations with
F in place of F(0). In particular, if §(F) C §(W), the estimator obtained
by solving (2.77) is asymptotically equivalent to the one obtained using the
optimal instruments F.

The estimating equations (2.77) generalize the first-order conditions (F8.29)

for linear IV estimation. As readers are asked to show in Exercise 2.14, the
solution to (2.77) in the case of the linear regression model is simply the
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generalized IV estimator (F'8.30). As can be seen from (2.67), the asymptotic
covariance matrix of the estimator 0 defined by (2.77) can be estimated by

62X (F"PwF)™,

where F' = F(), and 62 =n~' 37, f? (0 9), the average of the squares of the
elementary zero functions evaluated at 6, is a natural estimator of o2

Efficient Estimation with an Unknown Covariance Matrix

When the covariance matrix 2 is unknown, the GMM estimators defined by
the estimating equations (2.71) or (2.77), according to whether or not F'(8) is
predetermined, are no longer asymptotically efficient in general. But, just as
we did in Section 2.3 with regression models, we can obtain estimates that are
efficient for a given set of instruments by using a heteroskedasticity-consistent
or a HAC estimator.

Suppose there are [ > k instruments which form an n x [ matrix W. As in
Section 2.2, we can construct estimating equations with instruments Z = WJ,
using a full-rank [ x & matrix J to select k linear combinations of the full set
of instruments. The asymptotic covariance matrix of the estimator obtained
by solving these equations is then, by (2.67),

<plim lJTWTFO) (phm JTWT.QWJ> (phm Fy WJ) . (278)
n—oo n— 00 n— 00

This looks just like (2.07) with Fy in place of the regressor matrix X. The
optimal choice of J is therefore just (2.08) with Fp in place of X. Since (2.08)
depends on the unknown true §2, we replace n='W T2 W by an estimator 2
which could be either a heteroskedasticity-consistent or a HAC estimator.
This yields the estimating equations

FIOWX W) =0, (2.79)

and the asymptotic covariance matrix (2.78) simplifies to

. —1

(plim n’2F0TWZ"1WTF0) : (2.80)
n—00

in which, if F(0) is not predetermined, we may write F instead of Fy without

changing the limit. In practice, we can use

Var(0) = n(FTWE "W F)!, (2.81)

where F' = F(0), to estimate the covariance matrix of 6. As with the estima-
tor (2.41) for the linear regression case, the factor of n is needed to offset the
factor of n~! in X. The matrix (2.81) can be used to construct Wald tests
and asymptotic confidence intervals in the usual way.
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Efficient Estimation with a Known Covariance Matrix

When the covariance matrix §2 is known, we can obtain a fully efficient GMM
estimator. As before, we let ¥ denote an n X n matrix which satisfies the
equation 27! = $W'. The variance of the vector W'f(8y), where 6y is the
true parameter vector for the DGP that generates the data, is then

E(P'f(00)f (60)¥) =¥'QW =1

Thus the components of the vector ¥'f(8) form a set of zero functions that
are homoskedastic and serially uncorrelated. As we mentioned in Section 2.2,
it is often possible to choose ¥ in such a way that these components can be
thought of as innovations, and in this case ¥ is usually upper triangular.

The matrix ¥ does not depend on the parameters 6. Therefore, the matrix
of derivatives of the transformed zero functions in the vector ¥'f(0) is just
WTF(6). Consequently, if the t*" row of WTF() is predetermined with re-
spect to the t*® component of $'f(H), the optimal estimating equations are
constructed using the columns of ¥F(6y) as instruments. Because 6y is not
known, the optimal instruments are estimated along with the parameters by
using the estimating equations

LF0)Zw'f(0) = LF(0)27'£(0) =0, (2.82)

as in (2.71). The asymptotic covariance matrix of the resulting estimator is

phm( Fy0- 1F0) , (2.83)

n—oo

where, as usual, Fy = F(6). The derivation of (2.83) from (2.67) is quite
straightforward; see Exercise 2.15. In practice, the covariance matrix of 6 is
normally estimated by

Var(0) = (FT2'F)~L. (2.84)

If the t*" row of $TF(8) is not predetermined with respect to the ¢! compo-
nent of ¥'f(0), and if this component is an innovation, then we can determine
the optimal instruments just as we did in Section 2.2. By analogy with (2.24),
we define the matrix F (@) implicitly by the equation

E((27F(6)):] ) = (@TF(6)),. (2.85)

As in Section 2.2, making this definition explicit depends on the details of
the particular model under study. The estimating equations for fully efficient
estimation are then given by (2.82) with F(0) replaced by F(6). The asymp-
totic covariance matrix is (2.83) with Fy replaced by Fy, and the covariance
matrix of  can be estimated by (2.84) with F replaced by F(6). All of these
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claims are proved in the same way as were the corresponding ones for linear
regressions in Section 2.2.

When the matrix F(0) is not observable, as is frequently the case, we can
often find an n x [ matrix of instruments W, where usually I > k, such that
W satisfies the predeterminedness condition in its form (2.30), and such that
S8(F(0p)) € §(W). In such cases, overidentified estimation that makes use
of the transformed zero functions ¥'f(@) and the transformed instruments
WTW yields asymptotically efficient estimates. The results of Exercises 2.8
and 2.9 can also be readily extended to the present nonlinear case.

Minimizing Criterion Functions

The nonlinear GMM estimators we have discussed in this section can all, like
the ones for linear regression models, be obtained by minimizing appropri-
ately chosen quadratic forms. We restrict our attention to cases in which
plimn~1FT(0) f(0) # 0, and we employ an n x [ matrix of instruments, W.
When the covariance matrix §2 of the elementary zero functions is unknown,
but a heteroskedasticity-consistent or HAC estimator X' is available, the ap-
propriate GMM criterion function is

LI OWEWF(0). (2.86)
Minimizing this function with respect to 6 is equivalent to solving the esti-
mating equations (2.79).
In the case in which the matrix §2 is known, or can be estimated consistently,
the fully efficient estimators of the previous subsection can be obtained by
minimizing the quadratic form

FH(0)TPyryy¥'f(6), (2.87)

where $W¥' = -1 the components of W'f(6,) are innovations, and the
matrix W satisfies the predeterminedness condition in the form (2.30). For
full efficiency, the span §(W) of the instruments must (asymptotically) include
as a subspace the span of the F(6y), as defined in (2.85). In Exercise 2.16,
readers are asked to check that minimizing (2.87) is asymptotically equivalent
to solving the optimal estimating equations.

Fortunately, we need not treat (2.86) and (2.87) separately. As in Section 2.4,
expression (2.86) is asymptotically unchanged if we replace Xbyn 'WTQW,
where §2 is the true covariance matrix of the zero functions. Making this
replacement, we see that both (2.86) and (2.87) can be written as

Q6,y) = f1(0)FPaP'f(9), (2.88)

where A = ¥~'W and A = W'W for the criterion functions (2.86) and
(2.87), respectively. Note how closely (2.88) resembles expression (2.45) for
the linear regression case.
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It is often more convenient to compute GMM estimators by minimizing a
criterion function than by directly solving a set of estimating equations. One
advantage is that algorithms for minimizing functions tend to be more stable
numerically than algorithms for solving sets of nonlinear equations. Another
advantage is that the criterion function may have more than one stationary
point. In this event, the estimating equations are satisfied at each of these
stationary points, although the criterion function may have a unique global
minimum, which then corresponds to the solution of interest.

However, the main advantage of working with criterion functions is that the
minimized value of a GMM criterion function can be used for testing, as we
have already discussed for the linear regression case in Section 2.4. Notice that
the factor of n~! in (2.86), which does not matter for estimation, is essential
when the criterion function is being used for testing. Its role is to offset the
factor of n~! in the definition of 3.

Tests Based on the GMM Criterion Function

The Hansen-Sargan overidentification test statistic is Q(é, y), the minimized
value of the GMM criterion function. Up to an irrelevant scalar factor, the
first-order conditions for the minimization of (2.88) are

FT(O)WP,w'f(6) =0, (2.89)

and it follows from this, either by a Taylor expansion or directly by using the
result (2.66), that

N —1
nY2(6 — 9y) < — (%FJQPAWTFO) V2RO P S,

where, as usual, Fy and fo denote F(6) and f(6y), respectively. We now
follow quite closely the calculations of Section 2.4 in order to show that the
minimized quadratic form Q(8,y) is asymptotically distributed as x2(I — k).
By a short Taylor expansion, we see that
PaWf(0) L PaWfo+n 2Py Fyn'/?(6 — 6,)

L P f, — n_l/QPAWTFO(%FUT TPAU Fy) 02RO PAW T,

= (I - Ppyoir,) Pa?'fo,
where Pp,g1g, projects orthogonally on to $(PaW'F,). Thus Q(6,y), the
minimized value of the criterion function (2.88), is

F(O)YPPAPf(0) £ f WPs(1— Pp,yrr,)Pa®'fo
= fo W (Pa— Pp,grr,)¥ fo. (2.90)
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Because S(PAWTFO) C 8(A), the difference of projection matrices in the
last expression above is itself an orthogonal projection matrix, of which the
image is of dimension | — k. As with (2.48), we see that estimating 0 uses
up k degrees of freedom. By essentially the same argument as was used for
(2.48), it can be shown that (2.90) is asymptotically distributed as x2(I — k).
Thus, as expected, Q(é, y) is the Hansen-Sargan test statistic for nonlinear
GMM estimation.

As in the case of linear regression models, the difference between the GMM
criterion function (2.88) evaluated at restricted estimates and evaluated at
unrestricted estimates is asymptotically distributed as x2(r) when there are r
equality restrictions. We will not prove this result, which was proved for the
linear case in Section 2.3. However, we will present a very simple argument
which provides an intuitive explanation.

Let 6 and 6 denote, respectively, the vectors of restricted and unrestricted
(feasible) efficient GMM estimates. From the result for the Hansen-Sargan test
that was just proved, we know that Q(é7 y) and Q(é,y) are asymptotically
distributed as x2(I — k + r) and x%(I — k), respectively. Therefore, since a
random variable that follows the x?(m) distribution is equal to the sum of m
independent x2(1) variables,

l—k+r

)< Zx and Q(6,y) = Zyl, (2.91)

where the z; and y; are independent, standard normal random variables. Now
suppose that the first [ — k of the x; are equal to the corresponding y;. If so,
(2.91) implies that

B A l—k+r l—k+r
Q0,y) — = Z x; *ZQ? Z z2. (2.92)
1=l—k+1

Since the leftmost expression here is the test statistic we are interested in and
the rightmost expression is evidently distributed as x2(r), we have apparently
proved the result. The proof is not complete, of course, because we have not
shown that the first [ — k of the x; are, in fact, equal to the corresponding y;.
To prove this, we would need to show that, asymptotically, Q(ﬁ’~ y) is equal
to Q(6,y) plus another random variable independent of Q(6,%y). This other
random variable would then be equal to the rightmost expression in (2.92).

Nonlinear GMM Estimators: Overview

We have discussed a large number of nonlinear GMM estimators, and it can
be confusing to keep track of them all. We therefore conclude this section
with a brief summary of the principal cases that are likely to be encountered
in applied econometric work.
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Case 1. Scalar covariance matrix: §2 = o21.

When plimn~'FT(0)f(0) = 0, we solve the estimating equations (2.71) to
obtain an efficient estimator. This is equivalent to minimizing 1 e)f(9).
The estimated covariance matrix of 0 is

Var(0) = 62(FTF)™!

2 2

where 6% consistently estimates o If the model is a nonlinear regression
model, then 0 is really the nonlinear least-squares estimator discussed in Sec-
tion 1.3.

When plimn~'F'(0)f(0) # 0, we must replace F(6) by an estimate of
its conditional expectation. This means that we solve the estimating equa-
tions (2.77), which is equivalent to minimizing f7(8)Pw f(8). The estimated
covariance matrix of 6 is

Var(0) = 62(F Py F)™!

If the model is a nonlinear regression model, then 0 is really the nonlinear
instrumental variables estimator.

Case 2. Covariance matrix known up to a scalar factor: §2 = o2A.

When plimn~'FT(8)f(0) = 0, we solve the estimating equations (2.82), with
£2 replaced by A, to obtain an efficient estimator. This is equivalent to
minimizing f7(0) A f(8). The estimated covariance matrix is

Var(6) = 6*(FTA'F)!

2 2

where 6 consistently estimates 0. If the underlying model is a nonlinear
regression model, then @ is really the nonlinear GLS estimator discussed in
Section x.x

When plimn~'FT(8) () # 0, we again must replace F(0) by an estimate of
its conditional expectation. This means that we should solve the estimating
equations (2.89) with A = WTW, where ¥ satisfies A~ = W' This is
equivalent to minimizing (2.88) with the same definition of A. The estimated
covariance matrix is

61 (F W Pyry W'F)!

If the model is a linear regression model, then 0 is the fully efficient GMM
estimator (2.26) whenever the span of the instruments W includes the span
of the optimal instruments X.

When the matrix A is unknown but depends on a fixed number of parameters
that can be estimated consistently, we can replace A by a consistent estimator
A and proceed as if it were known, as in feasible GLS estimation.
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Case 3. Unknown diagonal or general covariance matrix.

This is the most commonly encountered case in which GMM estimation is
explicitly used. Fully efficient estimation is no longer possible, but we can
still obtain estimates that are efficient for a given set of instruments by using
a consistent estimator X of the matrix X defined in (2.33). This estimator is
heteroskedasticity-consistent if §2 is assumed to be diagonal and some sort of
HAC estimator otherwise. Whether or not plimn~'FT(8) f(0) = 0, we solve
the estimating equations (2.79), which is equivalent to minimizing (2.86). The
estimated covariance matrix is (2.81). If there is to be any gain in efficiency
relative to NLS or nonlinear IV, it is essential that [, the number of columns
of W, is greater than k, the number of parameters to be estimated.

The consistent estimator ¥ is usually obtained from initial estimates that
are consistent but inefficient. These may be NLS estimates, nonlinear IV
estimates, or GMM estimates that do not use the optimal weighting matrix.
The efficient GMM estimates are usually obtained by minimizing the criterion
function (2.86), and the minimized value of this criterion function then serves
as a Hansen-Sargan test statistic.

The first-round estimates @ can be used to obtain a new estimate of X, which
can then be used to obtain a second-round estimate of @, which can be used
to obtain yet another estimate of X, and so on, until the process converges
or the investigator loses patience. For a correctly specified model, all of these
estimators have the same asymptotic distribution. However, performing more
than one iteration often improves the finite-sample properties of the estimator.
Thus, if computing cost is not a problem, it may well be best to use the
continuously updated estimator that has been iterated to convergence.

For a more thorough treatment of the asymptotic theory of GMM estimation,
see Newey and McFadden (1994).

2.6 Final Remarks

As its name implies, the generalized method of moments is a very general
estimation method indeed, and numerous other methods can be thought of
as special cases. These include all of the ones we have discussed so far: OLS,
NLS, GLS, and IV. Thus the number of techniques that can legitimately be
given the label “GMM?” is bewilderingly large. To avoid bewilderment, it is
best not to attempt to enumerate all the possibilities, but simply to list some
of the ways in which various GMM estimators differ:

e Methods for which the explanatory variables are exogenous or predeter-
mined (including OLS, NLS, and GLS), and for which no extra instru-
ments are required, versus methods that do require additional exogenous
or predetermined instruments (including linear and nonlinear IV).

e Methods for linear models (including OLS, GLS, linear IV, and the GMM
techniques discussed in Section 2.2) versus methods for nonlinear models
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(including NLS, GNLS, nonlinear IV, and the GMM techniques discussed
in Section 2.5).

Methods that are inefficient for a given set of moment conditions, which
have sandwich covariance matrices, versus methods that are efficient for
the same set of moment conditions, which do not.

e Methods that are fully efficient, because they are based on optimal in-
struments, versus methods that are not fully efficient.

e Methods based on a covariance matrix that is known, at least up to a
finite number of parameters which can be estimated consistently, versus
methods that require an HCCME or a HAC estimator. The latter can
never be fully efficient.

e Univariate models versus multivariate models. We have not yet discussed
any methods for estimating the latter, but we will do so in Chapter 5.

2.7 Exercises

2.1 Show that the difference between the matrix
JwWx)yluwlews(x 'wa)!

and the matrix
(x"'wwow) 'wix)!

is a positive semidefinite matrix. Hints: Recall Part 1, Exercise 4.14. Express
the second of the two matrices in terms of the projection matrix Pgi 2y,
and then find a similar projection matrix for the first of them.

2.2 Let the n-vector u be such that E(u) = 0 and E(uu' ) = I, and let the n x I
matrix W be such that E(W;u;) = 0 and that E(uzus | Wy, W) = dt5, where
0¢s is the Kronecker delta. Assume that Sy, Ty = plim nTIWIW s finite,
deterministic, and positive definite. Explain why the quadratic form uTPWu
must be asymptotically distributed as x2(1).

2.3 Consider the quadratic form CIJTA:B7 where x is a p X 1 vector and A is a
p X p matrix, which may or may not be symmetric. Show that there exists a
symmetric p X p matrix B such that 2Bz = z'Az for all p X 1 vectors x,
and give the explicit form of a suitable B.

*2.4 For the model (2.01) and a specific choice of the I x k matrix J, show that
minimizing the quadratic form (2.12) with weighting matrix A = J JT gives
the same estimator as solving the moment conditions (2.05) with the given J.
Assuming that these moment conditions have a unique solution for 3, show
that the matrix JJ' is of rank k, and hence positive semidefinite without
being positive definite.

Construct a symmetric, positive definite, [ x | weighting matrix A such that
minimizing (2.12) with this A leads once more to the same estimator as that
given by solving conditions (2.05). It is convenient to take A in the form
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JJ"+ NN'. In the construction of N, it may be useful to partition W as
[W1 W3], where the n x k matrix Wy is such that Wi X is nonsingular.

Consider the linear regression model with serially correlated disturbances,
yr = P1+ Bame +ug,  up = pur—1 + e, (2.93)

where the ¢ are IID, and the autoregressive parameter p is assumed either
to be known or to be estimated consistently. The explanatory variable x; is
assumed to be contemporaneously correlated with & (see Part 1, Section 9.4
for the definition of contemporaneous correlation).

Recall from Chapter 8 that the covariance matrix §2 of the vector u with
typical element u; is given by (F9.27), and that £27! can be expressed as 248
where ¥ is defined in (F9.46). Express the model (2.93) in the form (2.20),
without taking account of the first observation.

Let Q¢ be the information set for observation t with E(et |Q¢) = 0. Suppose
that there exists a matrix Z of instrumental variables, with Z; € €4, such that
the explanatory vector  with typical element x; is related to the instruments
by the equation

r=2Zr+wv, (2.94)

where E(vy | Q) = 0. Derive the explicit form of the expression (!IITX )t
defined implicitly by equation (2.24) for the model (2.93). Find a matrix W
of instruments that satisfy the predeterminedness condition in the form (2.30)
and that lead to asymptotically efficient estimates of the parameters 51 and (2
computed on the basis of the theoretical moment conditions (2.31) with your
choice of W.

Consider the model (2.20), where the matrix ¥ is chosen in such a way that
the transformed disturbances, the (‘I/Tu)t, are innovations with respect to
the information sets ;. In other words, E((WTu)t |Q:) = 0. Suppose that
the n x [ matrix of instruments W is predetermined in the usual sense that
W; € Q. Show that these assumptions, along with the assumption that
E((!PTu)% | Q) = E((!PTu)%) =1 for t = 1,...,n, are enough to prove the
analog of (2.02), that is, that

Var(n V2w e Tw) = n T 'E(WW).

In order to perform just-identified estimation, let the n x k matrix Z = WJ,
for an [ x k matrix J of full column rank. Compute the asymptotic covariance
matrix of the estimator obtained by solving the moment conditions

Z'w'(y-XB) =J Ww'(y—-X8)=o. (2.95)

The covariance matrix you have found should be a sandwich. Find the choice
of J that eliminates the sandwich, and show that this choice leads to an
asymptotic covariance matrix that is smaller, in the usual sense, than the
asymptotic covariance matrix for any other choice of J.

Compute the GMM criterion function for model (2.20) with instruments W,
and show that the estimator found by minimizing this criterion function is
just the estimator obtained using the optimal choice of J.
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2.7

2.8

2.9

*2.10

Compare the asymptotic covariance matrix found in the preceding question
for the estimator of the parameters of model (2.20), obtained by minimizing
the GMM criterion function for the n x [ matrix of predetermined instru-
ments W, with the covariance matrix (2.29) that corresponds to estimation
with instruments @'X. In particular, show that the difference between the
two is a positive semidefinite matrix.

Consider overidentified estimation based on the moment conditions
E(W'2 (y - XB)) =0,

which were given in (2.31), where the n x I matrix of instruments W satisfies
the predeterminedness condition (2.30). Derive the GMM criterion function
for these theoretical moment conditions, and show that the estimating equa-
tions that result from the minimization of this criterion function are

x' o 'wwle'w)y'wie 'y - x8)=o0. (2.96)

Suppose that 8§(X), the span of the n x k matrix X of optimal instruments
defined by (2.24), is a linear subspace of §(W), the span of the transformed
instruments. Show that, in this case, the estimating equations (2.96) are
asymptotically equivalent to

X-T‘Qil(y - XB) = Oa

of which the solution is the efficient estimator ﬁEGMM defined in (2.26).

Show that the asymptotic covariance matrix of the estimator obtained by
solving the estimating equations (2.96) is

—1
plim (%XTQ’1W(WTQ’1W)’1WTQ’1X) . (2.97)
n— 00
By expressing this asymptotic covariance matrix in terms of a matrix ¥ that
satisfies the equation 27! = &T"I/T7 show that the difference between it and
the asymptotic covariance matrix of the efficient estimator ﬁEGMM of (2.26)
is a positive semidefinite matrix.

Give the explicit form of the n_x n matrix U(j) for which I'(j), defined
in (2.36), takes the form n_1WTU(j)VV.

This question uses data on daily returns for the period 1989-1998 from the
file daily-crsp.data. These data are made available by courtesy of the Center
for Research in Security Prices (CRSP); see the comments at the bottom of
the file. Let r; denote the daily return on shares of Mobil Corporation, and
let vy denote the daily return for the CRSP value-weighted index. Using all
but the first four observations (to allow for lags), run the regression

rt = B1 + Bave + ut

by OLS. Report three different sets of standard errors: the usual OLS ones,
ones based on the simplest HCCME, and ones based on a more advanced
HCCME that corrects for the downward bias in the squared OLS residuals;
see Section 3.x. Do the OLS standard errors appear to be reliable?
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2.13

2.14

2.15

*2.16
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Assuming that the us are heteroskedastic but serially uncorrelated, obtain
estimates of the 3; that are more efficient than the OLS ones. For this purpose,
use rf,l, th, vf,l, and th,Z as additional instruments. Do these estimates
appear to be more efficient than the OLS ones?

Using the data for consumption (Ct) and disposable income (Y;) contained in
the file consumption.data, construct the variables ¢; = log Ct, Acy = ¢t —ci—1,
yt = log Vs, and Ay = y¢ — y¢—1. Then, for the period 1953:1 to 1996:4, run
the regression

Act = 1 + B2Ayt + B3Ay—1 +ut (2.98)

by OLS, and test the hypothesis that the u; are serially uncorrelated against
the alternative that they follow an AR(1) process.

Calculate eight sets of HAC estimates of the standard errors of the OLS
parameter estimates from regression (2.98), using the Newey-West estimator
with the lag truncation parameter set to the values p =1,2,3,4,5,6,7,8.

Using the squares of Ay, Ays—1, and Acg—1 as additional instruments, obtain
feasible efficient GMM estimates of the parameters of (2.98) by minimizing
the criterion function (2.42), with 3 given by the HAC estimators computed
in the previous exercise. For p = 6, carry out the iterative procedure described
in Section 2.3 by which new parameter estimates are used to update the HAC
estimator, which is then used to update the parameter estimates. Warning: It
may be necessary to rescale the instruments so as to avoid numerical problems.

Suppose that f; = y¢ — X;¢3. Show that, in this special case, the estimating
equations (2.77) yield the generalized IV estimator.

Starting from the asymptotic covariance matrix (2.67), show that, when
271F, is used in place of Z, the covariance matrix of the resulting esti-
mator is given by (2.83). Then show that, for the linear regression model
y = X3 + u with exogenous explanatory variables X, this estimator is the
GLS estimator.

The minimization of the GMM criterion function (2.87) yields the estimating
equations (2.89) with A = @' W. Assuming that the n x [ instrument matrix
W satisfies the predeterminedness condition in the form (2.30), show that
these estimating equations are asymptotically equivalent to the equations

Fy' WPy W'F(6) =0, (2.99)

where, as usual, Fy = F(OO), with 8 the true parameter vector. Next, derive
the asymptotic covariance matrix of the estimator defined by these equations.

Show that the equations (2.99) are the optimal estimating equations for
overidentified estimation based on the transformed zero functions ¥'f (0)
and the transformed instruments &' W. Show further that, if the condition
S(F) C 8(W) is satisfied, the asymptotic covariance matrix of the estimator
obtained by solving equations (2.99) coincides with the optimal asymptotic
covariance matrix (2.83).

Suppose the n-vector f(0) of elementary zero functions has a covariance
matrix o2I. Show that, if the instrumental variables used for GMM estimation
are the columns of the n x [ matrix W, the GMM criterion function is

L 57(0)Pw £(6). (2.100)

2.7 Exercises 79

*2.18

*2.19

*2.20

Next, show that, whenever the instruments are predetermined, the artificial
regression
f(0) = —Py F(0)b + residuals, (2.101)

where F'(0) is defined as usual by (2.63), satisfies all the requisite properties
for hypothesis testing. These properties are that the regressand should be
orthogonal to the regressors when they are evaluated at the GMM estimator
obtained by minimizing (2.100); that the OLS covariance matrix from (2.101)
should be a consistent estimate of the asymptotic variance of that estimator;
and that (2.101) should admit one-step estimation.

Derive a heteroskedasticity robust version of the artificial regression (2.101),
assuming that the covariance matrix of the vector f(0) of zero functions is
diagonal, but otherwise arbitrary.

If the scalar random variable z is distributed according to the N(u,o2) dis-
tribution, show that

B(e”) = exp(u + 1 0?).

Let the components z; of the n-vector z be IID drawings from the N(g, 02)
distribution, and let 52 be the OLS estimate of the disturbance variance from
the regression of z on the constant vector ¢. Show that the variance of s2 is
204 /(n —1).

Would this result still hold if the normality assumption were dropped? With-
out this assumption, what would you need to know about the distribution of
the z¢ in order to find the variance of 527



Chapter 3

The Method of
Maximum Likelihood

3.1 Introduction

Estimating equations based on elementary zero functions and instrumental
variables are not the only useful techniques of estimation, even though the es-
timation methods for regression models discussed up to this point (ordinary,
nonlinear, and generalized least squares, instrumental variables, and GMM)
can all be derived from them. In this chapter, we introduce another funda-
mental method of estimation, namely, the method of maximum likelihood.
For regression models, if we make the assumption that the disturbances are
normally distributed, the maximum likelihood, or ML, estimators coincide
with the various least-squares estimators with which we are already familiar.
But maximum likelihood can also be applied to an extremely wide variety of
models other than regression models, and it generally yields estimators with
excellent asymptotic properties. The major disadvantage of ML estimation is
that it requires stronger distributional assumptions than other methods.

In the next section, we introduce the basic ideas of maximum likelihood esti-
mation and discuss a few simple examples. Then, in Section 3.3, we explore
the asymptotic properties of ML estimators. Ways of estimating the covar-
iance matrix of an ML estimator will be discussed in Section 3.4. Some meth-
ods of hypothesis testing that are available for models estimated by ML will
be introduced in Section 3.5 and discussed more formally in Section 3.6. The
remainder of the chapter discusses some useful applications of maximum likeli-
hood estimation. Section 3.7 deals with regression models with autoregressive
disturbances, and Section 3.8 deals with models that involve transformations
of the dependent variable.
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3.2 Basic Concepts of Maximum Likelihood Estimation

Models that are estimated by maximum likelihood must be fully specified
parametric models, in the sense of Part 1, Section 2.3. For such a model,
once the parameter values are known, all necessary information is available
to simulate the dependent variable(s). In Part 1, Section 2.2, we introduced
the concept of the probability density function, or PDF, of a scalar random
variable and of the joint density function, or joint density, of a set of random
variables. If we can simulate the dependent variable, this means that its
density must be known, both for each observation as a scalar r.v., and for the
full sample as a vector r.v.

As usual, we denote the dependent variable by the n—vector y. For a given
k-vector @ of parameters, let the joint density of y be written as f(y,0).
This joint density constitutes the specification of the model. Since a density
provides an unambiguous recipe for simulation, it suffices to specify the vec-
tor € in order to give a full characterization of a DGP in the model. Thus
there is a one-to-one correspondence between the DGPs of the model and the
admissible parameter vectors.

Maximum likelihood estimation is based on the specification of the model
through the joint density f(y,@). When 6 is fixed, the function f(-,0) of y
is interpreted as the density of y. But if instead f(y, @) is evaluated at
the n-vector y found in a given data set, then the function f(y,-) of the
model parameters can no longer be interpreted as a density. Instead, it is
referred to as the likelihood function of the model for the given data set. ML
estimation then amounts to maximizing the likelihood function with respect
to the parameters. A parameter vector 6 at which the likelihood takes on
its maximum value is called a maximum likelihood estimate, or MLE, of the
parameters.

In many cases, the successive observations in a sample are assumed to be
statistically independent. In that case, the joint density of the entire sample
is just the product of the densities of the individual observations. Let f(y;, 0)
denote the density of a typical observation, y;. Then the joint density of the
entire sample y is

n
fy,0) =] f(w,0). (3.01)

t=1
Because (3.01) is a product, it is often a very large or very small number,
perhaps so large or so small that it cannot easily be represented in a computer.

For this and a number of other reasons, it is customary to work instead with
the loglikelihood function

é(yv 0) = log f(y7 0) = Z gt(ytv 0)7 (302)
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Figure 3.1 The exponential distribution

where £;(y¢, 0), the contribution to the loglikelihood function made by obser-
vation ¢, is equal to log f;(y¢, @). The ¢ subscripts on f; and ¢; have been added
to allow for the possibility that the density of y; may vary from observation
to observation, perhaps because there are exogenous variables in the model.
Whatever value of 6 maximizes the loglikelihood function (3.02) must also
maximize the likelihood function (3.01), because (y, @) is just a monotonic
transformation of f(y,0).

The Exponential Distribution

As a simple example of ML estimation, suppose that each observation 1, is
generated by the density

fys,0) =07 4, >0, 6>0. (3.03)

This is the density of what is called the exponential distribution.! This density
is shown in Figure 9.1 for three values of the parameter 6, which is what we
wish to estimate. There are assumed to be n independent observations from
which to calculate the loglikelihood function.

Taking the logarithm of the density (3.03), we find that the contribution to
the loglikelihood from observation t is ¢;(y;,0) = log @ — 0y,. Therefore,

Uy, 0) = (logh — by,) =nlogh — 6> y;. (3.04)

t=1 t=1

L The exponential distribution is useful for analyzing dependent variables which
must be positive, such as waiting times or the duration of unemployment.
Models for duration data will be discussed in Chapter 4.
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To maximize this loglikelihood function with respect to the single unknown
parameter 6, we differentiate it with respect to 6 and set the derivative equal
to 0. The result is

n n
7 >y =0, (3.05)
t=1

which can easily be solved to yield

n
Z?:l Yt

This solution is clearly unique, because the second derivative of (3.04), which
is the first derivative of the left-hand side of (3.05), is always negative, which
implies that the first derivative can vanish at most once. Since it is unique, the
estimator  defined in (3.06) can be called the maximum likelihood estimator
that corresponds to the loglikelihood function (3.04).

In this case, interestingly, the ML estimator @ is exactly the same as a method-
of-moments estimator. As we now show, the expected value of y; is 1/6. By
definition, this expectation is

6= (3.06)

E(?Jt):/ yrOe OVt dy,.
0

Since —fAe~% is the derivative of e~% with respect to y;, we may integrate
by parts to obtain

o0 S o0 0
/ the_eytdyt = — [yte_eyt} + / e_eytdyt = [—9_16_9yti| = 9_1.
0 0 0 0

The most natural estimator of @ is the one that matches #~! to the empirical
analog of E(y;), which is g, the sample mean. This estimator of € is therefore
1/y, which is identical to the ML estimator (3.06).

It is not uncommon for an ML estimator to coincide with a Z-estimator, as
happens in this case. This may suggest that maximum likelihood is not a very
useful addition to the econometrician’s toolkit, but such an inference would
be unwarranted. Even in this simple case, the ML estimator was considerably
easier to obtain than the Z-estimator, because we did not need to calculate
an expectation. In more complicated cases, this advantage of ML estimation
is often much more substantial. Moreover, as we will see in the next three
sections, the fact that an estimator is an MLE generally ensures that it has
a number of desirable asymptotic properties and makes it easy to calculate
standard errors and test statistics.?

2 Notice that the abbreviation “MLE” here means “maximum likelihood esti-
mator” rather than “maximum likelihood estimate.” We will use “MLE” to
mean either of these. Which of them it refers to in any given situation should
generally be obvious from the context; see Part 1, Section 2.5.
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Regression Models with Normal Disturbances

It is interesting to see what happens when we apply the method of maximum
likelihood to the classical normal linear model

y=XB+u, u~N(0 ), (3.07)

which was introduced in Part 1, Section 4.1. For this model, the explanatory
variables in the matrix X are assumed to be exogenous. Consequently, in
constructing the likelihood function, we may use the density of y conditional
on X. The elements u; of the vector u are independently distributed as
N(0,0?), and so y; is distributed, conditionally on X, as N(X;3,52%). Thus
the density of y; is, from (F5.11),

ft(yt>ﬂ70) =

(ye — Xt/B)2 ) . (3.08)

1
exp| —
oV2m p( 202

The contribution to the loglikelihood function made by the ¢*" observation is
the logarithm of (3.08). Since logo = %log o2, this can be written as

li(y, B,0) = — Slog2m — Llogo? — — (1 — X, B) (3.09)

202
Since the observations are assumed to be independent, the loglikelihood func-
tion is just the sum of these contributions over all ¢, or

1 n
Uy.B.0) = —glog2m — Jlogo” — 575 Zl(yt - Xi)° (3.10)
t: .

= —Flog2r — Tlogo® — —— (y — XB)'(y — XB).

202
In the second line, we rewrite the sum of squared residuals as the inner product
of the residual vector with itself. To find the ML estimator, we need to
maximize (3.10) with respect to the unknown parameters 3 and o.

The first step in maximizing ¢(y,3,0) is to concentrate it with respect to
the parameter o. This means differentiating (3.10) with respect to o, solving
the resulting first-order condition for ¢ as a function of the data and the
remaining parameters, and then substituting the result back into (3.10). This
yields the concentrated loglikelihood function. The second step is to maximize
this function with respect to 8. For models that involve variance parameters,
it is very often convenient to concentrate the loglikelihood function in this
way.

Differentiating the second line of (3.10) with respect to o and equating the
derivative to zero yields the first-order condition

oy, B,0) n 1
o  ~ o7 g(y—Xﬁ)T(y—Xﬁ) =0,
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and solving this yields the result that
6*(B) = 1 (y — XB)'(y — XP).

Here the notation 62(3) indicates that the value of 62 that maximizes (3.10)
depends on (.

Substituting 62(3) into the second line of (3.10) yields the concentrated log-
likelihood function

¢“(y,8) = —Zlog2r — Zlog(L(y - XB) (- XB)) - 2. (3.11)

The middle term here is minus n/2 times the logarithm of the sum of squared
residuals, and the other two terms do not depend on 3. Thus we see that
mazximizing the concentrated loglikelihood function (3.11) is equivalent to
minimizing the sum of squared residuals as a function of 3. Therefore, the
ML estimator 3 is identical to the OLS estimator.

Once B has been found, the ML estimate 62 of o2 is &Q(ﬁ), and the MLE of o
is the positive square root of 2. Thus, as we saw in Part 1, Section 4.7, the
MLE 62 is biased downward.? The actual maximized value of the loglikelihood
function can then be written in terms of the sum-of-squared residuals function
SSR evaluated at B. From (3.11) we have

Uy, B,6) = — 2 (1 +log 2 — logn) —  log SSR(B), (3.12)

where SSR(3) denotes the minimized sum of squared residuals.

Although it is convenient to concentrate (3.10) with respect to o, as we have
done, this is not the only way to proceed. In Exercise 3.1, readers are asked
to show that the ML estimators of 3 and o can be obtained equally well by
concentrating the loglikelihood with respect to 3 rather than o.

The fact that the ML and OLS estimators of 3 are identical depends critically
on the assumption that the disturbances in (3.07) are normally distributed. If
we had started with a different assumption about their distribution, we would
have obtained a different ML estimator. The asymptotic efficiency result to
be discussed in Section 3.4 would then imply that the least-squares estimator
is asymptotically less efficient than the ML estimator whenever the two do
not coincide.

3 The bias arises because we evaluate SSR(B) at ,@ instead of at the true value B3.
However, if one thinks of 6 as an estimator of o, rather than of 52 as an
estimator of o2, then it can be shown that both the OLS and the ML estimators
are biased downward.
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Figure 3.2 The uniform distribution

The Uniform Distribution

As a final example of ML estimation, we consider a somewhat pathological,
but rather interesting, example. Suppose that the y; are generated as inde-
pendent realizations from the uniform distribution with parameters £, and fs,
which can be written as a vector 3; a special case of this distribution was in-
troduced in Part 1, Section 2.2. The density function for y;, which is graphed
in Figure 3.2, is

f(ytaﬁ) =0if Yyt < /817

[y, B) = 5, iﬂl if B1 <y < P,
f(ye, B) =0 if yy > Bo.

Provided that 87 < y; < B for all observations, the likelihood function is
equal to 1/(f82 — $1)", and the loglikelihood function is therefore

Uy, B) = —nlog(B2 — B1).

It is easy to verify that this function cannot be maximized by differentiating
it with respect to the parameters and setting the partial derivatives to zero.
Instead, the way to maximize £(y, 3) is to make S — 81 as small as possible.
But we clearly cannot make [3; larger than the smallest observed y;, and we
cannot make 5 smaller than the largest observed y;. Otherwise, the likelihood
function would be equal to 0. It follows that the ML estimators are

B1 =min(y,) and By = max(y,). (3.13)

These estimators are rather unusual. For one thing, they always lie on one
side of the true value. Because all the y; must lie between ;1 and [, it
must be the case that Bl > B10 and Bg < fa9, where (19 and Soy denote the
true parameter values. However, despite this, these estimators turn out to
be consistent. Intuitively, this is because, as the sample size gets large, the
observed values of y; fill up the entire space between 19 and (a.
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The ML estimators defined in (3.13) are super-consistent, which means that
they approach the true values of the parameters they are estimating at a
rate faster than the usual rate of n~'/2. Formally, nl/Q(Bl — B1o) tends to
zero as n — 0o, while n(ﬁl — B10) tends to a finite limiting distribution; see
Exercise 3.2 for more details. Now consider the parameter v = %(51 + Ba).
One way to estimate it is to use the ML estimator

g = %(31 + 52)

Another approach would simply be to use the sample mean, say 7, which is
a least-squares estimator. But the ML estimator % is super-consistent, while
4 is only root-n consistent. This implies that, except perhaps for very small
sample sizes, the ML estimator is very much more efficient than the least-
squares estimator. In Exercise 3.3, readers are invited to perform a simulation
experiment to illustrate this result.

Although economists rarely need to estimate the parameters of a uniform
distribution directly, ML estimators with properties similar to those of (3.13)
do occur from time to time. In particular, certain econometric models of
auctions lead to super-consistent ML estimators; see Donald and Paarsch
(1993, 1996). However, because these estimators violate standard regularity
conditions, such as those given in Theorems 8.2 and 8.3 of Davidson and
MacKinnon (1993), we will not consider them further.

Two Types of ML Estimator

There are two different ways of defining the ML estimator, although most
MLEs actually satisfy both definitions. A Type 1 ML estimator maximizes
the loglikelihood function over the set ©, where © denotes the parameter
space in which the parameter vector € lies, which is generally assumed to be
a subset of R¥. This is the natural meaning of an MLE, and all three of the
ML estimators just discussed are Type 1 estimators.

If the loglikelihood function is differentiable and attains an interior maximum
in the parameter space, then the MLE must satisfy the first-order conditions
for a maximum. A Type 2 ML estimator is defined as a solution to the
likelihood equations, which are just the following first-order conditions:

9(y,0) =0, (3.14)

where g(y, 6) is the gradient vector, or score vector, which has typical element

0l(y,0) _ Xn: Oly(ys, 0) )

9:(y,0) 90, 50, (3.15)

t=1

Because there may be more than one value of 6 that satisfies the likelihood
equations (3.14), the definition further requires the Type 2 estimator 8 to be
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associated with a local maximum of Zgy, 0) and, as n — oo, the value of the
loglikelihood function associated with 8 to be higher than the value associated
with any other root of the likelihood equations.

The ML estimator (3.06) for the parameter of the exponential distribution
and the OLS estimators of B and o2 in the regression model with normal
disturbances, like most ML estimators, are both Type 1 and Type 2 MLEs.
However, the MLEs for the parameters of the uniform distribution defined in
(3.13) are Type 1 but not Type 2 MLEs, because they are not the solutions to
any set of likelihood equations. In rare circumstances, there also exist MLEs
that are Type 2 but not Type 1; see Kiefer (1978) for an example.

Computing ML Estimates

Maximum likelihood estimates are often quite easy to compute. Indeed, for
the three examples considered above, we were able to obtain explicit expres-
sions. When no such expressions are available, as is often the case, it is
necessary to use some sort of nonlinear maximization procedure. Many such
procedures are readily available.

The discussion of Newton’s Method and quasi-Newton methods in Section 1.4
applies with very minor changes to ML estimation. Instead of minimizing
the sum of squared residuals function Q(3), we maximize the loglikelihood
function £(@). Since the maximization is done with respect to 8 for a given
sample y, we suppress the explicit dependence of £ on y. As in the NLS case,
Newton’s Method makes use of the Hessian, which is now a k x k matrix H (0)
with typical element 02¢(0)/06;06;. The Hessian is the matrix of second
derivatives of the loglikelihood function, and thus also the matrix of first
derivatives of the gradient.

Let 6,y denote the value of the vector of estimates at step j of the algorithm,
and let g(;) and H(;) denote, respectively, the gradient and the Hessian eval-
uated at 6;). Then the fundamental equation for Newton’s Method is

0i+1) = 00) — H{y9())- (3.16)

This may be obtained in exactly the same way as equation (1.43). Because
the loglikelihood function is to be maximized, the Hessian should be negative
definite, at least when 6(;) is sufficiently near 6. This ensures that the step
defined by (3.16) is in an uphill direction.

For the reasons discussed in Section 1.4, Newton’s Method usually does not
work well, and often does not work at all, when the Hessian is not negative
definite. In such cases, one popular way to obtain the MLE is to use some
sort of quasi-Newton method, in which (3.16) is replaced by the formula

-1
0i+1) = 04) + 2D 90)

where a;y is a scalar which is determined at each step, and Dy; is a matrix
which approximates —H(;) near the maximum but is constructed so that it
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is always positive definite. Sometimes, as in the case of NLS estimation, an
artificial regression can be used to compute the vector DG; gy We will
encounter one such artificial regression in Section 3.4, and another, more
specialized, one in Section 4.3.

When the loglikelihood function is globally concave and not too flat, maxi-
mizing it is usually quite easy. At the other extreme, when the loglikelihood
function has several local maxima, doing so can be very difficult. See the
discussion in Section 1.4 following Figure 1.3. Everything that is said there
about dealing with multiple minima in NLS estimation applies, with certain
obvious modifications, to the problem of dealing with multiple maxima in ML
estimation.

3.3 Asymptotic Properties of ML Estimators

One of the attractive features of maximum likelihood estimation is that ML
estimators are consistent under quite weak regularity conditions and asymp-
totically normally distributed under somewhat stronger conditions. Therefore,
if an estimator is an ML estimator and the regularity conditions are satisfied,
it is not necessary to show that it is consistent or derive its asymptotic dis-
tribution. In this section, we sketch derivations of the principal asymptotic
properties of ML estimators. A rigorous discussion is beyond the scope of this
book; interested readers may consult, among other references, Davidson and
MacKinnon (1993, Chapter 8) and Newey and McFadden (1994).

Consistency of the MLE

Since almost all maximum likelihood estimators are of Type 1, we will discuss
consistency only for this type of MLE. We first show that the expectation of
the loglikelihood function is greater when it is evaluated at the true values of
the parameters than when it is evaluated at any other values. For consistency,
we also need both a finite-sample identification condition and an asymptotic
identification condition. The former requires the loglikelihood to be different
for different sets of parameter values. If, contrary to this assumption, there
were two distinct parameter vectors, 8; and 65, such that ¢(y,0:1) = £(y, 03)
for all y, then it would obviously be impossible to distinguish between 6;
and 65. Thus a finite-sample identification condition is necessary for the
model to make sense. The role of the asymptotic identification condition will
be discussed below.

Let L(0) = exp(é(e)) denote the likelihood function, where the dependence
on y of both L and ¢ has been suppressed for notational simplicity. We wish to
apply a result known as Jensen’s Inequality to the ratio L(0*)/L(8y), where g
is the true parameter vector and 8* is any other vector in the parameter space
of the model. Jensen’s Inequality tells us that, if X is a real-valued random
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variable, then E(h(X)) < h(E(X)) whenever h(:) is a concave function. The
inequality is strict whenever h is strictly concave over at least part of the
support of the random variable X, that is, the set of real numbers for which
the density of X is nonzero, and the support contains more than one point.
See Exercise 3.4 for the proof of a restricted version of Jensen’s Inequality.

Since the logarithm is a strictly concave function over the nonnegative real
line, and since likelihood functions are nonnegative, we can conclude from
Jensen’s Inequality that

Euton( 420 <tk 40, 310

with strict inequality for all 8* # 6y, on account of the finite-sample identifi-
cation condition. Here the notation Ey means the expectation taken under the
DGP characterized by the true parameter vector 8. Since the joint density
of the sample is simply the likelihood function evaluated at 6y, the expecta-
tion on the right-hand side of (3.17) can be expressed as an integral over the
support of the vector random variable y. We have

(45 o [

where the last equality here holds because every density must integrate to 1.
Therefore, because log 1 = 0, the inequality (3.17) implies that

In words, (3.18) says that the expectation of the loglikelihood function when
evaluated at the true parameter vector, 6y, is strictly greater than its expec-
tation when evaluated at any other parameter vector, 8*.
If we can apply a law of large numbers to the contributions to the loglikelihood
function, then we can assert that plimn=14(0) = limn~1Eq£(0). Then (3.18)
implies that
plim £ £(6%) < plim + £(6,), (3.19)
n—oo n—oo
for all 8* # 6y, where the inequality is not necessarily strict, because we have
taken a limit. Since the MLE 6 maximizes £(8), it must be the case that

plim = ¢(6) > plim = ¢(6y). (3.20)

n—o0 n—o0

The only way that (3.19) and (3.20) can both be true is if

plim 1 £(8) = plim = £(65). (3.21)

n—o0 n—o0

3.3 Asymptotic Properties of ML Estimators 91

In words, (3.21) says that the plim of 1/n times the loglikelihood function
must be the same when it is evaluated at the MLE 6 as when it is evaluated
at the true parameter vector 6.

By itself, the result (3.21) does not prove that 6 is consistent, because the weak
inequality does not rule out the possibility that there may be many values
0* for which plimn~14(6*) = plimn~14(0y). We must therefore explicitly
assume that plim n=1£(8*) # plimn~14(6y) for all 8* # Oy. This is a form of
asymptotic identification condition; see Section 1.2. More primitive regularity
conditions on the model and the DGP can be invoked to ensure that the MLE
is asymptotically identified. For example, we need to rule out pathological
cases like (F4.18), in which each new observation adds less and less information
about one or more of the parameters.

Dependent Observations

Before we can discuss the asymptotic normality of the MLE, we need to
introduce some notation and terminology, and we need to establish a few
preliminary results. First, we consider the structure of the likelihood and
loglikelihood functions for models in which the successive observations are not
independent, as is the case, for instance, when a regression function involves
lags of the dependent variable.

Recall the definition (F2.15) of the density of one random variable conditional
on another. This definition can be rewritten so as to take the form of a
factorization of the joint density:

Ty, 92) = f(ya) f(y2 | v1), (3.22)

where we use y; and ys in place of the variables z2 and x1, respectively, that
appear in (F2.15). It is permissible to apply (3.22) to situations in which
y1 and yo are really vectors of random variables. Accordingly, consider the
joint density of three random variables, and group the first two together.
Analogously to (3.22), we have

fr,92,y3) = f(y1,92) f(ys [y, y2)- (3.23)
Substituting (3.22) into (3.23) yields the following factorization of the joint
density:
FQyry2,93) = F() f (2 [y1) f(ys |91, 92)-

For a sample of size n, it is easy to see that this last result generalizes to

T, yn) = fFy) fly2lyn) - fYn lys, - Yn—1)-

This result can be written using a somewhat more convenient notation as
follows:

Fm) =11 rwly'™,

t=1
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where the vector y' is a t-vector with components y;,¥2,...,%:. One can
think of y* as the subsample consisting of the first ¢ observations of the full
sample. For a model that is to be estimated by maximum likelihood, the
density f(y™) depends on a k-vector of parameters 8, and we can then write

fy™0) =] fwelv';0). (3.24)

The structure of (3.24) is a straightforward generalization of that of (3.01),
where the marginal densities of the successive observations are replaced by
densities conditional on the preceding observations.

The loglikelihood function corresponding to (3.24) has an additive structure:

((y,0)=> 4(y"0), (3.25)

where we omit the superscript n from y for the full sample. In addition, in
the contributions #;(-) to the loglikelihood, we do not distinguish between the
current variable 3, and the lagged variables in the vector y'~!. In this way,
(3.25) has exactly the same structure as (3.02).

The Gradient

The gradient, or score, vector g(y, 0) is a k-vector that was defined in (3.15).
As that equation makes clear, each component of the gradient vector is itself
a sum of n contributions, and this remains true when the observations are
dependent; the partial derivative of ¢, with respect to #; now depends on y*
rather than just y;. It is convenient to group these partial derivatives into a
matrix. We define the n x k matrix G(y, 0) so as to have typical element

ol:(yt, 0)

th(y 70) - 891

(3.26)

This matrix is called the matrix of contributions to the gradient, because
9i(y,0) = > Gu(y',0). (3.27)
t=1

Thus each element of the gradient vector is the sum of the elements of one of
the columns of the matrix G(y, ).

A crucial property of the matrix G(y, ) is that, if y is generated by the DGP

characterized by 0, then the expectations of all the elements of the matrix,
evaluated at 6, are zero. This result is a consequence of the fact that all
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densities integrate to 1. Since ¢; is the log of the density f; of y; conditional

on y*~!, we see that, for all ¢ and for all 6,

/ exp(Li(y". 0)) dy, = / f(y".0)dy, = 1,

where the integral is over the support of y;. Since this relation holds identically
in 6, we can differentiate it with respect to the components of € and obtain
a further set of identities. Under weak regularity conditions, it can be shown
that the derivatives of the integral on the left-hand side are the integrals of
the derivatives of the integrand. Thus, since the derivative of the constant 1

is 0, we have, identically in @ and for i =1,... k,
0l (yt, 0
/exp(ét(yt, 0)) % dy, = 0. (3.28)

Since exp({:(y?, 0)) is, for the DGP characterized by 6, the density of y;
conditional on y*~!, this last equation, along with the definition (3.26), gives

Eo(Gu(y',0)|y'™") =0 (3.29)

for all t = 1,...,n and ¢ = 1,...,k. The notation “Eg” here means that
the expectation is being taken under the DGP characterized by 6. Taking
unconditional expectations of (3.29) yields the desired result. Summing (3.29)
over t = 1,...,n shows that Eg(g;(y,0)) =0 fori=1,...,k, or, equivalently,
that Eg(g(y,0)) = 0.

In addition to the conditional expectations of the elements of the matrix
G(y,0), we can compute the covariances of these elements. Let t # s, and
suppose, without loss of generality, that t < s. Then the covariance under the
DGP characterized by € of the ti*" and sj" elements of G(y, 8) is

Eo (Gui(y', 0)C.; (4. 0)) = Eo (Eo(Cu(y', 0)Goy (4. 6)) | "))

(3.30)
= Eo (Gui(y', 0)F0 (G (4°,0) | 4)) = 0.
The step leading to the second line above follows because Gy;(+) is a deter-
ministic function of y?, and the last step follows because the expectation of
G;(+) is zero conditional on y*~!, by (3.29), and so also conditional on the
subvector y* of y*~!. The above proof shows that the covariance of the two
matrix elements is also zero conditional on y®.

The Information Matrix and the Hessian

The covariance matrix of the elements of the t** row G(y?,8) of G(y, ) is
the k x k matrix I;(6), of which the ij'" element is Eg(Gy;(y', 0)Gy;(y', 0)).
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As a covariance matrix, I;(6) is normally positive definite. The sum of the
matrices I;(0) over all ¢ is the k x k matrix

n n
10) =Y I,(0) =Y Eo(G/(¢'.0)G.(¥'.9)), (3.31)
t=1 t=1
which is called the information matrix. The matrices I;(0) are the contribu-
tions to the information matrix made by the successive observations.

An equivalent definition of the information matrix, as readers are invited to
show in Exercise 3.5, is I(0) = Eo(g(y,0)g'(y,0)). In this second form, the
information matrix is the expectation of the outer product of the gradient
with itself; see Part 1, Section 2.4 for the definition of the outer product of
two vectors. Less exotically, it is just the covariance matrix of the score vector.
As the name suggests, and as we will see shortly, the information matrix is
a measure of the total amount of information about the parameters in the
sample. The requirement that it should be positive definite is a condition
for strong asymptotic identification of those parameters, in the same sense as
the strong asymptotic identification condition introduced in Section 1.2 for
nonlinear regression models.

Closely related to (3.31) is the asymptotic information matrix

9(6) = plimg 21(9), (3.32)
n— 00 n
which measures the average amount of information about the parameters that
is contained in the observations of the sample. As with the notation Eg, we
use plimg to denote the plim under the DGP characterized by 6.

We have already defined the Hessian H(y,80). For asymptotic analysis, we
are generally more interested in the asymptotic Hessian,
H(y.0). (3.33)

H(0) = plimg —

n—oo n
than in H(y, @) itself. The asymptotic Hessian is related to the ordinary
Hessian in exactly the same way as the asymptotic information matrix is

related to the ordinary information matrix; compare (3.32) and (3.33).

There is a very important relationship between the asymptotic information
matrix and the asymptotic Hessian. One version of this relationship, which is
called the information matrix equality, is

9(0) = —H(H). (3.34)

Both the Hessian and the information matrix measure the amount of curvature
in the loglikelihood function. Although they are both measuring the same
thing, the Hessian is negative definite, at least in the neighborhood of 6,
while the information matrix is always positive definite; that is why there is
a minus sign in (3.34). The proof of (3.34) is the subject of Exercises 3.6
and 3.7. It depends critically on the assumption that the DGP is a special
case of the model being estimated.
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Asymptotic Normality of the MLE

In order for it to be asymptotically normally distributed, a maximum likeli-
hood estimator must be a Type 2 MLE. In addition, it must satisfy certain
regularity conditions, which are discussed in Davidson and MacKinnon (1993,
Section 8.5). The Type 2 requirement arises because the proof of asymptotic
normality is based on the likelihood equations (3.14), which apply only to
Type 2 estimators.

The first step in the proof is to perform a Taylor expansion of the likelihood
equations (3.14) around 8y. This expansion yields

9(6) = g(60) + H(0)(0 — 6) =0, (3.35)

where we suppress the dependence on y for notational simplicity. The notation
0 is our usual shorthand notation for Taylor expansions of vector expressions;
see (1.21) and the subsequent discussion. We may therefore write

16— 6ol < [16 — 6]

The fact that the ML estimator 6 is consistent then implies that @ is also
consistent.

If we solve (3.35) and insert the factors of powers of n that are needed for
asymptotic analysis, we obtain the result that

n'2(0 — 6,) = —(n"H(B)) ' (n"?g(6y)). (3.36)

Because @ is consistent, the matrix n~'H(6) which appears in (3.36) must
tend to the same nonstochastic limiting matrix as n='H (6y), namely, 3(6y).
Therefore, equation (3.36) implies that

n'/?(6 — 69) £ —H "' (80)n"/?g(80). (3.37)

If the information matrix equality, equation (3.34), holds, then this result can
equivalently be written as

n2(6 — 6y) £ T (8,)n"%g(8y). (3.38)

Since the information matrix equality holds only if the model is correctly
specified, (3.38) is not in general valid for misspecified models.

The asymptotic normality of the Type 2 MLE follows immediately from
the asymptotic equalities (3.37) or (3.38) if it can be shown that the vec-
tor n=1/2g(8y) is asymptotically distributed as multivariate normal. As can
be seen from (3.27), each element n~'/2g;(@y) of this vector is n~'/2 times
a sum of n random variables, each of which has expectation 0, by (3.29).
These random variables are mutually uncorrelated, by the result (3.30). Un-
der standard regularity conditions, with which we will not concern ourselves,
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a multivariate central limit theorem can therefore be applied to this vector.
For finite n, the covariance matrix of the score vector is, by definition, the in-
formation matrix I(6p). Thus the covariance matrix of the vector n=/2g(8,)
is n=1I(8y), of which, by (3.32), the limit as n — oo is the asymptotic infor-
mation matrix J(6p). It follows that

n~12g(8,) % N(0,3(6y)). (3.39)

This result, when combined with (3.37) or (3.38), implies that the Type 2
MLE is asymptotically normally distributed.

3.4 The Covariance Matrix of the ML Estimator

For Type 2 ML estimators, we can obtain the asymptotic distribution of the
estimator by combining the result (3.39) for the asymptotic distribution of
n~1/2g(0y) with the result (3.37). The asymptotic distribution of the estima-
tor is the distribution to which n'/2(6 — 6,) converges in distribution. This
distribution is normal, with expectation vector zero and covariance matrix

H " (60)I(80) H " (60), (3.40)

which has the form of a sandwich covariance matrix. When the information
matrix equality, equation (3.34), holds, the sandwich simplifies to J=1(8p).
Thus the asymptotic information matrix is seen to be the asymptotic precision
matrix of a Type 2 ML estimator. This shows why the matrices I and J are
called information matrices of various sorts.

Clearly, any method that allows us to estimate J(6y) consistently can be
used to estimate the covariance matrix of the ML estimates. In fact, several
different methods are widely used, because each has advantages in certain
situations.

The first method is just to use minus the inverse of the Hessian, evaluated at
the vector of ML estimates. Because these estimates are consistent, it is valid
to evaluate the Hessian at @ rather than at 6y. This yields the estimator

Vary(6) = —HY(6), (3.41)

which is referred to as the empirical Hessian estimator. Notice that, since it is
the covariance matrix of @ in which we are interested, the factor of n'/2 is no
longer present. This estimator is easy to obtain whenever Newton’s Method,
or some sort of quasi-Newton method that uses second derivatives, is used to
maximize the loglikelihood function. In the case of quasi-Newton methods,
H (é) may sometimes be replaced by another matrix that approximates it.
Provided that n~! times the approximating matrix converges to 3((0), this
sort of replacement is asymptotically valid.
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Although the empirical Hessian estimator often works well, it does not use
all the information we have about the model. Especially for simpler models,
we may actually be able to find an analytic expression for I(0). If so, we
can use the inverse of I(6), evaluated at the ML estimates. This yields the
information matrix, or IM, estimator

Var(6) = I~Y(6). (3.42)

The advantage of this estimator is that it normally involves fewer random
terms than does the empirical Hessian, and it may therefore be somewhat
more efficient in finite samples. In the case of the classical normal linear
model, to be discussed below, it is not at all difficult to obtain I(8), and the
information matrix estimator is therefore the one that is normally used.

The third method is based on (3.31), from which we see that
I1(60) = E(G(80)G(80))-

We can therefore estimate n~'I(6y) consistently by n~'GT(6)G(). The
corresponding estimator of the covariance matrix, which is usually called the
outer-product-of-the-gradient, or OPG, estimator, is

Varopa(9) = (GT(0)G(9)) . (3.43)

The OPG estimator has the advantage of being very easy to calculate. Unlike
the empirical Hessian, it depends solely on first derivatives. Unlike the IM
estimator, it requires no theoretical calculations. However, it tends to be less
reliable in finite samples than either of the other two. The OPG estimator is
sometimes called the BHHH estimator, because it was advocated by Berndt,
Hall, Hall, and Hausman (1974) in a very well-known paper.

In practice, the estimators (3.41), (3.42), and (3.43) are all commonly used to
estimate the covariance matrix of ML estimates, but many other estimators
are available for particular models. Often, it may be difficult to obtain I(8),
but not difficult to obtain another matrix that approximates it asymptotically,
by starting either from the matrix —H () or from the matrix G '(8)G(6) and
taking expectations of some elements.

A fourth covariance matrix estimator, which follows directly from (3.40), is
the sandwich estimator

Varg(6) = H-'(0)G(6)G(6)H (). (3.44)

In normal circumstances, this estimator has little to recommend it. It is harder
to compute than the OPG estimator and can be just as unreliable in finite
samples. However, unlike the other three estimators, it is valid even when the
information matrix equality does not hold. Since this equality generally fails
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to hold when the model is misspecified, it may be desirable to compute (3.44)
and compare it with the other estimators.

When an ML estimator is applied to a model which is misspecified in ways
that do not affect the consistency of the estimator, it is said to be a quasi-
ML estimator, or QMLE; see White (1982) and Gouriéroux, Monfort, and
Trognon (1984). In general, the sandwich covariance matrix estimator (3.44)
is valid for QML estimators, but the other covariance matrix estimators, which
depend on the information matrix equality, are not valid. At least, they are
not valid for all the parameters. We have seen that the ML estimator for a
regression model with normal disturbances is just the OLS estimator. But
we know that the latter is consistent under conditions which do not require
normality. If the disturbances are not normal, therefore, the ML estimator is
a QMLE. One consequence of this fact is explored in Exercise 3.8.

The Classical Normal Linear Model

It should help to make the theoretical results just discussed clearer if we apply
them to the classical normal linear model. We will therefore discuss various
ways of estimating the covariance matrix of the ML estimates B and & jointly.
Of course, we saw in Section 3.4 how to estimate the covariance matrix of ﬁ
by itself, but we have not yet discussed how to estimate the variance of 7.
For the classical normal linear model, the contribution to the loglikelihood
function made by the #*? observation is given by expression (3.09). There are
k41 parameters. The first k of them are the elements of the vector 8, and the
last one is 0. A typical element of any of the first & columns of the matrix G,
indexed by i, is

ol 1
Gti(ﬂaa—) = — = ;

a%; (ye — XaB)wei, i=1,....k, (3.45)

and a typical element of the last column is

ov. 1 1
Girr1(B,0) = 87(; =--+ ;(yt - X:8)°. (3.46)

These two equations give us everything we need to calculate the information
matrix.

Fori,j=1,...,k, the ij*" element of G'G is

n

> %(yt — Xi8)% wyi w4 (3.47)

t=1

This is just the sum over all ¢ of Gy;(3, ) times Gy;(3, o) as defined in (3.45).
When we evaluate at the true values of 8 and o, we have that y; — X33 = uy
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and E(u?) = 0% and so the expectation of this matrix element is easily seen
to be

1

> 5Tt (3.48)
t=1

In matrix notation, the whole 3-3 block of GG has expectation XX /o2

The (i, k + 1) element of G'G is

En: (*é + % (ye — Xt5)2> <%(yt - Xtﬂ)l’ti)

t=1

(3.49)

n

1 1
== Z 73 (ye — XiB) i + Z -5 (ye — Xu8) 24
t=1 t=1

This is the sum over all ¢ of the product of expressions (3.45) and (3.46).
We know that E(u;) = 0, and, if the disturbances u; are normal, we also
know that E(u?) = 0. Consequently, the expectation of this sum is 0. This
result depends critically on the assumption, following from normality, that
the distribution of the disturbances is symmetric around zero. For a skewed
distribution, the third moment would be nonzero, and (3.49) would therefore
not have expectation 0.

Finally, the (k + 1), (k4 1)*" element of G'G is

n 1 1 22
Z(‘;‘f‘;(yt—Xtﬁ))
t=1

(3.50)

n n
—% Z% Xtﬂ2+2% - X:B)".
t=1 t=1
This is the sum over all ¢ of the square of expression (3.46). To compute its
expectation, we replace y; — X33 by u; and use the result that E(u}) = 304;
see Exercise 4.2. It is then not hard to see that expression (3.50) has ex-
pectation 2n/02. Once more, this result depends crucially on the normality
assumption. If the kurtosis of the disturbances were greater (or less) than
that of the normal distribution, the expectation of expression (3.50) would be
larger (or smaller) than 2n/o2.

Putting the results (3.48), (3.49), and (3.50) together, the asymptotic infor-
mation matrix for 3 and o jointly is seen to be
n !XTX/o? 0 }

J(B,0) = plim { o7 2/0?

n—oo

(3.51)

Inverting this matrix, multiplying the inverse by n~!, and replacing o by &,
we find that the IM estimator of the covariance matrix of all the parameter
estimates is

Va?‘IM(/8A76-) =

[62(XTX)1 0 } (3.52)

o' 62/2n |



100 The Method of Maximum Likelihood

The upper left-hand block of this matrix would be the familiar OLS covariance
matrix if we had used s instead of & to estimate 0. The lower right-hand
element is the approximate variance of & under the assumption of normally
distributed disturbances. If we had treated o2 instead of o as a parameter,
the lower right-hand element would have been different; see Exercise 3.10.

It is noteworthy that the information matrix (3.51), and therefore also the es-
timated covariance matrix (3.52), are block-diagonal. This implies that there
is no covariance between ﬁ and ¢. This is a property of all regression models,
nonlinear as well as linear, with normal disturbances, and it is responsible for
much of the simplicity of these models. The block-diagonality of the infor-
mation matrix means that we can make inferences about 3 without taking
account of the fact that o has also been estimated, and we can make inferences
about o without taking account of the fact that B has also been estimated.
If the information matrix were not block-diagonal, which in most other cases
it is not, it would have been necessary to invert the entire matrix in order to
obtain any block of the inverse.

Asymptotic Efficiency of the ML Estimator

A Type 2 ML estimator must be at least as asymptotically efficient as any
other root-n consistent estimator that is asymptotically unbiased.* There-
fore, at least in large samples, maximum likelihood estimation possesses an
optimality property that is generally not shared by other estimation methods.
We will not attempt to prove this result here; see Davidson and MacKinnon
(1993, Section 8.8). However, we will discuss it briefly.

Let the MLE be denoted as 6 and consider any other root-n consistent and
asymptotically unbiased estimator, say 6. It can be shown that

n'/2(6 — 0y) = n'/2(0 — 6y) + v, (3.53)

where v is a random k—-vector the expectation of which tends to zero asymptot-
ically and which is asymptotically uncorrelated with the vector nt/ 2(0 - 0y).
We can rewrite (3.53) as

n'/2(6 — 6y) —n'/?(0 — ;) —v =0,

which shows that the distributions of n1/2(é —6)p) and n1/2(9~ —6p)+v are the
same. This remains true of the normal limiting distributions as n — oo, and
this lets us conclude that the asymptotic covariance matrix of n'/ 2(9 —0y) is
equal to the asymptotic covariance matrix of n'/ 2(9 — 89) plus the asymptotic

4" All of the root-n consistent estimators that we have discussed are also asymp-
totically unbiased. However, as is discussed in Davidson and MacKinnon (1993,
Section 4.5), it is possible for such an estimator to be asymptotically biased,
and we must therefore rule out this possibility explicitly.
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covariance matrix of v, which is a positive semidefinite matrix. It follows that
the asymptotic covariance matrix of the estimator  must be larger than that
of @, in the usual sense.

The result (3.53) bears a strong, and by no means coincidental, resemblance
to a result that we used in Part 1, Section 4.5 when proving the Gauss-Markov
Theorem. This result says that, in the context of the linear regression model,
any unbiased linear estimator can be written as the sum of the OLS estimator
and a random component which has expectation zero and is uncorrelated with
the OLS estimator. Asymptotically, equation (3.53) says essentially the same
thing in the context of a very much broader class of models. The key property
of (3.53) is that v is asymptotically uncorrelated with n'/2(@ — 6,). Therefore,
the random vector v simply adds additional noise to the ML estimator.

The asymptotic efficiency result above is really an asymptotic version of the
Cramér-Rao lower bound,® which actually applies to any unbiased estima-
tor, regardless of sample size. It states that the covariance matrix of such an
estimator can never be smaller than I !, which, as we have seen, is asymptot-
ically equal to the covariance matrix of the ML estimator. Readers are guided
through the proof of this classical result in Exercise 3.12. However, since ML
estimators are not in general unbiased, it is only the asymptotic version of
the bound that is of interest in the context of ML estimation.

The fact that ML estimators attain the Cramér-Rao lower bound asymptotic-
ally is one of their many attractive features. However, like the Gauss-Markov
Theorem, this result must be interpreted with caution. First of all, it is true
only asymptotically. ML estimators may or may not perform well in samples
of moderate size. Secondly, there may well exist an asymptotically biased
estimator that is more efficient, in the sense of finite-sample mean squared
error, than any given ML estimator. For example, the estimator obtained
by imposing a restriction that is false, but not grossly incompatible with the
data, may well be more efficient than the unrestricted ML estimator. The
former cannot be more efficient asymptotically, because the variance of both
estimators tends to zero as the sample size tends to infinity and the bias of
the biased estimator does not, but it can be more efficient in finite samples.

3.5 Hypothesis Testing

Maximum likelihood estimation offers three different procedures for perform-
ing hypothesis tests, two of which usually have several different variants.
These three procedures, which are collectively referred to as the three classical
tests, are the likelihood ratio, Wald, and Lagrange multiplier tests. All three
tests are asymptotically equivalent, in the sense that the differences between

5 This bound was originally suggested by Fisher (1925) and later stated in its
modern form by Cramér (1946) and Rao (1945).
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any pair of the three tend in probability to zero (under the null hypothesis,
and for DGPs that are “close” to the null hypothesis) as the sample size tends
to infinity. If the number of equality restrictions is r, the limiting distribu-
tion is x?(r). We have already discussed Wald tests in Part 1, Sections 5.6,
Part 1, 6.3, and and Part 1, 8.5, but we have not yet encountered the other
two classical tests, at least not under their usual names.

As we remarked in Part 1, Section 5.2, a hypothesis in econometrics corre-
sponds to a model. We let the model that corresponds to the alternative
hypothesis be characterized by the loglikelihood function ¢(8). Then the null
hypothesis imposes r restrictions, which are in general nonlinear, on 6. We
write these as r(0) = 0, where r(0) is an r-vector of smooth functions of
the parameters. Thus the null hypothesis is represented by the model with
loglikelihood £(0), where the parameter space is restricted to those values of 0
that satisfy the restrictions r(0) = 0.

Likelihood Ratio Tests

The likelihood ratio, or LR, test is the simplest of the three classical tests.
The test statistic is just twice the difference between the unconstrained max-
imum value of the loglikelihood function and the maximum subject to the
restrictions. Thus the likelihood ratio statistic is just

LR = 2(¢(8) — ¢(0)), (3.54)

where 6 and 0 denote, respectively, the restricted and unrestricted maximum
likelihood estimates of €. The LR statistic gets its name from the fact that
the right-hand side of equation (3.54) is equal to

2log (L(9~) ) ,
L()
or twice the logarithm of the ratio of the likelihood functions. One of its
most attractive features is that the LR statistic is trivially easy to compute
when both the restricted and unrestricted estimates are available. Whenever
we impose, or relax, some restrictions on a model, twice the change in the

value of the loglikelihood function provides immediate feedback on whether
the restrictions are compatible with the data.

Precisely why the LR statistic is asymptotically distributed as x%(r) is not
entirely obvious, and we will not attempt to explain it now. The asymptotic
theory of the three classical tests will be discussed in detail in the next section.
Some intuition can be gained by looking at the LR test for linear restrictions
on the classical normal linear model. The LR statistic turns out to be closely
related to the familiar F' statistic, which can be written as

Fo (SSR(B) — SSR(B)) /r 7 (3.55)

SSR(B)/(n — k)
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where 8 and 3 are the unrestricted and restricted OLS (and hence also ML)
estimates, respectively. The LR statistic can also be expressed in terms of the
two sums of squared residuals, by use of the formula (3.12), which gives the
maximized loglikelihood in terms of the minimized SSR. The statistic is

2(0(6) — £(8)) = 2(% log SSR(B) — 2 log SSR(B))
) (3.56)

o 288)

We can rewrite the last expression here as

nlog (1 + SSR(B) ~ SSR(B)) =nlog (1 + LF) > F
SSR(3) n—k

The approximate equality above follows from the facts that n/(n—k) < 1 and
that log(1 + a) = a whenever a is small. Under the null hypothesis, SSR(3)
should not be much larger than SSR(3), or, equivalently, F'/(n — k) should be
a small quantity. Thus this approximation should generally be a good one. In
fact, under the null hypothesis, the LR statistic (3.56) is asymptotically equal
to r times the F statistic. Whether or not the null is true, the LR statistic is
a deterministic, strictly increasing, function of the F statistic. As we will see
later, this fact has important consequences if the statistics are bootstrapped.
Without bootstrapping, it makes little sense to use an LR test rather than an
F test in the context of the classical normal linear model, because the latter,
but not the former, is exact in finite samples.

Wald Tests

Unlike LR tests, Wald tests depend only on the estimates of the unrestricted
model. There is no real difference between Wald tests in models estimated
by maximum likelihood and those in models estimated by other methods; see
Section 1.7. As with the LR test, we wish to test the r restrictions r(6) = 0.

The Wald test statistic is just a quadratic form in the vector r(€) and the
inverse of a matrix that estimates its covariance matrix.

By using the delta method (Part 1, Section 6.8), we find that
Var (r(8)) = R(60)Var (8) R (6). (3.57)

where R(0) is an r x k matrix with typical element 9r;(8)/00;, and \//a\r(é)

is any one of the estimators of Var(@) that we looked at in the last section.
Replacing the unknown 6y by 60 in (3.57), we find that the Wald statistic is

W = r(0)(R()Var(0)RT(0)) 'r(6). (3.58)
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This is a quadratic form in the r-vector r(é), which is asymptotically multi-
variate normal, and the inverse of an estimate of its covariance matrix. It is
easy to see, using the first part of Part 1, Theorem 5.1, that (3.58) is asymp-
totically distributed as x?(r) under the null hypothesis. As readers are asked
to show in Exercise 3.13, the Wald statistic (1.74) is just a special case of the
one defined in (3.58). In the case of linear regression models subject to linear
restrictions on the parameters, the Wald statistic is, like the LR statistic, a
deterministic, strictly increasing, function of the F statistic if the information
matrix estimator (3.42) of the covariance matrix of the parameters is used to
construct the Wald statistic.

Wald tests are very widely used, in part because the square of every ¢ statistic
is really a Wald statistic. Nevertheless, they should be used with caution.
Although Wald tests do not necessarily have poor finite-sample properties,
and they do not necessarily perform less well in finite samples than the other
classical tests, there is a good deal of evidence that they quite often do so.
One reason for this is that Wald statistics are not invariant to reformulations
of the restrictions. Some formulations may lead to Wald tests that are well-
behaved, but others may lead to tests that severely overreject, or (much less
commonly) underreject, in samples of moderate size.

As an example, consider the linear regression model

ys = Bo + B17e1 + Bos + uy, (3.59)

where we wish to test the hypothesis that the product of 3; and 382 is 1. To
compute a Wald statistic, we need to estimate the covariance matrix of [y
and Bg. If X denotes the n x 2 matrix with typical element x4;, i = 1,2, and
M, is the matrix that takes deviations from the mean, then the IM estimator
of this covariance matrix is

Var(Br, B2) = 6%(X M, X)"; (3.60)
we could of course use s? instead of 62. For notational convenience, we let
Vi1, Via (= Va1), and Vo denote the three distinct elements of this matrix.

There are many ways to write the single restriction on (3.59) that we wish to
test. Three formulations that seem particularly natural are

r1(B1,B2) = 1 —1/B2 =0,
r2(B1,82) = B2 —1/61 =0, and
73(B1,B2) = P12 — 1 =0.

Each of these ways of writing the restriction leads to a different Wald statistic.
If the restriction is written in the form of r1, then R(B1,32) = [1 1/82].
Combining this with (3.60), we find after a little algebra that the Wald statistic

is . .
G
Vin + 2Via /B3 + Voo /B3
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If instead the restriction is written in the form of ry, then R(f1,52) =
[1/82 1], and the Wald statistic is

, = A(B2 - 1//31)2 .
Vn/ﬁ{1 + 2V12/512 + Vs

Finally, if the restriction is written in the form of r3, then R(f1,52) =
[B2 f1], and the Wald statistic is

S (1S V
B3Vi1 + 28152 Via + B3 Vao

In finite samples, these three Wald statistics can be quite different. Depending
on the values of 81 and S5, any one of them may perform better or worse than
the other two, and they can sometimes overreject severely. The performance of
alternative Wald tests in models like (3.59) has been investigated by Gregory
and Veall (1985, 1987). Other cases in which Wald tests perform very badly
are discussed by Lafontaine and White (1986).

Because of their dubious finite-sample properties and their sensitivity to the
way in which the restrictions are written, we recommend against using Wald
tests when the outcome of a test is important, except when it would be very
costly or inconvenient to estimate the restricted model. Asymptotic ¢ statistics
should also be used with great caution, since, as we saw in Section 1.7, every
asymptotic t statistic is simply the signed square root of a Wald statistic.
Because conventional confidence intervals are based on inverting asymptotic
t statistics, they too should be used with caution.

Lagrange Multiplier Tests

The Lagrange multiplier, or LM, test is the third of the three classical tests.
The name suggests that it is based on the vector of Lagrange multipliers from
a constrained maximization problem. That can indeed be the case. In prac-
tice, however, LM tests are very rarely computed in this way. Instead, they
are usually based on the gradient vector, or score vector, of the unrestricted
loglikelihood function, evaluated at the restricted estimates. LM tests are very
often computed by means of artificial regressions. In fact, as we will see, some
of the GNR-based tests that we encountered in Section 1.7 and Section 2.7
are essentially Lagrange multiplier tests.

For simplicity, we begin our discussion of LM tests by considering the case in
which the restrictions to be tested are zero restrictions, that is, restrictions
according to which some of the model parameters are zero. In such cases,
the r restrictions can be written as @3 = 0, where the parameter vector 0 is
partitioned as 6 = [01 i 62], possibly after some reordering of the elements.
The vector 6 of restricted estimates can then be expressed as 8 = [6; i 0].
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The vector ; maximizes the restricted loglikelihood function £(6;,0), and so
it satisfies the restricted likelihood equations

91(01,0) =0, (3.61)

where g1(-) is the vector whose components are the k — r partial derivatives
of ¢(-) with respect to the elements of 6;.

The formula (3.38), which gives the asymptotic form of an MLE, can be
applied to the estimator @ when 85 = 0. If we partition the true parameter
vector 6y as [6Y i 0], we find that

n'/2(6, - 69) £ (311(60)) 'n/%g1(6y), (3.62)

where J11(+) is the (k—7) x (k—r) top left block of the asymptotic information
matrix J(-) of the full unrestricted model. This block is, of course, just the
asymptotic information matrix for the restricted model.

When the gradient vector of the unrestricted loglikelihood function is evalu-
ated at the restricted estimates 9~7 the first & — r elements, which are the ele-
ments of the vector g;(6), are zero, by equation (3.61). However, the r-vector
92(0), which contains the remaining r elements, is in general nonzero. In fact,

a Taylor expansion gives
nil/zgg(é) — n71/2g2(90) — ningl(é) n1/2(él — 0?) = 07 (363)

where our usual shorthand notation @ is used for a vector that tends to
6y as n — oo, and Ho;(-) is the lower left block of the Hessian of the
loglikelihood. We take the limit of the equation (3.63) as n — oo, mak-
ing use of the asymptotic equality (3.62), and taking note that, according
to the information matrix equality (3.34) for a correctly specified model,
plim(n~' Hy1(6) + 7%;) = O to see that

plim [n™/2g5(8) — n~/2g2(60) + 99, (3%,) "'n""/%g1(6o)] = O.

n—oo

where 70 = J(0,). It follows that the asymptotic variance of n=1/2gy(8) is
equal to that of n='/2gy(00) — 79,(79,)"g1(8p). This last expression can be
written as 12, (80)
- 6

—99.(19)-t 11|, g\ 3.64

9000 )| (364
where I is an 7 x r identity matrix. Then, since the asymptotic variance of the
full gradient vector n~1/ 2g(0y) is just I°, we see that the asymptotic variance

of n=1/2g,(0) is

PR } [—(3(1)1)13(1)2 }

—79 (991 1
[ 321(311) ]l:jgl 3(2)2 I

=99, — 99,(99,)7"9%,. (3.65)
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In Part 1, Exercise 9.11, expressions were developed for the blocks of the
inverses of partitioned matrices. It is easy to see from those expressions that
the inverse of (3.65) is the 22 block of J71(8y). Thus, in order to obtain
a statistic in asymptotically x? form based on gg(é), we can construct the
quadratic form

LM = n""2g,/(8)(T7 )22 n 1/%g2(0) = g5 (8)(I )22 g2(0), (3.66)

in which 3 = n~'I(6), and the notations (J1)s5 and (I 1),y signify the
22 blocks of the inverses of J and T (é), respectively.
Since the statistic (3.66) is a quadratic form in an r-vector, which is asymp-
totically normally distributed with expectation 0, and the inverse of an r x r
matrix that consistently estimates the covariance matrix of that vector, it
is clear that the LM statistic is asymptotically distributed as x2(r) under
the null. However, expression (3.66) is notationally awkward. Because the
first-order conditions (3.61) imply that g1(6) = 0, we can rewrite it as what
appears to be a quadratic form with k rather than r degrees of freedom. We
obtain o ~

LM =g"(6)I 'g(6), (3.67)

where the notational awkwardness has disappeared. In addition, since (3.67)
no longer depends on the partitioning of @ that we used to express the zero
restrictions, it is applicable quite generally, whether or not the restrictions
are zero restrictions. This follows from the invariance of the LM test under
reparametrizations of the model; see Exercise 3.15.

Expression (3.67) is the statistic associated with the score form of the LM test,
often simply called the score test, since it is defined in terms of the score vector
g(0) evaluated at the restricted estimates . It must, of course, be kept in
mind that, despite its appearance, expression (3.67) has only r, and not k,
degrees of freedom. This “using up” of k — r degrees of freedom is due to the

fact that the k — r elements of 8; are estimated.

One way to maximize the loglikelihood function £(8) subject to the restrictions
r(0) = 0 is simultaneously to maximize the Lagrangian

06) —r'(0)A

with respect to @ and minimize it with respect to the r-vector of Lagrange
multipliers A. The Karush-Kuhn-Tucker (KKT) first-order conditions® that
characterize the solution to this problem are the k + r equations

g(6) —R'(O)X=0

r(0) =0.

6 The canonical references for these conditions are Karush (1939) and Kuhn and
Tucker (1951).
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The first set of these equations allows us to rewrite the LM statistic (3.67) in
terms of the Lagrange multipliers A, thereby obtaining the LM form of the
test, which is

LM =X'RI'R"A, (3.68)
where R = R(6). The score form (3.67) is used much more often than the
LM form (3.68), because g(@) is almost always available, no matter how the
restricted estimates are obtained, whereas the vector A is available only if
they are obtained by using a Lagrangian.

LM Tests and Artificial Regressions

We have so far assumed that the information matrix estimator used to con-
struct the LM statistic is I = I(6). Because this estimator is usually more
efficient than other estimators of the information matrix, I is often referred
to as the efficient score estimator of the information matrix. However, there
are as many different ways to compute any given LM statistic as there are
asymptotically valid ways to estimate the information matrix. In practice, I
is often replaced by some other estimator, such as minus the empirical Hessian
or the OPG estimator. For example, if the OPG estimator is used in (3.67),
the statistic becomes

g'(G'G)'g, (3.69)
where § = g(0) and G = G(6). This OPG variant of the statistic is asymptot-
ically, but not numerically, equivalent to the efficient score variant computed
using I. In contrast, the score and LM forms of the test are numerically
equivalent provided both are computed using the same information matrix
estimator.

The statistic (3.69) can readily be computed by use of an artificial regression
called the OPG regression, which has the general form

Lt = G(0)c + residuals, (3.70)

where ¢ is an n—vector of 1s. This regression can be constructed for any model
for which the loglikelihood function can be written as the sum of n contribu-

tions. If we evaluate (3.70) at the vector of restricted estimates 0, it becomes
t = Ge + residuals, (3.71)
and the explained sum of squares is
TGETE) G- TETE) g,
by (3.27). The right-hand side above is equal to expression (3.69), and so the

ESS from regression (3.71) is numerically equal to the OPG variant of the LM
statistic.
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In the case of regression (3.70), the total sum of squares is just n, the squared
length of the vector ¢. Therefore, ESS = n — SSR. This result gives us a
particularly easy way to calculate the LM test statistic, and it also puts an
upper bound on it: The OPG variant of the LM statistic can never exceed
the number of observations in the OPG regression.

Although the OPG variant of the LM statistic is easy to calculate for a very
wide variety of models, it does not have particularly good finite-sample prop-
erties. In fact, there is a great deal of evidence to suggest that tests based on
this form of the statistic are much more likely to overreject than tests based
on any other form and that they can overreject very severely in some cases.
Therefore, unless it is bootstrapped, the OPG form of the LM statistic should
be used with great caution. See Davidson and MacKinnon (1993, Chapter 13)
for references. Fortunately, in many circumstances, other artificial regressions
with much better finite-sample properties can be used to compute LM statis-
tics; see Davidson and MacKinnon (2001).

LM Tests and the GNR

Consider again the case of linear restrictions on the parameters of the classical
normal linear model. By summing the contributions (3.45) to the gradient,
we see that the gradient of the loglikelihood for this model with respect to 3
can be written as

9(8.0) = = X"(y — XP).

Since the information matrix (3.51) is block-diagonal, we need not bother
with the gradient with respect to o in order to compute the LM statis-
tic (3.67). From (3.48), we know that the 3-3 block of the information matrix
is 072X TX. Thus, if we write the restricted estimates of the parameters as
,@ and &, the statistic (3.67), computed with the efficient score estimator of
the information matrix, takes the form

1 - ~ ~
(5= XBX(X X)X (y - XB). (372)
This variant of the LM statistic is, like the LR and some variants of the Wald
statistic, a deterministic, strictly increasing, function of the F statistic (3.55);
see Exercise 3.18.

More generally, for a nonlinear regression model subject to possibly nonlin-
ear restrictions on the parameters, we see that, by analogy with (3.72), the
LM statistic can be written as

1 o STo 1S N

== ) X(X'X)"'X(y - ), (3.73)
where & = x(8) is the n-vector of nonlinear regression functions evaluated
at the restricted ML estimates 3, and X = X (8) is the n x k matrix of
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derivatives of the regression functions with respect to the components of 8. It
is easy to show that (3.73) is just n times the uncentered R? from the GNR

y— = Xb+ residuals,

which corresponds to the unrestricted nonlinear regression, evaluated at the
restricted estimates. As we saw in Section 1.7, this is one of the valid statistics
that can be computed using a GNR.

Bootstrapping the Classical Tests

When two or more of the classical test statistics differ substantially in mag-
nitude, or when we have any other reason to believe that asymptotic tests
based on them may not be reliable, bootstrap tests provide an attractive al-
ternative to asymptotic ones. Since maximum likelihood requires a fully spec-
ified model, it is generally appropriate to use a parametric bootstrap, rather
than resampling. For any given parameter vector 6, the likelihood function
is the density of the dependent variable. Therefore, parametric bootstrap
samples y* are simply realizations of vector random variables from the distri-
bution characterized by that density, evaluated at consistent estimates of the
model parameters. These estimates must, of course, satisfy the restrictions to
be tested, and so the natural choice, and usually the best one, is the vector
of restricted ML estimates.

The procedure we recommend for bootstrapping any of the classical tests is
as follows. The model is estimated under the null to obtain the vector of
restricted estimates é, and the desired test statistic, 7, is computed. This
step may, of course, entail the estimation of the unrestricted model. One then
generates B bootstrap samples using the DGP characterized by 6. For each
of them, a bootstrap statistic 5 =1,...,B,is computed in the same way
as was 7. A bootstrap P value can then be obtained in the usual way as the

proportion of bootstrap statistics more extreme than 7 itself.

We strongly recommend use of the bootstrap whenever there is any reason to
believe that classical tests based on asymptotic theory may not be reliable,
unless calculating a moderate number of 7/ is computationally infeasible.
When this calculation is expensive, methods that do not use a fixed value of
B may be attractive; see Davidson and MacKinnon (2000).

It is important to note that, as we saw earlier in this section for some tests in
linear regression models, certain classical test statistics may be deterministic,
strictly increasing, functions of other statistics. The bootstrap P values must
be identical for statistics related in this way, since a bootstrap P value depends
only on the ordering of the statistic 7 and the bootstrap statistics 7, and this
ordering is invariant under a deterministic, strictly increasing, function. If we
can readily compute a number of test statistics that are not deterministically
related, it is desirable to bootstrap all of them at once. This is usually much
cheaper than bootstrapping them separately. In general, we would expect the
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bootstrap P values from the various tests to be fairly similar, at least if the
null hypothesis is true.

3.6 The Asymptotic Theory of the Three Classical Tests

In this section, much of which is fairly advanced, we show that the three
classical test statistics are asymptotically equivalent. This is true both under
the null hypothesis and under alternatives that are close to the null in a sense
to be made precise later. The proof is however limited to the former case.

Theorem 3.1

Let the parametric model M represent the alternative hypothesis
against which it is desired to test a null hypothesis represented by the
model Mg C M. Let the parameter vector for M; be the k-vector 0,
and let £(0) be the corresponding loglikelihood function. Suppose that
M is defined by imposing r < k restrictions on 8. If the null hypo-
thesis is true, so that the true DGP is contained in My, then the three
classical test statistics, LR, LM, and W, are asymptotically equivalent
in the sense that the difference between any pair of them tends to zero
in probability as the sample size n tends to infinity.

Proof:

Suppose that the true DGP is characterized by the parameter vector 6y,
which satisfies the r restrictions of the null hypothesis. Denote the asymptotic
information matrix by J(0), and write J = J(6y). The gradient vector that
contains the partial derivatives of ¢(8) is denoted as g(0), and s = g(0y).
Further, H(0) is the k x k Hessian matrix for £(0), and H = H(60,). To
avoid cluttering the notation, we omit zero subscripts throughout.

The results will be developed explicitly only for restrictions of the form 6, = 0,
where 0 = [0; 6], but they apply quite generally. As usual, let the unre-
stricted MLE be 6 and the restricted MLE be 8 = [6; 0].

By a second-order Taylor expansion of é(é) around 6, we obtain

((6) = U(0) + (6 — 6)'H(6)(6 - 0),

where 0 is defined as usual in such an expansion. The first-order term vanishes

because of the likelihood equations g(6) = 0. It follows that
LR = 2(((0) — £(8)) = —(6 — ) "H(6)(0 — 6).

The information matrix equality (3.34) and the consistency of 6, which implies
the consistency of 8, then yield the result that

LR £ n(0—6)"7(60—9). (3.74)
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We can use the asymptotic equalities (3.38) and (3.62) to eliminate the esti-
mators that appear in (3.74), replacing them by expressions that involve only
information matrix J and the score vector s, as follows:

. - . ~ —1
nt/2(0 — ) =n'/?(6 — 0y) —n'/?(0 —6y) =T s — [511031 } . (3.75)

Here J;1 and s; denote, respectively, the (k —r) x (k — ) block of J and the
subvector of s that corresponds to 8;. We rewrite the last expression in (3.75)
as Js, where the k x k symmetric matrix J is defined as

' O
—_q-1_ |Y11
J=7 {o 0]. (3.76)

This means that (3.74) becomes
LR =s'J3Js. (3.77)

Moreover, from (3.76), we have that

Ji I [97 O o o
9T =1, — - 7 3.78
k [321 322} { O O —90197 T, (3.78)

where the suffixes on the two identity matrices above indicate their dimen-
sions. If we denote the last k x k matrix in (3.78) by Q, (3.78) can be written
simply as JJ = Q. This in turn implies that J~'Q = J, and, since

' 0O ' 0O o o)
o o) o)l 1)=°
O O O Of|-Ini7 I,

it follows from (3.76) that JQ = J. This implies that JIJJ = J, from which
we conclude that (3.77) can be written as

LR = s'Js. (3.79)

This expression, together with the definition (3.76) of the matrix J, shows
clearly how k — 7 of the k degrees of freedom of s'J~1s are used up by the
process of estimating 67 under the null hypothesis.

We now go through a similar exercise for the LM statistic, all variants of
which are asymptotically equal to the statistic in (3.67). Expression (3.64)
was shown to be asymptotically equal to n~/2g,(#). We can write this as

n=2gy(0) £ [ 92197 I, | [21} : (3.80)
2
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By the restricted likelihood equations, g1(0) = 0. Stacking this on top
of (3.80) gives

n—1/2

—1/2 A _ g1(9:) _ (0] O S1 _
n q(6) {n*1/2g2(9) _32131—11 I, S5 Qs.
We then see from (3.67) that
LM£s' Q"7 'Qs =s'Js, (3.81)

since I7'Q = J and Q'J = J by our earlier results. The asymptotic equiva-
lence of the LR and LM statistics follows from (3.79) and (3.81).

The Wald statistic (3.58), for the case of zero restrictions, can be written as
W =05 (I Y)) "0y = 020, ([(n ™ 1) V]z) '0'/28,.

Thus A . R
W £ 020, (971)22) n'/26,. (3.82)

Then, from (3.38) and the fact that, in the present case, 8p = 0, we see that
n'/20, =[O0 T,]n'/?(0 —0)) 2 [0 1),]9's

Thus the right-hand side of (3.82) is asymptotically equal to

s [1(32] ((07922) [0 I, )97 1s. (3.83)
Now
{1(,?2} (07 M2) [0 Tj,] = {8 ((3_1?22)71} . (3.84)

When we were developing the LM statistic in the previous section, we saw that
the inverse of the 22 block of J=! was equal to the right-hand side of (3.65),

so that ((371)22>_1 = 322 — 32131_11321. Now

- o] 01911 9127[O —(J11) e
@IQ 7{—321(311)71 IH HO I }

[0 smiinl o @
O I —99191'9 ] O ((571)22)_1 .

Expression (3.83) is therefore equal to

j21 322

s'TQIQTI s =sTJTJs = s Js,

and so we can conclude that
W £ s'Js, (3.85)
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This, along with (3.79) and (3.81), shows that the three classical test statistics
are all asymptotically equal to s'Js, so that the differences between any pair
of them tend to zero as n — oo, that is, they are all asymptotically equal. H

Remark:

Because the score vector s = n~Y/ 2g(8,) does not converge in proba-
bility to a limiting random vector, but converges only in distribution,
the proof shows only that the difference between any of the classi-
cal test statistics and s'Js tends to zero as n — oo. With the sort
of asymptotic construction generally used in this book, neither the
statistics nor s'Js converge in probability, but only in distribution.
Intuitively, this is because, as the sample size grows, new information
starts to outweigh the information in the first part of the sample. It
can be shown that any limiting random variable would in fact be in-
dependent of the sample, and it is this contradiction that rules out
convergence in probability.

Quadratic Approximations and Classical Test Statistics

The asymptotic equivalence of the three classical test statistics can be un-
derstood by a geometric argument based on quadratic approximations to the
loglikelihood function. Consider first the case of a classical normal linear
model with known disturbance variance. Then it can be seen directly from
equation (3.10) that the loglikelihood function is a quadratic function of the
parameter vector 3. Therefore, if 02 is known, the loglikelihood function is
quadratic with respect to all the parameters that have to be estimated.

For simplicity, consider the special case in which there is just one regressor,
in the form of a vector x, and a single parameter, 5. Then the loglikelihood
function (3.10) can be written as

U(B) = a+bB— ;hp>, (3.86)

Tz, inde-

where a is a numerical constant minus y'y/2, b is 'y, and h is =
pendent of y. We wish to test the restriction that g = 0.
The gradient of the loglikelihood function (3.86) is

_ o4p)

g(ﬁ)ZW:b—hﬁ

Setting this equal to 0, we find that the ML estimate is B = b/h. Therefore,
the LR statistic is

LR = 2(£(3) — £(0)) = 2a + 2bB — hB? — 2a = 2b*/h — b*/h = b*/h.

For the loglikelihood function (3.86), g(0) = b. The Hessian, which in this
simple case is the scalar —h, is independent both of y and 3, and so the
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information matrix I(3) is the scalar quantity h for all 8. It follows that the
LM statistic is
LM = ¢'(0)I7*(0)g(0) = b*/h.

Finally, for the Wald statistic, we use the fact that the inverse of the infor-
mation matrix, h~!, is the asymptotic variance of 3. Consequently,

W = 3%/V(6) = h(b/h)* = b*/h.

Thus we see that, in the special case of the quadratic loglikelihood function
(3.86), the three classical test statistics are numerically equal. We would, of
course, have obtained the same result if the null hypothesis had been that
B = B instead of 8 = 0.

In general, the loglikelihood function is not exactly quadratic. However, if we
were to take a quadratic approximation to it, we could compute an LR sta-
tistic based on that approximation. Provided the approximation is made at a
point that converges to the true parameter value under the null, the approx-
imate LR statistic must have the same asymptotic distribution as the actual
statistic. Thus the LM and Wald statistics can be thought of as approximate
LR statistics that are computed using different quadratic approximations to
the loglikelihood function.

This is illustrated in Figure 3.3 for the case in which there is a single para-
meter 6 and the null hypothesis is that 6 = 6. The solid line is the loglikeli-
hood function. The dotted lines are two different quadratic approximations.
One of these approximations, which is taken at 6y, is the basis of the LM sta-
tistic. The other, which is taken at @ is the basis of the Wald statistic. The
LR statistic is twice the vertical distance CA in the figure. The LM statistic
is twice the vertical distance CB, and the Wald statistic is twice the vertical
distance DA.

The Three Classical Tests When the Null Is False

The asymptotic equivalence result established in Theorem 3.1 depends on the
assumption that the DGP belongs to the null hypothesis. However, the three
classical tests yield asymptotically equivalent inferences only if the equivalence
holds more generally than just under the null hypothesis.

A test is said to be consistent against a DGP that does not belong to the
null hypothesis if, under that DGP, the power of the test tends to 1 as the
sample size tends to infinity. We saw in Part 1, Section 5.8 that, if the null and
alternative hypotheses are classical normal linear models, power is determined
by a noncentrality parameter that must tend to infinity for power to tend to 1.
The three classical tests have a property similar to that of the exact tests of the
classical normal linear model: Under DGPs in the alternative but not in the
null, the classical test statistics tend to random variables that are distributed
as noncentral chi-squared with r degrees of freedom, where the noncentrality
parameters tend to infinity with the sample size.
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Figure 3.3 LR, LM, and Wald Tests

If all three classical tests can be shown to be consistent against a given DGP,
then they are asymptotically equivalent under this DGP in the sense that,
as n — oo, power tends to 1. But this does not rule out the possibility
that, in finite samples, one of the tests may be much more powerful than the
others. In order to investigate such a possibility, we want to develop a version
of asymptotic theory in which the powers of different tests tend to different
limits as n — oo if they have very different powers in finite samples.

The simplest case we can study is that of the t statistic for the restriction
B2 = 0 in the linear regression model

Y= X161 +x25 +u.

The noncentrality parameter A of the ¢ statistic, in finite samples, is given as

a function of By and the disturbance variance o2:

A= %(mgMﬂ?z)lﬂﬁz-

For fixed f2 and o, A tends to infinity as n — oo, since, under the regularity
conditions for the classical normal linear model, n~tao M x5 tends to a finite
limit, which we denote by Sy;azz,- It follows that n~1/2), rather than A
itself, tends to a finite limit. But if, instead of keeping #- fixed, we subject it
to what is called a Pitman drift, we can obtain a different result. Let § be a
fixed parameter, and, for each sample size n, let By = n~/2§. Then

A= n*l/% (g Myo)' /26 = = (n"tas Myxs) /%6 — ?—;Sm;Mlmz-

1
o
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Since the limit of A is no longer infinite, we can compare the possibly different
limits obtained for different test statistics. A DGP for which the parameters
depend explicitly on the sample size is called a drifting DGP.

If the model that corresponds to the alternative hypothesis is characterized
by the loglikelihood function ¢(01, 02), and the null hypothesis is the set of r
zero restrictions @ = 0, an appropriate drifting DGP for studying power is
one for which 6; is fixed and 05 is given by n=1/2§ for a fixed r-vector §. It
can then be shown that, under this drifting DGP, just as under the null, the
LR, LM, and Wald statistics converge in distribution as n — co to the same
noncentral x2(r) distribution; see Exercise 3.19 for a very simple example.
More generally, as discussed by Davidson and MacKinnon (1987), we can
allow for drifting DGPs that do not lie within the alternative hypothesis,
but that drift toward some fixed DGP in the null hypothesis. It then turns
out that, for drifting DGPs that are, in an appropriate sense, equally distant
from the null, the noncentrality parameter is maximized by those DGPs that
do lie within the alternative hypothesis. This result justifies the intuition
that, for a given number of degrees of freedom, tests against an alternative
which happens to be true should have more power than tests against other
alternatives.

3.7 ML Estimation of Models with Autoregressive Disturbances

In Section 2.8, we discussed several methods based on generalized or nonlinear
least squares for estimating linear regression models with disturbances that
follow an autoregressive process. An alternative approach is to use maximum
likelihood. If it is assumed that the innovations are normally distributed,
ML estimation is quite straightforward. With the normality assumption, the
model (F9.36) considered in Part 1, Sections 9.7 and Part 1, 9.8 can be written
as

Yt = Xt,g + Uy, Ut = PUL—1 + &4, E NID(O, (7'62)7 (387)

in which the disturbances follow an AR(1) process with parameter p that is
assumed to be less than 1 in absolute value. If we omit the first observation,
this model can be rewritten as in equation (F9.37). The result is just a
nonlinear regression model, and so, as we saw in Section 3.2, the ML estimates
of B and p must coincide with the NLS ones.

Maximum likelihood estimation of (3.87) is more interesting if we do not omit
the first observation, because, in that case, the ML estimates no longer coin-
cide with either the NLS or the (feasible) GLS estimates. For observations 2
through n, the contributions to the loglikelihood can be written as in (3.09):

gt(yt7 ﬂ? P UE) =

3.88
—%10g27r—10g08— ( )

1
5 (e = pys—1 — Xe B+ pXi-18)*.
20;
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As required by (3.24), this expression is the log of the density of y; conditional
on the lagged dependent variable y;_1.

For the first observation, the only information we have is that
Y1 =X1B + uy,

since the lagged dependent variable yq is not observed. However, with the
normality assumption, we know from Part 1, Section 9.8 that the variance
of uy is 62 /(1 — p?). Thus the loglikelihood contribution from the first obser-
vation is the log of the density of the normal distribution with that variance,
namely,

él(yhgvpv JE) =

1- 2 (3.89)

4 2
- X .
20_62 (yl 1B)

— ; log 27 — log o +%log(1 —p?) -

Of course, we are assuming here that X; is exogenous and therefore uncorre-
lated with u1; see the discussion in Part 1, Section 9.8.

The loglikelihood function for the model (3.87) based on the entire sample
is obtained by adding the contribution (3.89) to the sum of the contribu-
tions (3.88), for t = 2,...,n. The result is

Uy, B.p.02) =~ log 2m —nlogo. +  log(1 — ) (3.90)
1 n
sy ((1 =)y = XiB)° + D (v — pye1 — XiB+ PXt—15)2)-

t=2

The term % log(1 — p?) that appears in (3.90) plays an extremely important
role in ML estimation. Because it tends to minus infinity as p tends to %1,
its presence in the loglikelihood function ensures that there must be a maxi-
mum within the stationarity region defined by |p| < 1. Therefore, maximum
likelihood estimation using the full sample is guaranteed to yield an estimate
of p for which the AR(1) process is stationary. This is not the case for any of
the estimation techniques discussed in Part 1, Section 9.8.

Let us define u.(8) as y — Xi 8 for t = 1,...,n, and let 4; = us(3). Then,
from the first-order conditions for the maximization of (3.90), it can be seen
that the ML estimators 3, p, and 62 satisfy the following equations:

n

(1= p*) X1 0y + Y (X — pXo1) (i — pit—1) = 0,

t=2
pe? | <
P =15+ ;at_l(at — piy—1) =0, and (3.91)
n
N 1 ADN\ A N ~ A
62 = ﬁ((l —p2)a? + Z(ut - put_1)2).
t=2
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The first two of these equations are similar, but not identical, to the estimating
equations developed in Part 1, section 9.8 for iterated feasible GLS or NLS
with account taken of the first observation. In Exercise 3.21, an artificial
regression is developed which makes it quite easy to solve equations (3.91).
This approach is simpler than the better-known algorithm for finding ML
estimates that was proposed by Beach and MacKinnon (1978).

3.8 Transformations of the Dependent Variable

Whenever we specify a regression model, one of the choices we implicitly
have to make is whether, and how, to transform the dependent variable. For
example, if y;, a typical observation on the dependent variable, is always
positive, it would be perfectly valid to use logy;, or ytl/ 2 or one of many
other monotonically increasing nonlinear transformations, instead of y; itself
as the regressand.

For concreteness, let us suppose that there are just two alternative models,
which we will refer to as Model 1 and Model 2:

yr = X1 +up, up ~NID(0,07), and
logyr = X282 + vi, vy ~ NID(0,03).

Precisely how the regressors of the two competing models are related need
not concern us here. In many cases, some of the regressors for one model are
transformations of some of the regressors for the other model. For example,
X1 might consist of a constant and z;, and X;o might consist of a constant
and log z;. Model 2 is often called a loglinear regression model.

Although we may be able to specify plausible-looking regression models for
a number of different transformations of the dependent variable, using any
model except the correct one implies that, in general, the disturbances are
neither normally nor identically distributed. For example, suppose that we
estimate Model 1 when the data were actually generated by Model 2 with
parameters (a0 and 3. It follows that

yr = exp(Xy2B820 + vt)
= exp(Xi2820) exp(vy) (3.92)

= exp(Xt2B20) exp(%ago) + exp(thﬁgo)(exp(vt) — exp(%ago)).

The last line here uses the fact that exp(v;) is a lognormal variable, of which
the expectation is exp(c3,/2). Thus the first term in the last line is the
conditional expectation of y;, and so the second term, which is y; minus this
conditional expectation, is the disturbance for Model 1.

Even if it should turn out that X313, the regression function for Model 1,
can provide a reasonably good approximation to the conditional expectation
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in the last line of (3.92), the disturbances for that model cannot possibly
have the properties we generally assume them to have. If the disturbances
in Model 2 are normally and identically distributed, then the disturbances in
Model 1 must be skewed to the right and heteroskedastic. Their skewness is
a consequence of the fact that lognormal variables are always skewed to the
right (see Exercise 3.20). Because their variance is proportional to the square
of exp(Xi2820), they are heteroskedastic.

As this example demonstrates, even when the disturbances in the DGP are
normally, identically, and independently distributed, using the wrong trans-
formation of the dependent variable as the regressand yields, in general, a
regression with disturbances that are neither homoskedastic nor symmetric.
Thus, when we encounter heteroskedasticity and skewness in the residuals of
a regression, one possible way to eliminate them is to estimate a different
regression model in which the dependent variable has been subjected to some
sort of nonlinear transformation.

Comparing Alternative Models

It is perfectly easy to subject the dependent variable to various nonlinear
transformations and estimate one or more regression models for each of them.
However, least-squares estimation does not provide any way to compare the
fits of competing models that involve different transformations. But maxi-
mum likelihood estimation under the assumption that the disturbances are
normally distributed does provide a straightforward way to do so. The idea is
to compare the loglikelihoods of the alternative models considered as models
for the same dependent variable.

For Model 1, in which y; is the regressand, the concentrated loglikelihood
function is simply

1 n
—Zlog2r — 2 — Tlog <52(yt - Xﬂﬁl)?). (3.93)
t=1
Expression (3.93) is just expression (3.11) specialized to Model 1. Most re-
gression packages report the value of (3.93) evaluated at the OLS estimates
as the maximized value of the loglikelihood function.

In order to construct the loglikelihood function for the loglinear Model 2,
interpreted as a model for y; rather than for logy;, we need the density of y;
as a function of the model parameters. This requires us to use a standard
result about transformations of variables. Suppose that we wish to know the
CDF of a random variable X, but that what we actually know is the CDF of
a random variable Z defined as Z = h(X), where h(:) is a strictly increasing
deterministic function. Denote this known CDF by F . Then we can obtain
the CDF Fx of X as follows.

Fx(2) = Pr(X <) = Pr(h(X) < h(x))
— Pr(Z < h(z)) = Fz(h(z)). (3.94)
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The second equality above follows because h(-) is strictly increasing. The
relation between the densities of the variables X and Z is obtained by dif-
ferentiating the leftmost and rightmost quantities in (3.94) with respect to x.
Denoting the densities by fx(-) and fz(-), we obtain

fx (@) = Fx () = Fy (h(x)) ' (2) = fz(h(2)) ().

If h is strictly decreasing, the above result must be modified so as to use the
absolute value of the derivative. As readers are asked to show in Exercise 3.23,
the result then becomes

fx (@) = fz(h(2))|W (z)]. (3.95)

It is not difficult to see that (3.95) is a perfectly general result which holds
for any strictly monotonic function h.

The factor by which fz(z) is multiplied in order to produce fx(z) is the abso-
lute value of what is called the Jacobian of the transformation. For Model 2,
X is replaced by u;, and the transformation h is the logarithm, so that Z
becomes log y;. The density of y; is then given by (3.95) in terms of that of
log yy:

Yt

dlogy,

f(ye) = f(logys) dys

where we drop subscripts and denote the densities of y; and logy; by f(y:)
and f(logy;), respectively.

We can now compute the loglikelihood for Model 2 thought of as a model for
the y;. The concentrated loglikelihood for the log y; is given by (3.11):

—%log 2 — % - %log (%Z(log Yy — thﬁg)Q). (3.97)

t=1

This expression is the log of the product of the densities of the logy;. Since
the density of y;, by (3.96), is equal to 1/y; times the density of logy;, the
loglikelihood function we are seeking is

— 5 log2m — 7 — T log <%Z(1og Y — thﬂz)2> =) logy.  (3.98)
t=1

t=1

The last term here is a Jacobian term. It is the sum over all ¢ of the logarithm
of the Jacobian factor 1/y; in the density of y;. This Jacobian term is abso-
lutely critical. If it were omitted, Model 2 would be a model for log y;, and it
would make no sense to compare the value of the loglikelihood for (3.97) with
the value for Model 1, which is a model for y;. But when the Jacobian term
is included, the loglikelihoods for both models are expressed in terms of y;,
and it is perfectly valid to compare their values. We can say with confidence
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that the model corresponding to whichever of (3.93) and (3.98) has the largest
value is the model that better fits the data.

Most regression packages evaluate expression (3.97) at the OLS estimates for
the loglinear model and report that as the maximized value of the loglikelihood
function. In order to compute the loglikelihood (3.98), which is what we need
if we are to compare the fits of the linear and loglinear models, we have to
add the Jacobian term to the value reported by the package.

Of course, the logarithmic transformation is by no means the only one that
we might employ in practice. For example, when the y; are sharply skewed
to the right, a transformation like /7, might make sense; see Exercise 3.28.

Weighted least squares also involves transforming the dependent variable. If
we believe that the disturbance variance is proportional to w?, the use of
feasible GLS leads us to divide y; and all the regressors by w;. When this is
done, the Jacobian of the transformation is just 1/w;, and the Jacobian term
in the loglikelihood function is

n
= logw,. (3.99)
t=1

In order to compare a model that has y; as the regressand with another
model that has y;/w; as the regressand, we need to add (3.99) to the value
of the loglikelihood reported for the second model. Doing this makes the
loglikelihoods from the two models comparable. If it really is appropriate to
use weighted least squares, then the loglikelihood function for the weighted
model should be higher than the loglikelihood function for the original model.

The most common nonlinear transformation in econometrics is the logarithmic
transformation. Very often, we may find ourselves estimating a number of
models, some of which have y; as the regressand and some of which have
logy; as the regressand. If we simply want to decide which model fits best,
we already know how to do so. We just have to compute the loglikelihood
function for each of the models, including the Jacobian term — "} logy; for
models in which the regressand is log y;, and pick the model with the highest
loglikelihood. But if we want to perform a formal statistical test, and perhaps
reject one or more of the competing models as incompatible with the data,
we must go beyond simply comparing loglikelihood values.

The Box-Cox Regression Model

Most procedures for testing linear and loglinear models make use of the Box-
Cox transformation,

A
zt—1
h .
Bz, )) = \ when A # 0;

log x when A = 0,
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2
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Figure 3.4 Box-Cox transformations for various values of A

where A is a parameter, which may be of either sign, and z, the argument of
the transformation, must be positive. By I’'Hopital’s Rule, log x is the limit
of (z* —1)/A as A — 0. Figure 3.4 shows the Box-Cox transformation for
various values of A. In practice, A generally ranges from somewhat below 0 to
somewhat above 1. It can be shown that B(z,\) > B(x, \”) for X’ > A", and
this inequality is evident in the figure. Thus the amount of curvature induced
by the Box-Cox transformation increases as A gets farther from 1 in either
direction.

For the purposes of this section, the important thing about the Box-Cox
transformation is that it allows us to formulate models which include both
linear and loglinear regression models as special cases. In particular, consider
the Box-Cox regression model

k1 k
By, N) =Y Bizi+ Y BiB(xui,N) +u,  u ~NID(0,0%),  (3.100)
i=1 i=ky+1

in which there are ki regressors z; that are not subject to transformation
and ko = k — k1 nonconstant regressors x4 that are always positive and are
subject to transformation. The z; would include the constant term, if any,
in addition to dummy variables and any other regressors that can take on
nonpositive values. When A = 1, this model reduces to the linear regression
model

ki k
ye— 1= Zﬁizti + Z Bi(xyi — 1) +uy,  up ~ NID(0,02).
i=1 i=ky+1
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Provided there is a constant term, or the equivalent of a constant term, among
the z;; regressors, this is equivalent to

k1 k
ye= B+ Y. Bite+ue, up~NID(0,07), (3.101)
=1 i=ki1+1

with the §; corresponding to the constant term redefined in the obvious way.
When A = 0, on the other hand, the Box-Cox model (3.100) reduces to the
loglinear regression model

ey k
logye = Y Bizi+ Y Bilogay +uy, up ~NID(0,0%). (3.102)
i=1 i=k1 41

Thus it is clear that the linear regression model (3.101) and the loglinear
regression model (3.102) can both be obtained as special cases of the Box-
Cox regression model (3.100).

Testing Linear and Loglinear Regression Models

There are many ways in which we can test (3.101) and (3.102) against (3.100).
Conceptually, the simplest is just to estimate all three models and perform
two likelihood ratio tests. Let E(;\) denote the maximum of the loglikelihood
function for the unrestricted Box-Cox model (3.100), which readers are asked
to derive in Exercise 3.29. Similarly, let ¢(1) and ¢(0) denote the maxima of
the loglikelihood functions for the linear and loglinear models, respectively.
Then the statistics for testing the linear and loglinear models against the
Box-Cox regression model are

2(£(A\) — £(1)) and 2(£(\) — £(0)),

respectively. If either of these statistics exceeds x?_ (1), the 1 — a quantile
of the x2(1) distribution, we may reject the model being tested at level a.
In practice, this test tends to be quite powerful in samples of even moderate
size, since it does not require a very large test statistic in order to reject the
null hypothesis; the two most widely-used critical values are x3 5(1) = 3.84

and x2 g9(1) = 6.63.
This procedure is conceptually very simple, but it requires us to estimate A,
which is a bit more work than simply running a linear regression. In some

cases, however, we can avoid estimating A\. We know that ¢(\) must be larger
than whichever of £(1) and ¢(0) is larger. Therefore, if

2(£(0) = £(1)) > xi_a(1), (3.103)

we can certainly reject the linear model, even though we have not actually
estimated the Box-Cox model or computed the LR test statistic. Similarly, if

2(£(1) = £(0)) > xi_a(1), (3.104)
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we can certainly reject the loglinear model. The quantities (3.103) and (3.104)
provide lower bounds for the actual LR statistics. In practice, these lower
bounds can often allow us to rule out models that are clearly incompatible
with the data.

The fact that one can sometimes put a lower bound on the LR test statistic
without actually estimating the unrestricted model is often very convenient.
It was noted by Sargan (1964) in the context of choosing between linear and
loglinear models, is widely used by applied workers, and has been proposed as
a general basis for model selection by Pollak and Wales (1991). The procedure
works in only one direction, of course. If, for example, (3.103) allows us to
reject the linear model, then it tells us nothing about whether the loglinear
model is acceptable to the data.

Lagrange Multiplier Tests

Since it is very easy to estimate linear and loglinear regression models, but
somewhat harder to estimate the Box-Cox regression model, it is natural to
use LM tests in this context. The first tests of this type were proposed by
Godfrey and Wickens (1981). They are based on the OPG regression (3.70).
However, as is often the case with tests based on the OPG regression, these
tests tend to overreject quite severely in finite samples. Therefore, David-
son and MacKinnon (1985b) proposed Lagrange multiplier tests based on the
double-length artificial regression, or DLR, that they had previously devel-
oped in Davidson and MacKinnon (1984a). This artificial regression is called
“double-length” because it has 2n “observations,” two for each of the actual
observations in the sample.

For reasons of space, we will not write down the OPG or DLR test regressions
here. Readers are asked to derive a special case of the former in Exercise 3.29.
The latter, which are somewhat more complicated, are discussed in detail in
Davidson and MacKinnon (1993, Chapter 14). If an LM test is to be used,
we recommend use of the DLR rather than the OPG variant. There is a
good deal of evidence that the DLR variant is much more reliable in finite
samples; see Davidson and MacKinnon (1984b) and Godfrey, McAleer, and
McKenzie (1988), among others. Of course, either variant of the test may
easily be bootstrapped, as discussed in Section 3.5, and the OPG variant
should perform acceptably when that is done. Because it is never necessary
to estimate the unrestricted model, bootstrapping either of the LM tests is
considerably less expensive than bootstrapping the LR test.

3.9 Final Remarks

Maximum likelihood estimation is widely used in many areas of econometrics,
and we will encounter a number of important applications in the remainder of
the book. Readers seeking a more advanced treatment of the theory than we
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were able to give in this chapter may wish to consult Davidson and MacKinnon
(1993), Cox and Hinkley (1974), or Stuart, Ord, and Arnold (1998).

As we have seen, ML estimation has many good properties, although these
may be more apparent asymptotically than in finite samples. Its biggest limit-
ation is the need for a fully specified parametric model. However, even if the
dependent variable does not follow its assumed distribution, quasi-maximum
likelihood estimators may still be consistent, even though they are not asymp-
totically efficient.

3.10 Exercises

3.1 Show that the ML estimator of the parameters 3 and o of the classical normal
linear model can be obtained by first concentrating the loglikelihood with
respect to B and then maximizing the concentrated loglikelihood thereby
obtained with respect to o.

*3.2 Let the n—vector y be a vector of mutually independent realizations from the
uniform distribution on the interval [31, 2], usually denoted by U(S1, B2).
Thus, y¢ ~ U(B1,82) fort =1,...,n. Let 51 be the ML estimator of 81 given
in (3.13), and suppose that the true values of the parameters are 81 = 0 and
B = 1. Show that the CDF of £ is

F(B)=Pr(f<p)=1-(1-8"

Use this result to show that n(Bl — B10), which in this case is just nB, is
asymptotically exponentially distributed with § = 1. Note that the density of
the exponential distribution was given in (3.03). (Hint: The limit as n — oo
of (14 z/n)", for arbitrary real z, is e”.)

Show that, for arbitrary given [19 and P20, with B20 > P10, the asymp-
totic distribution of n(8; — B10) is characterized by the density (3.03) with
0 = (B20 — B10)” "

3.3 Generate 10,000 random samples of sizes 20, 100, and 500 from the uniform
U(0,1) distribution. For each sample, compute 7, the sample mean, and 7,
the average of the largest and smallest observations. Calculate the root mean
squared error of each of these estimators for each of the three sample sizes.
Do the results accord with what theory predicts?

3.4 Suppose that h(-) is a strictly concave, twice continuously differentiable, func-
tion on a possibly infinite interval of the real line. Let X be a random variable
of which the support is contained in that interval. Suppose further that the
first two moments of X exist. Prove Jensen’s Inequality for the random vari-
able X and the strictly concave function h by performing a Taylor expansion
of h about E(X).

3.5 Prove that the definition (3.31) of the information matrix is equivalent to the
definition

1(0) = Eo(g(y.0)g ' (y.0))-
Hint: Use the result (3.30).
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3.6

3.7

3.8

3.9

3.10

*3.11

*3.12

By differentiating the identity (3.28) with respect to 6;, show that
Eg(Gui(y',0)Gij(y", 0) + (Ht)i;(y',0)) = 0, (3.105)

where the k x k matrix Hy(y’, @) is the Hessian of the contribution ¢ (y*, )
to the loglikelihood. The simplest way to proceed is to show first that (3.105)
also holds if the left-hand side is the expectation conditional on y*~!.

Use the result (3.105) of the preceding exercise to prove the asymptotic in-
formation matrix equality (3.34).

Consider the linear regression model with exogenous explanatory variables,
y=XB+u,

where the only assumptions made regarding the disturbances are that they
are uncorrelated and have expectation zero and finite variances that are, in
general, different for each observation. The OLS estimator, which is consistent
for this model, is equal to the ML estimator of the model under the assump-
tion of homoskedastic normal disturbances. The ML estimator is therefore a
QMLE for this model. Show that the k x k block of the sandwich covariance
matrix estimator (3.44) that corresponds to B is a version of the HCCME for
the linear regression model.

Write out explicitly the empirical Hessian estimator of the covariance matrix
of ,@ and & for the classical normal linear model. How is it related to the IM
estimator (3.52)7

How would your answer change if X3 in the classical normal linear model were
replaced by x(8), a vector of nonlinear regression functions that implicitly
depend on exogenous variables?

Suppose you treat o2 instead of ¢ as a parameter. Use arguments similar to
the ones that led to equation (3.52) to derive the information matrix estimator
of the covariance matrix of 3 and 2. Then show that the same estimator

can also be obtained by using the delta method.

Explain how to compute two different 95% confidence intervals for o2 One
should be based on the covariance matrix estimator obtained in Exercise 9.10,
and the other should be based on the original estimator (3.52). Are both of
the intervals symmetric? Which seems more reasonable?

Let 6 denote any unbiased estimator of the k parameters of a parametric
model fully specified by the loglikelihood function ¢(@). The unbiasedness
property can be expressed as the following identity:

/L(y, 0)0dy = 6. (3.106)

By using the relationship between L(y, 0) and /(y, ) and differentiating this
identity with respect to the components of 8, show that

Covg(g(0),(0 - 0)) =1,

where I is a k x k identity matrix, and the notation Covg indicates that the
covariance is to be calculated under the DGP characterized by 6.
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*3.13

*3.14

*3.15
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Let V' denote the 2k x 2k covariance matrix of the 2k-vector obtained by
stacking the k components of g(8) above the k components of 8 — 6. Partition
this matrix into 4 k x k blocks as follows:

v | ¢
=l vl

where V7 and V3 are, respectively, the covariance matrices of the vectors g(0)
and @ — 0 under the DGP characterized by 8. Then use the fact that V is pos-
itive semidefinite to show that the difference between Va and I ~1(6), where
I(0) is the (finite-sample) information matrix for the model, is a positive
semidefinite matrix. Hint: Use the result of Part 1, Exercise 9.11.

Consider the linear regression model
y=X181 +XoB2 +u, u~NO0,0°T). (3.107)

Derive the Wald statistic for the hypothesis that B2 = 0, as a function of
the data, from the general formula (3.58). Show that it would be numerically
identical to the Wald statistic (1.74) if the same estimate of o were used.

Show that, if the estimate of ¢ is either the OLS or the ML estimator based
on the unrestricted model (3.107), the Wald statistic is a deterministic, strictly
increasing, function of the conventional F' statistic. Give the explicit form of
this deterministic function. Why can one reasonably expect that this result
holds for tests of arbitrary linear restrictions on the parameters, and not only
for zero restrictions of the type considered in this exercise?

Consider the Wald statistic W, the likelihood ratio statistic LR, and the La-
grange multiplier statistic LM for testing the hypothesis that 83 = 0 in the
linear regression model (3.107). Since these are asymptotic tests, all the esti-
mates of o are computed using the sample size n in the denominator. Express
these three statistics as functions of the squared norms of the three compo-
nents of the threefold decomposition (F5.34) of the dependent variable y. By
use of the inequalities

x> log(l+z) > x>0,

T
14z’
show that W > LR > LM.

The model specified by the loglikelihood function ¢(0) is said to be repara-
metrized if the parameter vector 6 is replaced by another parameter vector ¢
related to @ by a one to one relationship 8 = @(¢) with inverse ¢ = ©@~1(8).
The loglikelihood function for the reparametrized model is then defined as
0'(¢) = £(O(¢)). Explain why this definition makes sense.

Show that the maximum likelihood estimates ¢> of the reparametrized model
are related to the estimates 6 of the original model by the relation 0= @(¢)
Specify the relationship between the gradients and information matrices of the
two models in terms of the derivatives of the components of ¢ with respect
to those of 6.

Suppose that it is wished to test a set of r restrictions written as r(0) = 0.
These restrictions can be applied to the reparametrized model in the form
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*3.16

3.17

3.18

*3.19

3.20

*3.21

r'(¢) = 7(O(¢p)) = 0. Show that the LR statistic is invariant to whether
the restrictions are tested for the original or the reparametrized model. Show
that the same is true for the LM statistic (3.67).

Show that the artificial OPG regression (3.71) possesses all the properties
needed for hypothesis testing in the context of a model estimated by maximum

likelihood. Specifically, show that

e the regressand ¢ is orthogonal to the regressors G(0) when the latter are
evaluated at the MLE 6;

e the estimated OLS covariance matrix from (3.71) evaluated at 6, when
multiplied by n, consistently estimates the inverse of the asymptotic infor-
mation matrix;

e the OPG regression (3.71) allows one-step estimation: If the OLS para-
meter estimates ¢ from (3.71) are evaluated at 8 = 6, where 0 is any root-n
consistent estimator of 8, then the one-step estimator 0=0+¢is asymp-
totically equivalent to 6, in the sense that n1/2(0 0p) and n1/2(9 6o)
tend to the same random variable as n — co.

Show that the explained sum of squares from the artificial OPG regression
(3.71) is equal to n times the uncentered R? from the same regression. Relate
this fact to the use of test statistics that take the form of n times the R? of
a GNR (Section 7.7).

Express the LM statistic (3.72) as a deterministic, strictly increasing, function
of the F statistic (3.55).

Let the loglikelihood function ¢(f) depend on one scalar parameter 6. For
this special case, consider the distribution of the LM statistic (3.67) under
the drifting DGP characterized by the parameter § = n~1/25§ for a fixed 4.
This DGP drifts toward the fixed DGP with § = 0, which we think of as
representing the null hypothesis. Show first that nilI(nfl/zci) — J(0) as
n — oo. Here the asymptotic information matrix J(0) is just a scalar, since
there is only one parameter.

Next, show that n~ /2 times the gradient, evaluated at # = 0, which we may
write as n= g(O)7 is asymptotically normally distributed with expectation
07J(0) and variance J(0). Finally, show that the LM statistic is asymptotically
distributed as x2(1) with a finite noncentrality parameter, and give the value
of that noncentrality parameter.
Let z ~ N(u, 02), and consider the lognormal random variable z = e*. Using
the result that

E(e®) = exp(u+ 3 0°), (3.108)

compute the second, third, and fourth central moments of z. Show that x is
skewed to the right and has positive excess kurtosis.

Note: The excess kurtosis of a random variable is formally defined as the ratio
of the fourth central moment to the square of the variance, minus 3.

The GNR proposed in Section 8.8 for NLS estimation of the model (3.87) can
be written schematically as

(1= p2)/24,(8) } _ [(1 _ )2, 0 } [ b } + residuals
ut(B) — pus—1(8) X:—pXi—1 w—1(8)] Lbp ’
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where ut(8) = y1—X¢B fort = 1,...,n, and the last n—1 rows of the artificial
variables are indicated by their typical elements. Append one extra artificial
observation to this artificial regression. For this observation, the regressand
is ((1— p2)u%(ﬁ)/ae —02)/+/2, the regressor in the column corresponding to p
is poev/2/(1 — p?), and the regressors in the columns corresponding to the
elements of 3 are all 0. Show that, if at each iteration 62 is updated by the
formula

o2 = L(a- i) + > (u(d) - pur—1(B)Y )

then, if the iterations defined by the augmented artificial regression converge,
the resulting parameter estimates satisfy the estimating equations (3.91) that
define the ML estimator.

The odd-looking factors of v/2 in the extra observation are there for a reason:
Show that, when the artificial regression has converged, o2 2 times the matrix
of cross-products of the regressors is equivalent to the block of the information
matrix that corresponds to 3 and p evaluated at the ML estimates. Explain
why this means that we can use the OLS covariance matrix from the artificial
regression to estimate the covariance matrix of B and p.

Using the artificial data in the file arl.data, estimate the model
yt = P14+ Boxs +ug, ur = pug—1 +e¢, t=1,...,100,

which is correctly specified, in two different ways: ML omitting the first
observation, and ML using all 100 observations. The second method should
yield more efficient estimates of 51 and 2. For each of these two parameters,
how large a sample of observations similar to the last 99 observations would
be needed to obtain estimates as efficient as those obtained by using all 100
observations? Explain why your answer is greater than 100 in both cases.

Let the two random variables X and Z be related by the deterministic equa-
tion Z = h(X), where h is strictly decreasing. Show that the densities of the
two variables satisfy the equation

Ix (@) = —fz(h(x))h ().

Then show that (3.95) holds whenever h is a strictly monotonic function.

Let X = Z2. Express the density of X in terms of that of Z, taking account of
the possibility that the support of Z may include negative as well as positive
numbers.

Suppose that a dependent variable y follows the exponential distribution given
in (3.03), and let x = y%. What is the density of 27 Find the ML estimator
of the parameter 6 based on a sample of n observations z¢ which are assumed
to follow the distribution of which you have just obtained the density.

For a sample of n observations y; generated from the exponential distribution,
the loglikelihood function is (3.04), and the ML estimator is (3.06). Derive
the asymptotic information matrix J(#), which is actually a scalar in this case,
and use it to show how nl/Q(é — 0p) is distributed asymptotically. What is the
empirical Hessian estimator of the variance of 6? What is the IM estimator?
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*3.26

3.27

3.28

*3.29

3.30

There is an alternative parametrization of the exponential distribution, in
which the parameter is ¢ = 1/6. Write down the loglikelihood function in
terms of ¢ and obtain the asymptotic distribution of nt/ 2((;3 — ¢0). What
is the empirical Hessian estimator of the variance of qg? What is the IM
estimator?

Consider the ML estimator 8 from the previous exercise. Explain how you
could obtain an asymptotic confidence interval for € in three different ways.
The first should be based on inverting a Wald test in the 6 parametrization,
the second should be based on inverting a Wald test in the ¢ parametrization,
and the third should be based on inverting an LR test.

Generate 100 observations from the exponential distribution with 8 = 0.5, find
the ML estimate based on these artificial data, and calculate 95% confidence
intervals for 6 using the three methods just proposed. Hint: To generate
the data, use uniformly distributed random numbers and the inverse of the
exponential CDF.

Use the result (3.95) to derive the density of the N(y, 02) distribution from
the density of the standard normal distribution.

In the classical normal linear model as specified in (3.07), it is the distribution
of the disturbances u that is specified rather than that of the dependent
variable y. Reconstruct the loglikelihood function (3.10) starting from the
densities of the disturbances u; and using the Jacobians of the transformations
that express the y; in terms of the wu¢.

Consider the model
ut/? = XiB +ut, up ~NID(0,07),

in which it is assumed that all observations y; on the dependent variable are
positive. Write down the loglikelihood function for this model.

Derive the loglikelihood function for the Box-Cox regression model (3.100).
Then consider the following special case:

B(ys,A) = B1 + BaB(wt, A) + us,  ug ~ NID(0, 7).

Derive the OPG regression for this model and explain precisely how to use it
to test the hypotheses that the DGP is linear (A = 1) and loglinear (A = 0).

Consider the model XXX of the Canadian consumption function, with data
from the file consumption.data, for the period 1953:1 to 1996:4. Compute the
value of the maximized loglikelihood for this model regarded as a model for
the level (not the log) of current consumption.

Formulate a model with the same algebraic form as XXX, but in levels of the
income and consumption variables. Compute the maximized loglikelihood
of this second model, and compare it with the value you obtained for the
model in logs. Can you draw any conclusion about whether either model is
misspecified?

Formulate a third model, using the variables in levels, but dividing them all
by current income Y; in order to account for heteroskedasticity. The result
is a weighted least-squares model. Compute the maximized loglikelihood for
this model as a model for the level of current consumption. Are there any
more conclusions you can draw on the basis of your results?
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3.31 Formulate a Box-Cox regression model which includes the first and second
models of the previous exercise as special cases. Use the OPG regression to
perform an LM test of the hypothesis that the Box-Cox parameter A = 0, that
is, that the loglinear model is correctly specified. Obtain both asymptotic and
bootstrap P values.

3.32 The model XXX that was estimated in Exercise 3.30 can be written as
Act = B1 + P2 Ayt + B3Ay—1 + oet,

where ¢ ~ NID(0,1). Suppose now that the e, instead of being standard
normal, follow the Cauchy distribution, with density f(e¢) = (7(1+€2))~%.
Estimate the resulting model by maximum likelihood, and compare the max-
imized value of the loglikelihood with the one obtained in Exercise 9.30.

3.33 Suppose that the dependent variable y; is a proportion, so that 0 < y¢ < 1,
t=1,...,n. An appropriate model for such a dependent variable is

log( Yt ) = X8+ ut,
1—y:

where X; is a k x 1 vector of exogenous variables, and 3 is a k-vector. Write
down the loglikelihood function for this model under the assumption that
ug ~ NID(0, 02). How would you maximize this loglikelihood function?

Chapter 4

Discrete and Limited
Dependent Variables

4.1 Introduction

Although regression models are useful for modeling many types of data, they
are not suitable for modeling every type. In particular, they should not be
used when the dependent variable is discrete and can therefore take on only
a countable number of values, or when it is continuous but is limited in the
range of values it can take on. Since variables of these two types arise quite
often, it is important to be able to deal with them, and many models have
been proposed for doing so. In this chapter, we discuss some of the simplest
and most commonly used models for discrete and limited dependent variables.

The most commonly encountered type of dependent variable that cannot be
handled properly using a regression model is a binary dependent variable.
Such a variable can take on only two values, which for practical reasons are
almost always coded as 0 and 1. For example, a person may be in or out
of the labor force, a commuter may drive to work or take public transit, a
household may own or rent the home it resides in, and so on. In each case,
the economic agent chooses between two alternatives, one of which is coded
as 0 and one of which is coded as 1. A binary response model then tries to
explain the probability that the agent chooses alternative 1 as a function of
some observed explanatory variables. We discuss binary response models at
some length in Section 4.2 and Section 4.3

A binary dependent variable is a special case of a discrete dependent variable.
In Section 4.4, we briefly discuss several models for dealing with discrete
dependent variables that can take on a fixed number of values. We consider
two different cases, one in which the values have a natural ordering, and one
in which they do not. Then, in Section 4.5, we discuss models for count data,
in which the dependent variable can, in principle, take on any nonnegative,
integer value.

Sometimes, a dependent variable is continuous but can take on only a limited
range of values. For example, most types of consumer spending can be zero
or positive but cannot be negative. If we have a sample that includes some

133
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zero observations, we need to use a model that explicitly allows for this. By
the same token, if the zero observations are excluded from the sample, we
need to take account of this omission. Both types of model are discussed
in Section 4.6. The related problem of sample selectivity, in which certain
observations are omitted from the sample in a nonrandom way, is dealt with
in Section 4.7. Finally, in Section 4.8, we discuss duration models, which
attempt to explain how much time elapses before some event occurs or some
state changes.

4.2 Binary Response Models: Estimation

In a binary response model, the value of the dependent variable y; can take on
only two values, 0 and 1. Let P, denote the probability that ¢y, = 1 conditional
on the information set £2;, which consists of exogenous and predetermined vari-
ables. A binary response model serves to model this conditional probability.
Since the values are 0 or 1, it is clear that P; is also the expectation of y;
conditional on :

Pt = Pr(yt =1 | Qt) = E(yt ‘ Qt)7

Thus a binary response model can also be thought of as modeling a conditional
expectation.

For many types of dependent variable, we can use a regression model to model
conditional expectations, but that is not a sensible thing to do in this case.
Suppose that X; denotes a row vector of dimension k of variables that belong
to the information set );, almost always including a constant term or the
equivalent. Then a linear regression model would specify E(y; | Q) as X; 8.
But such a model fails to impose the condition that 0 < E(y; | Q:) < 1, which
must hold because E(y; | ;) is a probability. Even if this condition happened
to hold for all observations in a particular sample, it would always be easy
to find values of X; for which the estimated probability Xt,é would be less
than 0 or greater than 1.

Since it makes no sense to have estimated probabilities that are negative or
greater than 1, simply regressing y; on X; is not an acceptable way to model
the conditional expectation of a binary variable. However, as we will see in
the next section, such a regression can provide some useful information, and
it is therefore not a completely useless thing to do in the early stages of an
empirical investigation.

Any reasonable binary response model must ensure that E(y; | Q) lies in the
0-1 interval. In principle, there are many ways to do this. In practice, however,
two very similar models are widely used. Both of these models ensure that
0 < P; < 1 by specifying that

Py =E(y: [ Q) = F(X8). (4.01)
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Here X3 is an index function, which maps from the vector X; of explanatory
variables and the vector B of parameters to a scalar index, and F(x) is a
transformation function, which has the properties that

dF (z)
dx

F(-)=0, F(oo)=1, and f(z)= > 0. (4.02)
These properties are, in fact, just the defining properties of the CDF of a
probability distribution; recall Part 1, Section 1.2. They ensure that, although
the index function X;3 can take any value on the real line, the value of
F(X;8) must lie between 0 and 1.

The properties (4.02) also ensure that F'(z) is a nonlinear function. Con-
sequently, changes in the values of the x4, which are the elements of X,
necessarily affect E(y; | Q) in a nonlinear fashion. Specifically, when P; is
given by (4.01), its derivative with respect to xy; is

Of, _ OFXB) _ 1 x,p)p, (4.03)

81‘”‘ 83:,%

where f3; is the i*® element of 3. Therefore, the magnitude of the derivative
is proportional to f(X;3). For the transformation functions that are almost
always employed, f(X;/3) achieves a maximum at X;3 = 0 and then falls as
| X: 3] increases; see the CDFs plotted in Figure 4.1. Thus we see from (4.03)
that the effect on P; of a change in one of the independent variables is greatest
when P, = .5 and very small when P; is close to 0 or 1.

The Probit Model

The first of the two widely-used choices for F'(z) is the cumulative standard
normal distribution function,

O(z) = \/% /_gJ exp(—%gf)dy.

When F(X;8) = ®(X;0), (4.01) is called the probit model. Although there
exists no closed-form expression for ®(z), it is easily evaluated numerically,
and its first derivative is, of course, simply the standard normal density func-
tion, ¢(x), which was defined in expression (F2.06).

One reason for the popularity of the probit model is that it can be derived
from a model involving an unobserved, or latent, variable y;. Suppose that

¥ = X,B+u;, u;~NID(0,1). (4.04)

We observe only the sign of yp, which determines the value of the observed
binary variable y; according to the relationship

ye=11f yg >0; y, =0 if y7 <O0. (4.05)
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Together, equations (4.04) and (4.05) define what is called a latent variable
model. One way to think of y7 is as an index of the net utility associated
with some action. If the action yields positive net utility, it is undertaken;
otherwise, it is not undertaken. Because we observe only the sign of y;, we
can normalize the variance of u; to be unity. If the variance of u; were some
other value, say o2, we could divide 3, ¥, and u; by o. Then u; /o would have
variance 1, but the value of y; would be unchanged. Another way to express
this property is to say that the variance of u; is not identified by the binary
response model.

We can now compute P;, the probability that y, = 1. It is
Pr(ys =1) =Pr(y; > 0) =Pr(Xy8+ us > 0)

(4.06)
= PI‘(Ut > —Xtﬁ) = Pr(ut < Xtﬁ) = q)(Xt,@)

The second-last equality in (4.06) makes use of the fact that the standard
normal density function is symmetric around zero. The final result is just
what we would get by letting ®(X;3) play the role of the transformation
function F(X;8) in (4.01). Thus we have derived the probit model from the
latent variable model that consists of (4.04) and (4.05).

The Logit Model

The logit model is very similar to the probit model. The only difference is
that the function F'(z) is now the logistic function

1 e”

A = = — 4.
(@) 1+e 14ez’ (4.07)
which has first derivative

e%

This first derivative is evidently symmetric around zero, which implies that
A(—z) =1—A(z). A graph of the logistic function, as well as of the standard
normal distribution function, is shown in Figure 4.1.

The logit model is most easily derived by assuming that

Py
1 = X
Og(l — Pt) t/37

which says that the logarithm of the odds (that is, the ratio of the two prob-
abilities) is equal to X;3. Solving for P;, we find that

exp(X:8) 1
P, = = = A(X:0).
" ren(X8)  Tren(Xp) P
This result is what we would get by letting A(X:3) play the role of the
transformation function F'(X;3) in (4.01).
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Maximum Likelihood Estimation of Binary Response Models

By far the most common way to estimate binary response models is to use the
method of maximum likelihood. Because the dependent variable is discrete,
the likelihood function cannot be defined as a joint density function, as it
was in Chapter 9 for models with a continuously distributed dependent vari-
able. When the dependent variable can take on discrete values, the likelihood
function for those values should be defined as the probability that the value
is realized, rather than as the probability density at that value. With this
redefinition, the sum of the possible values of the likelihood is equal to 1, just
as the integral of the possible values of a likelihood based on a continuous
distribution is equal to 1.

If, for observation t, the realized value of the dependent variable is ¥, then the
likelihood for that observation if y, = 1 is just the probability that y; = 1, and
if y; = 0, it is the probability that y; = 0. The logarithm of the appropriate
probability is then the contribution to the loglikelihood made by observation ¢.

Since the probability that y; = 1 is F(X;3), the contribution to the loglike-
lihood function for observation ¢ when y; = 1 is log F((X;3). Similarly, the
contribution to the loglikelihood function for observation ¢ when y; = 0 is
log(1 — F(X;03)). Therefore, if y is an n-vector with typical element y;, the
loglikelihood function for y can be written as

n

Uy.B) =Y (wlog F(XiB) + (1 - yo)log(1 — F(X.B))).  (409)

t=1

For each observation, one of the terms inside the large parentheses is always 0,
and the other is always negative. The first term is 0 whenever y; = 0, and
the second term is 0 whenever y; = 1. When either term is nonzero, it must
be negative, because it is equal to the logarithm of a probability, and this
probability must be less than 1 whenever X;3 is finite. For the model to fit
perfectly, F'(X;3) would have to equal 1 when y; = 1 and 0 when y; = 0, and
the entire expression inside the parentheses would then equal 0. This could
happen only if X;3 = co whenever y; = 1, and X;3 = —oo whenever y; = 0.
Therefore, we see that (4.09) is bounded above by 0.

Maximizing the loglikelihood function (4.09) is quite easy to do. For the logit
and probit models, this function is globally concave with respect to 3 (see
Pratt, 1981, and Exercise 4.1). This implies that the first-order conditions,
or likelihood equations, uniquely define the ML estimator B, except for one
special case that we consider in the subsection following the next one. These
likelihood equations can be written as

2": (e — F(X:B)) (X:B)ui
F(X.8)(1 - F(X:0))

=0, i=1,...,k (4.10)

t=1

There are many ways to find B in practice. Because of the global concavity
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of the loglikelihood function, Newton’s Method generally works very well.
Another approach, based on an artificial regression, will be discussed in the
next section.

Conditions (4.10) look just like the first-order conditions for weighted least-
squares estimation of the nonlinear regression model

Yy = F(XyB) + vy, (4.11)

where the weight for observation t is

—1/2

(Fex8)(1-F(x:8)) (4.12)

This weight is one over the square root of the variance of v; = y; — F(X:03),
which is a binary random variable. By construction, v; has mean 0, and its
variance is

E(v?) = E(y — F(X,8))°
= F(X.8)(1 - F(X.B)) + (1 - F(X.8))(F(X.8))
= F(X:8)(1 — F(X:8)). (4.13)

Notice how easy it is to take expectations in the case of a binary random
variable. There are just two possible outcomes, and the probability of each of
them is specified by the model.

Because the variance of v; in regression (4.11) is not constant, applying non-
linear least squares to that regression would yield an inefficient estimator of
the parameter vector 3. ML estimates could be obtained by applying itera-
tively reweighted nonlinear least squares. However, Newton’s method, or a
method based on the artificial regression to be discussed in the next section,
is more direct and usually much faster.

Since the ML estimator is equivalent to weighted NLS, we can obtain it as
an efficient GMM estimator. It is quite easy to construct elementary zero
functions for a binary response model. The obvious function for observation ¢
is yy — F(X;3). The covariance matrix of the n-vector of these zero func-
tions is the diagonal matrix with typical element (4.13), and the row vector
of derivatives of the zero function for observation t is — f(X;3)X;. With this
information, we can set up the efficient estimating equations (2.82). As read-
ers are asked to show in Exercise 4.3, these equations are equivalent to the
likelihood equations (4.10).

Intuitively, efficient GMM and maximum likelihood give the same estimator
because, once it is understood that the y; are binary variables, the elementary
zero functions serve to specify the probabilities Pr(y, = 1), and they thus
constitute a full specification of the model.
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Comparing Probit and Logit Models

In practice, the probit and logit models generally yield very similar predicted
probabilities, and the maximized values of the loglikelihood function (4.09)
for the two models therefore tend to be very close. A formal comparison of
these two values is possible. If twice the difference between them is greater
than 3.84, the .05 critical value for the x?(1) distribution, then we can reject
whichever model fits less well at the .05 level.! Such a procedure was discussed
in Section 2.8 in the context of linear and loglinear models. In practice,
however, experience shows that this sort of comparison rarely rejects either
model unless the sample size is quite large.

In most cases, the only real difference between the probit and logit models
is the way in which the elements of 3 are scaled. This difference in scaling
occurs because the variance of the distribution for which the logistic function
is the CDF can be shown to be 72/3, while that of the standard normal
distribution is, of course, unity. The logit estimates therefore all tend to be
larger in absolute value than the probit estimates, although usually by a factor
that is somewhat less than 7/v/3. Figure 4.1 plots the standard normal CDF,
the logistic function, and the logistic function rescaled to have variance unity.

F(z)
1.0

0.9
Rescaled Logistic—/——
0.8
Standard Normal
0.7 7
0.6
0.5
0.4
0.3
0.2

0.1

Figure 4.1 Alternative choices for F(x)

1 This assumes that there exists a comprehensive model, with a single additional
parameter, which includes the probit and logit models as special cases. It is
not difficult to formulate such a model; see Exercise 4.4.
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The resemblance between the standard normal CDF and the rescaled logistic
function is striking. The main difference is that the rescaled logistic function
puts more weight in the extreme tails.

The Perfect Classifier Problem

We have seen that the loglikelihood function (4.09) is bounded above by 0,
and that it achieves this bound if X;3 = —oo whenever 3, = 0 and X;8 = oo
whenever y; = 1. Suppose there is some linear combination of the independent
variables, say X;3° such that

y: = 0 whenever X;3° <0, and
(4.14)
y: = 1 whenever X;3° > 0.

When this happens, there is said to be complete separation of the data. In
this case, it is possible to make the value of ¢(y,3) arbitrarily close to 0 by
setting B = v0B°* and letting v — oo. This is precisely what any nonlinear
maximization algorithm attempts to do if there exists a vector 3° for which
conditions (4.14) are satisfied. Because of the limitations of computer arith-
metic, the algorithm must eventually terminate with some sort of numerical
error at a value of the loglikelihood function that is slightly less than 0. If
conditions (4.14) are satisfied, X;3* is said to be a perfect classifier, since it
allows us to predict y; with perfect accuracy for every observation.

The problem of perfect classifiers has a geometrical interpretation. In the
k-dimensional space spanned by the columns of the matrix X formed from
the row vectors X, the vector 3°® defines a hyperplane that passes through
the origin and that separates the observations for which y; = 1 from those for
which y; = 0. Whenever one column of X is a constant, then the separating
hyperplane can be represented in the (k — 1)-dimensional space of the other
explanatory variables. If we write

X:8° =a® + X233,

with X9 a 1 x (k — 1) vector, then X;3° = 0 is equivalent to X;285 = —a®,
which is the equation of a hyperplane in the space of the X5 that in general
does not pass through the origin. This is illustrated in Figure 4.2 for the
case k = 3. The asterisks, which all lie to the northeast of the separating
line for which X;3® = 0, represent the X;s for the observations with 3, = 1,
and the circles to the southwest of the separating line represent them for the
observations with y, = 0.

It is clear from Figure 4.2 that, when a perfect classifier occurs, the separating
hyperplane is not, in general, unique. One could move the intercept of the
separating line in the figure up or down a little while maintaining the sepa-
rating property. Likewise, one could swivel the line a little about the point
of intersection with the vertical axis. Even if the separating hyperplane were
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Figure 4.2 A perfect classifier yields a separating hyperplane

unique, we could not identify all the components of 3. This follows from the
fact that the equation X;(3® = 0 is equivalent to the equation X;(¢3°®) = 0 for
any nonzero scalar ¢. The separating hyperplane is therefore defined equally
well by any multiple of 3% Although this suggests that we might be able to
estimate 3® up to a scalar factor by imposing a normalization on it, there
is no question of estimating 3° in the usual sense, and inference on it would
require methods beyond the scope of this book.

Even when no parameter vector exists that satisfies the inequalities (4.14),
there may exist a 5® that satisfies the corresponding nonstrict inequalities.
There must then be at least one observation with y; = 0 and X;3® = 0, and
at least one other observation with y; = 1 and X;3°® = 0. In such a case, we
speak of quasi-complete separation of the data. The separating hyperplane is
then unique, and the upper bound of the loglikelihood is no longer zero, as
readers are invited to verify in Exercise 4.6.

When there is either complete or quasi-complete separation, no finite ML
estimator exists. This is likely to occur in practice when the sample is very
small, when almost all of the y; are equal to 0 or almost all of them are equal
to 1, or when the model fits extremely well. Exercise 4.5 is designed to give
readers a feel for the circumstances in which ML estimation is likely to fail
because there is a perfect classifier.

If a perfect classifier exists, the loglikelihood should be close to its upper
bound (which may be 0 or a small negative number) when the maximization
algorithm quits. Thus, if the model seems to fit extremely well, or if the algo-
rithm terminates in an unusual way, one should always check to see whether
the parameter values imply the existence of a perfect classifier. For a detailed
discussion of the perfect classifier problem, see Albert and Anderson (1984).
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4.3 Binary Response Models: Inference

Inference about the parameters of binary response models is usually based on
the standard results for ML estimation that were discussed in Chapter 3. It
can be shown that

n'2(8 = Bo) —% N(0, plim (n ' X1 (80) X) 1), (4.15)

n— 00

where X is an n x k matrix with typical row X;, By is the true value of 3,
and 7' (8) is an n x n diagonal matrix with typical diagonal element

(X,
T,(8) = /(X)) : (4.16)
F(X:8)(1 - F(X:0))
Not surprisingly, the covariance matrix in expression (4.15) looks like the
asymptotic covariance matrix for weighted least-squares estimation, with
weights (4.12), of the GNR that corresponds to regression (4.11). This GNR is

Yt — F(Xt,g) = f(XtB)th + residual. (417)

The factor of f(X;3) that multiplies all the regressors of the GNR accounts
for the numerator of (4.16). Its denominator is simply the variance of the
disturbance in regression (4.11). Two ways to obtain the asymptotic covar-
iance matrix (4.15) using general results for ML estimation are explored in
Exercises 4.7 and 4.8.

In practice, the asymptotic result (4.15) is used to justify the covariance ma-
trix estimator -

Var(8) = (X T(8)X) ", (4.18)
in which the unknown 3 is replaced by ﬂA, and the factor of n~!, which is
needed only for asymptotic analysis, is omitted. This approximation may be
used to obtain standard errors, ¢ statistics, Wald statistics, and confidence
intervals that are asymptotically valid. However, none of these is exact in
finite samples.

It is clear from equations (4.15) and (4.18) that the ML estimator for the
binary response model gives some observations more weight than others. In
fact, the weight given to observation t is proportional to the square root of
expression (4.16) evaluated at 3 = ,[§ It can be shown that, for both the logit
and probit models, the maximum weight is given to observations for which
X;8 = 0, which implies that P, = .5, while relatively little weight is given
to observations for which P; is close to 0 or 1; see Exercise 4.9. This makes
sense, since when P, is close to 0 or 1, a given change in X;3 can have little
effect on P, while when P; is close to .5, such a change has a much larger
effect. Thus we see that ML estimation, quite sensibly, gives more weight to
observations that provide more information about the parameter values.
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Likelihood Ratio Tests

It is straightforward to test restrictions on binary response models using LR
tests. We simply estimate both the restricted and the unrestricted model and
calculate twice the difference between the two maximized values of the loglike-
lihood function. As usual, the LR test statistic is asymptotically distributed
as x2(r), where r is the number of restrictions.

One especially simple application of this procedure can be used to test whether
the regressors in a binary response model have any explanatory power at all.
The null hypothesis is that E(y; | ;) is a constant, and the ML estimate of this
constant is just ¢, the unconditional sample mean of the dependent variable.
It is not difficult to show that, under the null hypothesis, the loglikelihood
function (4.09) reduces to

nylog(y) +n(l —y)log(l —y), (4.19)

which is very easy to calculate. Twice the difference between the unrestricted
maximum of the loglikelihood function and the restricted maximum (4.19)
is asymptotically distributed as x?(k — 1). This statistic is analogous to the
usual F test for all the slope coefficients in a linear regression model to equal
zero, and many computer programs routinely compute it.

An Artificial Regression for Binary Choice Models

There is a convenient artificial regression for binary response models.?. Like
the Gauss-Newton regression, to which it is closely related, the binary re-
sponse model regression, or BRMR, can be used for a variety of purposes,
including parameter estimation, covariance matrix estimation, and hypothesis
testing.

The most intuitive way to think of the BRMR is as a modified version of
the GNR. The ordinary GNR for the nonlinear regression model (4.11) is
(4.17). However, it is inappropriate to use this GNR, because the disturbances
are heteroskedastic, with variance given by (4.13). We need to divide the
regressand and regressors of (4.17) by the square root of (4.13) in order to
obtain an artificial regression with homoskedastic disturbances. The result is
the BRMR,

Vi 2(8) (g — F(XiB)) = V2 (B) f(X:B) Xib + residual,  (4.20)

where V;(8) = F(X:8)(1 — F(X:3)).

If the BRMR is evaluated at the vector of ML estimates ,@, it yields the
covariance matrix R )
sS(X'rP)x) (4.21)

2 This regression was originally proposed, independently in somewhat different
forms, by Engle (1984) and Davidson and MacKinnon (1984b)
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where s is the standard error of the artificial regression. Since (4.20) is a
GLS regression, s tends to 1 asymptotically, and expression (4.21) is therefore
a valid way to estimate Var(,é). However, because there is no advantage to
multiplying by a random variable that tends to 1, it is better simply to use
(4.18), which may readily be obtained by dividing (4.21) by s

Like other artificial regressions, the BRMR can be used as part of a numerical
maximization algorithm, similar to the ones described in Section 1.4. The
formula that determines B(;1), the value of 3 at step j + 1, is

Bi+1) = By) + auybi),

where by is the vector of OLS estimates from the BRMR evaluated at By,
and o ;) may be chosen in several ways. This procedure generally works very
well, but a modified Newton procedure is usually even faster.

The BRMR is particularly useful for hypothesis testing. Suppose that 3 is
partitioned as [3; i Ba], where By is a (k —r)-vector and B, is an r-vector. If
3 denotes the vector of ML estimates subject to the restriction that 8y = 0,
we can test that restriction by running the BRMR

V2 — F) = V2 f, Xuby + VY2 F, X by + residual,  (4.22)

where F, = F(X,;3), f, = f(X;3), and V; = V;(3). Here X, has been parti-
tioned into two vectors, Xy and X2, corresponding to the partitioning of 3.
The regressors that correspond to B; are orthogonal to the regressand, while
those that correspond to B2 are not. All the usual test statistics for by = 0
are valid. The best test statistic to use in finite samples is probably the ex-
plained sum of squares from regression (4.22). It is asymptotically distributed
as x2(r) under the null hypothesis. An F statistic is also asymptotically valid,
but since its denominator of s? is random, and there is no need to estimate
the variance of (4.22), the explained sum of squares is preferable.

In the special case of the null hypothesis that all the slope coefficients are
zero, regression (4.22) simplifies dramatically. In this case, Xj; is just unity,
and ‘7,57 Fh and f; are all constants that do not depend on . Since neither
subtracting a constant from the regressand nor multiplying the regressand
and regressors by a constant has any effect on the F' statistic for by = 0,
regression (4.22) is equivalent to the much simpler regression

y = c1 + Xocy + residuals. (4.23)

The ordinary F statistic for ea = 0 in regression (4.23) is an asymptotically
valid test statistic for the hypothesis that 82 = 0. The fact that (4.23) is just
an OLS regression of y on the constant and explanatory variables accounts
for the claim we made in Section 4.2 that such a regression is not always
completely useless!
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Bootstrap Inference

Because binary response models are fully parametric, it is straightforward to
bootstrap them using procedures similar to those discussed in Part 1, Sec-
tion 7.4 For the model specified by (4.01), the bootstrap DGP is required to
generate binary variables y;, t =1,...,n, in such a way that

P; =E(y; | X)) = F(X:8),

where B is a vector of ML estimates. For a bootstrap test, this vector would
be subject to whatever restrictions are being tested. In order to generate y;,
the easiest way to proceed is to draw u; from the uniform distribution U(0, 1)
and set y; = I(uf < P}), where, as usual, I(-) is an indicator function.
Alternatively, in the case of the probit model, we can generate bootstrap
samples by using (4.04) to generate latent variables and (4.05) to convert
these to the binary dependent variables we actually need.

Bootstrap methods for binary response models may or may not yield more
accurate inferences than asymptotic ones. In the case of test statistics, where
the bootstrap samples must be generated under the null hypothesis, there
seems to be evidence that bootstrap P values are generally more accurate
than asymptotic ones. The value of bootstrapping appears to be particularly
great when the number of restrictions is large and the sample size is moderate.
However, in the case of confidence intervals, the evidence is rather mixed.

The bootstrap can also be used to reduce the bias of the ML estimates. As
we saw in Part 1, Section 3.6, regression models tend to fit too well in finite
samples, in the sense that the residuals tend to be smaller than the true
disturbances. Binary response models also tend to fit too well, in the sense
that the fitted probabilities, the F(Xtﬂf)7 tend to be closer to 0 and 1 than
the true probabilities, the F'(X;8y). This overfitting causes the elements of
B to be biased away from zero.

If we generate B bootstrap samples using the parameter vector ,é, we can
estimate the bias using

B
Bias* ,é 2

where ﬁ; is the estimate of 3 using the j*™ bootstrap sample. Therefore, a
bias-corrected estimate is

B
Bre = B — Bias' (8) = 26 - z

U:J \

Simulation results in MacKinnon and Smith (1998), which are by no means
definitive, suggest that this estimator is less biased and has smaller mean
squared error than the usual ML estimator.



146 Discrete and Limited Dependent Variables

The finite-sample bias of the ML estimator in binary response models can
cause an important practical problem for the bootstrap. Since the probabil-
ities associated with ﬁ tend to be more extreme than the true ones, samples
generated using [§ are more prone to having a perfect classifier. Therefore,
even though there is no perfect classifier for the original data, there may well
be perfect classifiers for some of the bootstrap samples. The simplest way to
deal with this problem is just to throw away any bootstrap samples for which
a perfect classifier exists. However, if there is more than a handful of such
samples, the bootstrap results must then be viewed with skepticism.

Specification Tests

Maximum likelihood estimation of binary response models almost always
yields inconsistent estimates if the form of the transformation function, that
is, F(X;3), is misspecified. It is therefore very important to test whether this
function has been specified correctly.

In Section 4.2, we derived the probit model by starting with the latent variable
model (4.04), which has normally distributed, homoskedastic disturbances. A
more general specification for a latent variable model, which allows for the
disturbances to be heteroskedastic, is

Yy = XeB+w, u ~N(0,exp(2Z,7)), (4.24)

where Z; is a row vector of dimension r of observations on variables that
belong to the information set 2;, and ~ is an r-vector of parameters to be
estimated along with 3. To ensure that both 8 and ~ are identifiable, Z;
must not include a constant term or the equivalent. With this precaution,
the model (4.04) is obtained by setting v = 0. Combining (4.24) with (4.05)

yields the model
X:8
P, =E ) =0 ———
t (ye | ) (exp(Zw))’

in which P; depends on both the regression function X;3 and the skedastic
function exp(2Z;v). Thus it is clear that heteroskedasticity of the u; in a
latent variable model affects the form of the transformation function.

Even when the binary response model being used is not the probit model, it
still seems quite reasonable to consider the alternative hypothesis

P, = F(%) (4.25)

We can test against this alternative by using a BRMR to test the hypothesis
that v = 0. The appropriate BRMR is

V2 — F) = V2 X0 — VY2 X B, Zye + residual,  (4.26)
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where F}, ft, and V; are evaluated at the ML estimates B computed under the
null hypothesis that v = 0 in (4.25). These are just the ordinary estimates for
the binary response model defined by P; = F(X;/3); they are usually probit
or logit estimates. The explained sum of squares from (4.26) is asymptotically
distributed as x2(r) under the null hypothesis.

Heteroskedasticity is not the only phenomenon that may lead the transfor-
mation function F(X;3) to be specified incorrectly. Consider the family of

models for which (6X.8)
-
P =E(y: | ) = F(it)a

: (4.27)

where ¢ is a scalar parameter, and 7(-) may be any scalar function that is
monotonically increasing in its argument and satisfies the conditions

7(0) =0, 7(0) =1, and 77(0) #0, (4.28)

where 7/(0) and 7”(0) are the first and second derivatives of 7(x), evaluated at
2 = 0. The family of models (4.27) allows for a wide range of transformation
functions. It was considered by MacKinnon and Magee (1990), who showed,
by using I’Hopital’s Rule, that

lim(T(gx)) —2 and lim (W) = L12277(0). (4.29)

§—0 §—0 06 2

Hence the BRMR for testing the null hypothesis that § = 0 is
Vi 2 = F) = VP X0b + VT P(XB) fud + residual,  (4.30)

where everything is evaluated at the ML estimates 3 of the ordinary binary
response model that (4.27) reduces to when 6 = 0. The constant factor
7"(0)/2 that arises from (4.29) is irrelevant for testing and has been omitted.
Thus regression (4.30) simply treats the squared values of the index function
evaluated at B as if they were observations on a possibly omitted regressor,
and the ordinary ¢ statistic for d = 0 provides an asymptotically valid test.?

Tests based on the BRMRs (4.26) and (4.30) are valid only asymptotically. It
is extremely likely that their finite-sample performance could be improved by
using bootstrap P values instead of asymptotic ones. Since, in both cases, the
null hypothesis is just an ordinary binary response model, computing boot-
strap P values by using the procedures discussed in the previous subsection
is quite straightforward.

3 There is a strong resemblance between regression (4.30) and the test regression
for the RESET test (Ramsey, 1969), in which squared fitted values are added
to an OLS regression as a test for functional form. As MacKinnon and Magee
(1990) showed, this resemblance is not coincidental.
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4.4 Models for More Than Two Discrete Responses

Discrete dependent variables that can take on three or more different values
are by no means uncommon in economics, and a large number of models has
been devised to deal with such cases. These are sometimes referred to as
qualitative response models and sometimes as discrete choice models. The
binary response models we have already studied are special cases.

Discrete choice models can be divided into two types: ones designed to deal
with ordered responses, and ones designed to deal with unordered responses.
Surveys often produce ordered response data. For example, respondents might
be asked whether they strongly agree, agree, neither agree nor disagree, dis-
agree, or strongly disagree with some statement. Here there are five possible
responses, which evidently can be ordered in a natural way. In many other
cases, however, there is no natural way to order the various choices. A classic
example is the choice of transportation mode. For intercity travel, people
often have a choice among flying, driving, taking the train, and taking the
bus. There is no natural way to order these four choices.

The Ordered Probit Model

The most widely-used model for ordered response data is the ordered probit
model. This model can easily be derived from a latent variable model. The
model for the latent variable is

yto = Xt,B + U, U~ NID(O, 1), (431)

which is identical to the latent variable model (4.04) that led to the ordinary
probit model. As in the case of the latter, what we actually observe is a
discrete variable y; that can take on a limited, known, number of values. For
simplicity, we assume that the number of values is just 3. It should be obvious
how to extend the model to cases in which y; can take on any known number
of values.

The relation between the observed variable y, and the latent variable y; is
assumed to be given by

ye =0 if y; < s
ye =1 if v <yf < 23 (4.32)
ye =2 if y7 > 7o.

Thus y; = 0 for small values of y;, y: = 1 for intermediate values, and y; = 2
for large values. The boundaries between the three cases are determined by
the parameters v; and ~2. These threshold parameters, which usually must
be estimated, determine how the values of y; get translated into the three
possible values of y;. It is essential that y5 > 7. Otherwise, the first and last
lines of (4.32) would be incompatible, and we could never observe y; = 1.
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If X; contains a constant term, it is impossible to identify the constant along
with v and 5. To see this, suppose that the constant is equal to a. Then
it is easy to check that y, is unchanged if we replace the constant by « + ¢
and replace 7; by «; + 6 for i = 1,2. The easiest, but not the only, solution to
this identification problem is just to set & = 0. We adopt this solution here.
In general, with no constant, the ordered probit model has as many threshold
parameters as choices, less one. When there are just two choices, the single
threshold parameter is equivalent to a constant, and the ordered probit model
reduces to the ordinary probit model, with a constant.

In order to work out the loglikelihood function for this model, we need the
probabilities of the three events y; = 0, y; = 1, and y; = 2. The probability
that y; =0 is

Pr(y: =0) =Pr(y; <) =Pr(XeB+ur <)
= PT(Ut <7 - Xtﬂ) = q)(’yl — Xtﬂ)

Similarly, the probability that y, = 2 is

Pr(y, = 2) = Pr(y; > v2) = Pr(Xy B+ u; > 72)
=Pr(us > v2 — XiB) = ®(Xi B — 2).

Finally, the probability that y; =1 is

Pr(y;=1)=1—Pr(y; =0) — Pr(y, = 2)
=1-2(n —X:B) — 2(XeB—2)
=®(y2 — XiB) — 2(n1 — XiB).

These probabilities depend solely on the value of the index function, X;g3,
and on the two threshold parameters.

The loglikelihood function for the ordered probit model derived from (4.31)
and (4.32) is

(B 72) = Y log(®(y — XiB)) + Y log(2(XeB — 2))
+=0

v=2 (4.33)

+ Z 10g(‘1>(’Y2 - XiB) — (71 — Xtﬁ))

ye=1

Maximizing (4.33) numerically is generally not difficult to do, although steps
may have to be taken to ensure that =, is always greater than ;. Note that
the function ® in (4.33) may be replaced by any function F' that satisfies the
conditions (4.02), although it may then be harder to derive the probabilities
from a latent variable model. Thus the ordered probit model is by no means
the only qualitative response model for ordered data.
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The ordered probit model is widely used in applied econometric work. A
simple, graphical exposition of this model is provided by Becker and Kennedy
(1992). Like the ordinary probit model, the ordered probit model can be
generalized in a number of ways; see, for example, Terza (1985). An interesting
application of a generalized version, which allows for heteroskedasticity, is
Hausman, Lo, and MacKinlay (1992). They apply the model to price changes
on the New York Stock Exchange at the level of individual trades. Because
the price change from one trade to the next almost always takes on one of a
small number of possible values, an ordered probit model is an appropriate
way to model these changes.

The Multinomial Logit Model

The key feature of ordered qualitative response models like the ordered probit
model is that all the choices depend on a single index function. This makes
sense only when the responses have a natural ordering. A different sort of
model is evidently necessary to deal with unordered responses. The most
popular of these is the multinomial logit model, sometimes called the multiple
logit model, which has been widely used in applied work.

The multinomial logit model is designed to handle J + 1 responses, for J > 1.
According to this model, the probability that any one of them is observed is

exp (WyB')
Z}']:o exp (W;;87)

Pr(y, =1) = for [ =0,...,J. (4.34)

Here W;; is a row vector of dimension k; of observations on variables that
belong to the information set of interest, and 37 is a k;-vector of parameters,
usually different for each j =0,...,J.

Estimation of the multinomial logit model is reasonably straightforward. The
loglikelihood function can be written as

n J J
Z(Zl(yt = j)W,;87 — 1og(2 eXp(W/'thj))), (4.35)

t=1 \j=0 =0

where I(-) is the indicator function. Thus each observation contributes two
terms to the loglikelihood function. The first is W;;37% where y; = j, and the
second is minus the logarithm of the denominator that appears in (4.34). It
is generally not difficult to maximize (4.35) by using some sort of modified
Newton method, provided there are no perfect classifiers, since the loglikeli-
hood function (4.35) is globally concave with respect to the entire vector of
parameters, [3° i ... i 37]; see Exercise 4.16.

Some special cases of the multinomial logit model are of interest. One of these

arises when the explanatory variables W;; are the same for each choice j. If
a model is intended to explain which of an unordered set of outcomes applies
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to the different individuals in a sample, then the probabilities of all of these
outcomes can be expected to depend on the same set of characteristics for
each individual. For instance, a student wondering how to spend Saturday
night may be able to choose among studying, partying, visiting parents, or
going to the movies. In choosing, the student takes into account things like
grades on the previous midterm, the length of time since the last visit home,
the interest of what is being shown at the local movie theater, and so on. All
these variables affect the probability of each possible outcome.

For models of this sort, it is not possible to identify J+1 parameter vectors 37,
j = 0,...,J. To see this, let X; denote the common set of explanatory
variables for observation ¢, and define v/ = 89 — 8% for j = 1,...,J. On
replacing the W;; by X, for all j, the probabilities defined in (4.34) become,
forl=1,...,J,

exp (Xtﬁl) _ €Xp (Xt’)’l)

Pr(y, =1) = — = —,
Sl oexp(X87) 143 exp(Xiy7)

where the second equality is obtained by dividing both the numerator and the
denominator by exp (X;3%). For outcome 0, the probability is just
1

Pr(yt = 0) = —.
L+ 307 exp(Xiy)

It follows that all J 4 1 probabilities can be expressed in terms of the para-
meters v/, j = 1,...,J, independently of 3°. In practice, it is easiest to
impose the restriction that 8° = 0, which is then enough to identify the para-
meters 3%, j = 1,...,J. When J = 1, it is easy to see that this model reduces
to the ordinary logit model with a single index function X;3%.

In certain cases, some but not all of the explanatory variables are common to
all outcomes. In that event, for the common variables, a separate parameter
cannot be identified for each outcome, for the same reason as above. In order
to set up a model for which all the parameters are identified, it is necessary to
set to zero those components of 3% that correspond to the common variables.
Thus, for instance, at most J of the W;; vectors can include a constant.

Another special case of interest is the so-called conditional logit model. For
this model, the probability that agent ¢ makes choice [ is

exp (WuB)

Y Z;']:o exp (W, 8)

(4.36)

where W,; is a row vector with k components for each j =0,...,J, and Bis a
k—vector of parameters, the same for each j. This model has been extensively
used to model the choice among competing modes of transportation. The
usual interpretation is that the elements of W;; are the characteristics of
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choice j for agent ¢, and agents make their choice by considering the weighted
sums W;;8 of these characteristics.

It is necessary that none of the explanatory variables in the W;; vectors should
be the same for all J + 1 choices. In other words, no single variable should
appear in each and every W;;. It is easy to see from (4.36) that, if there
were such a variable, say wy;, for some i = 1,..., k, then this variable would
be multiplied by the same parameter §; for each choice. In consequence, the
factor exp(wy;8;) would appear in the numerator and in every term of the
denominator of (4.36) and could be cancelled out. This implies, in particular,
that none of the explanatory variables can be constant for all t = 1,...,n and
allj=0,...,J.

An important property of the general multinomial logit model defined by the
set of probabilities (4.34) is that

Pr(ys=1) _ exp(Wap')
Pr(y, =j) exp(W;B7)

for any two responses [ and j. Therefore, the ratio of the probabilities of any
two responses depends solely on the explanatory variables Wy and W;; and
the parameters @' and 87 associated with those two responses. It does not
depend on the explanatory variables or parameter vectors specific to any of
the other responses. This property of the model is called the independence of
irrelevant alternatives, or ITA, property.

The ITA property is often quite implausible. For example, suppose there are
three modes of public transportation between a pair of cities: the bus, which
is slow but cheap, the airplane, which is fast but expensive, and the train,
which is a little faster than the bus and a lot cheaper than the airplane. Now
consider what the model says would happen if the rail line were upgraded,
causing the train to become much faster but considerably more expensive.
Intuitively, we might expect a lot of people who previously flew to take the
train instead, but relatively few to switch from the bus to the train. However,
this is not what the model says. Instead, the IIA property implies that the
ratio of travelers who fly to travelers who take the bus is the same whatever
the characteristics of the train.

Although the ITA property is often not a plausible one, it can easily be tested;
see Hausman and McFadden (1984), McFadden (1987), and Exercise 4.22.
The simplicity of the multinomial logit model, despite the ITA property, makes
this model very attractive for cases in which it does not appear to be incom-
patible with the data.

The Nested Logit Model

A discrete choice model that does not possess the ITA property is the nested
logit model. For this model, the set of possible choices is decomposed into
subsets. Let the set of outcomes {0,1,...,J} be partitioned into m disjoint
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subsets A;, i = 1,...,m. The model then supposes that, conditional on
choosing an outcome in subset A;, the choice among the members of A; is
governed by a standard multinomial logit model. We have, for j € A;, that

_ N exp(Wi;87/6;)
Pr(y. =jly € Ai) = Sn epoW}lBl/é)i)' (4.37)

It is clear that the parameter 6;, which can be thought of as a scale para-
meter for the parameter vectors 37, j € A, is not identifiable on the basis of
choice within the elements of subset A;. However, it is what determines the
probability of choosing some element in A;. Specifically, we assume that

N exp(@ihti)
Pr(y € A;) = ST exp(Ouhur) (4.38)

where we have defined the inclusive value of subset A; as:

hai = log (Y exp(W;87/6,)) (4.39)

JEA;

Since it follows at once from (4.38) that Y.;", Pr(y, € A;) = 1, we can see
that y; must belong to one of the disjoint sets A;.

By putting together (4.37) and (4.38), we obtain the J+1 probabilities for the
different outcomes. For each j =0,...,J, let i(j) be the subset containing j.
In other words, j € A;(;). Then we have that

Pr(y.=j)=Pr(ye =jly: € Ai(j))Pr(yt € Ai(j))

__ oxWyB/0p) (i i)
Dieay,, XP(WulB'/0;)) 32121 exp(Orhir)

(4.40)

It is not hard to check that, if §; = 1 for all ¢+ = 1,...,m, the probabilities
(4.40) reduce to the probabilities (4.34) of the usual multinomial logit model;
see Exercise 4.17. Thus the multinomial logit model is contained within the
nested logit model as a special case. It follows, therefore, that testing the
multinomial logit model against the alternative of the nested logit model, for
some appropriate choice of the subsets A;, is one way to test whether the
ITA property is compatible with the data.

An Artificial Regression for Discrete Choice Models

In order to perform the test of the ITA property mentioned just above, and
to perform inference generally in the context of discrete choice models, it is
convenient to be able to make use of an artificial regression. The simplest
such artificial regression was proposed by McFadden (1987) for multinomial
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logit models. In this section, we present a generalized version that can be
applied to any discrete choice model. We call this the discrete choice artificial
regression, or DCAR.

As usual, we assume that there are J 4 1 possible outcomes, numbered from
j=0to j = J. Let the probability of choosing outcome j for observation ¢ be
given by the function II;(0), where 6 is a k-vector of parameters. For the
multinomial logit model, 8 would include all of the independent parameters
in the set of parameter vectors 37, j = 0,...,J. The function II;;(-) usually
also depends on exogenous or predetermined explanatory variables that are
not made explicit in the notation. We require that ijo IT;;(0) =1 for all
t=1,...,n and for all admissible parameter vectors 6, in order that the set
of J + 1 outcomes should be exhaustive.

For each observation ¢, ¢t = 1,...,n, define the J 41 indicator variables d;; as
dij = I(y; = 7). Then the loglikelihood function of the discrete choice model

is given by i
n
=> " dijlogI;(0 (4.41)

t=1 j=0

Just as for the loglikelihood functions (4.09) and (4.35), the contribution made
by observation t is the logarithm of the probability that y; should have taken
on its observed value.

The DCAR has n(J + 1) “observations,” J + 1 for each real observation. For
observation t, the J41 components of the regressand, evaluated at 6, are given
by Ht‘jl/z(ﬂ) (d¢;—114;(8)), j =0,...,J. The components of the regressor cor-
responding to parameter 6;, i = 1, , k, are given by II 1/2( )OI14;(0)/00;.
Thus the DCAR may be written as

11;/2(0) (dy; — 11,5(0)) = 11;;/%(0)T;;(0)b + residual, (4.42)

fort =1,...,nand j = 0,...,J. Here T};;(0) denotes the 1 x k vector of
the partial derivatives of I1;;(0) with respect to the components of 6, and, as
usual, b is a k-vector of artificial parameters. It is easy to see that the scalar
product of the regressand and the regressor corresponding to 6; is

n J
(dij —11,5(0))011,;(8)/06;
2.2 114;(6) '

(4.43)

0(0) &, Ol1,;(0)/00;
_sztj Hfj(g) ?

and we can see that this is equal to (4.43), because differentiating the iden-
tity Z}.]ZOHU(O) =1 with respect to 6; shows that Z}]:o 011,;(0)/06; = 0.
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It follows that the regressand is orthogonal to all the regressors when all the
artificial variables are evaluated at the maximum likelihood estimates 6.

In Exercises 4.18 and 4.19, readers are asked to show that regression (4.42),
the DCAR, satisfies the other requirements for an artificial regression used
for hypothesis testing. See also Exercise 4.22, in which readers are asked to
implement by artificial regression the test of the ITA property discussed at the
end of the previous subsection.

As with binary response models, it is easy to bootstrap discrete choice models,
because they are fully parametrically specified. For the model characterized
by the loglikelihood function (4.41), an easy way to implement the bootstrap
DGP is, first, to construct the cumulative probabilities P; 6) = Hn(e)
for j =0,...,J — 1, and then to draw a random number, u; say for obser-
vation t, from the uniform distribution U(0,1). The bootstrap dependent
variable y; is then set equal to

<
|
—

yi = I(uj > P;(0)).
i

Il
=)

All of the indicator functions in the above sum are zero if u} < PtO(O) =
I1,(6), an event which occurs with probability I1,0(8), as desired. Similarly,
yf =g for j=1,...,J if and only if Pt(] 1)(0) <ul < PtJ(O) an event that

occurs with probablhty HtJ(B) =P 6) — Pt(J,l)(O).

The Multinomial Probit Model

Another discrete choice model that can sometimes be used when the ITA
property is unacceptable is the multinomial probit model. This model is
theoretically attractive but computationally burdensome. The J + 1 possible
outcomes are generated by the latent variable model

yt] = myﬂ] + Utj, Uy ~ N(07 9)7 (444)

where the yg; are not observed, and w; is a 1 x (J + 1) vector with typical
element u;;. What we observe are the binary variables y;;, which are assumed
to be determined as follows:

i=1ify. —yy >0 foralli=0,...,J,
Ytj Yii — Yii (4.45)
y+; = 0 otherwise.

As with the multinomial logit model, separate coefficients cannot be identified
for all J+ 1 outcomes if an explanatory variable is common to all of the index
functions Vthﬂj. The solution to this problem is the same as before: We set
the components of B° equal to 0 for all such variables.
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It is clear from (4.45) that the observed y;; depend only on the differences
Yi; — Yi0» 3 =1,...,J. Let z;; be equal to this difference. Then

yej = 1if 27 > 27 foralli=1,...,J, and z;; > 0,
J tg 1 tg (446)
yy; = 0 otherwise.

Thus the probabilities Pr(y;; = 1) are completely determined by the joint
distribution of the z;;. We write the covariance matrix of this distribution
as X, where X' is a J x J symmetric positive definite matrix, uniquely deter-
mined by the (J+1) X (J +1) matrix §2 of (4.44), although §2 is not uniquely
determined by X. It follows that the matrix 2 cannot be identified on the
basis of the observed variables ¥, alone.

In fact, even X is identified only up to scale. This can be seen by observing
that, if all the zfj in (4.46) are multiplied by the same positive constant, the
values of the y;; remain unchanged. In practice, it is customary to set the first
diagonal element of X equal to 1 in order to set the scale of . Once the scale
is fixed, then the only other restriction on X' is that it must be symmetric
and positive definite. In particular, it may well have nonzero off-diagonal
elements, and these give the multinomial probit model a flexibility that is
not shared by the multinomial logit model. In consequence, the multinomial
probit model does not have the IIA property.

The latent variable model (4.44) can be interpreted as a model determining the
utility levels yielded by the different outcomes. Then the correlation between
zp; and zp;, for i # j, might measure the extent to which a preference for
flying over driving, say, is correlated with a preference for taking the train
over driving. In this example of transportation mode choice, we are assuming
that driving is outcome 0. It seems fair to say that, although these correlations
are what provides multinomial probit with greater flexibility than multinomial
logit, they are a little difficult to interpret directly.

Unfortunately, the multinomial probit model is not at all easy to estimate.
The event y;; = 1 is observed if and only if

Y — Yy >0 foralli=1,...,J+1,
and the probability of this event is given by a J-dimensional integral. There-
fore, in order to evaluate the loglikelihood function just once, the integral
corresponding to whatever event occurred must be computed for every ob-
servation in the sample. This must generally be done a large number of
times during the course of whatever nonlinear optimization procedure is used.
Evaluating high-dimensional integrals of the normal distribution is analytic-
ally intractable. Consequently, except when J is very small, the multinomial
probit model is usually estimated by simulation-based methods. See Hajivas-
siliou and Ruud (1994) and Gouriéroux and Monfort (1996) for discussions of
some of the methods that have been proposed.
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The treatment of qualitative response models in this section has necessarily
been incomplete. Detailed surveys of the older literature include Amemiya
(1985, Chapter 9) and McFadden (1984). For a more up-to-date survey, but
one that is relatively superficial, see Maddala and Flores-Lagunes (2001).

4.5 Models for Count Data

Many economic variables are nonnegative integers. Examples include the
number of patents granted to a firm and the number of visits to the hospital
by an individual, where each is measured over some period of time. Data of
this type are called event count data or, simply, count data. In many cases,
the count is 0 for a substantial fraction of the observations.

One might think of using an ordered discrete choice model like the ordered
probit model to handle data of this type. However, this is usually not ap-
propriate, because such a model requires the number of possible outcomes to
be fixed and known. Instead, we need a model for which any nonnegative
integer value is a valid, although perhaps very unlikely, value. One way to
obtain such a model is to start from a distribution which has this property.
The most popular distribution of this type is the Poisson distribution. If a
discrete random variable Y follows the Poisson distribution, then

e~ NY
y!

Pr(Y =y) = y=0,1,2,.... (4.47)
This distribution is characterized by a single parameter, A. It can be shown
that the probabilities (4.47) sum to 1 over y = 0,1,2,..., and that the ex-
pectation and the variance of a Poisson random variable are both equal to A,
which must therefore take on only positive values; see Exercise 4.23.

The Poisson Regression Model

The simplest model for count data is the Poisson regression model, which is
obtained by replacing the parameter A in (4.47) by a nonnegative function of
regressors and parameters. The most popular choice for this function is the
exponential mean function

At(B) = exp(X:8), (4.48)

which makes use of the linear index function X;3. Other specifications for
the index function, possibly nonlinear, can also be used. Because the linear
index function in (4.48) is the argument of an exponential, the model specified
by (4.48) is sometimes called loglinear, since the log of A\;(3) is linear in 8.
For any valid choice of A\;(3), we obtain the Poisson regression model

exp(—)\t(ﬁ)) (/\t(ﬂ))y

Pr(Y; =y) = )

. y=0,1,2,.... (4.49)
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If the observed count value for observation ¢ is y;, then the contribution to
the loglikelihood function is the logarithm of the right-hand side of (4.49),
evaluated at y = y;. Therefore, the entire loglikelihood function is

n

Uy, B) = (—exp(XiB) + 4. X, 8 — log 1) (4.50)

t=1
under the exponential mean specification (4.48).

Maximizing the function (4.50) is not difficult. The likelihood equations are

%ﬁ?ﬁ) = g(yt - eXp(XtB))Xt =0, (4.51)
and the Hessian matrix is
H(B) = — 3 esp(XuB)XIX, = X TT(B)X, (152)

t=1

where 7°(3) is an n x n diagonal matrix with typical diagonal element equal to
Y:(B) = exp(X:03). Since H(B) is negative definite, optimization techniques
based on Newton’s Method generally work very well. Inferences may be based
on the standard asymptotic result that the asymptotic covariance matrix is
equal to the inverse of the information matrix. This leads to the estimator

Var(8) = (XTTX)!, (4.53)

where T = Y(B). This estimated covariance matrix looks very much like
the one for weighted least-squares estimation. In fact, if we were to run the
nonlinear regression

ye = exp(XeB) + w (4.54)

by weighted least squares, using weights T;l/ 2(ﬁ) = exp(—%Xt B3), the first-
order conditions, treating the weights as fixed, would be equations (4.51).
Regression (4.54) is the analog for the Poisson regression model of regression
(4.11) for the binary response model. Thus ML estimation of the Poisson
regression model specified by (4.49), where A\;(3) is given by an exponential
mean function, is seen to be equivalent to weighted NLS estimation of the
nonlinear regression model (4.54).

The weighted NLS interpretation suggests that an artificial regression must
be available. This is indeed the case. Just as the BRMR (4.20) is the GNR
that corresponds to the weighted version of (4.11), the artificial regression for
the Poisson regression model is the GNR that corresponds to the weighted
version of (4.54), namely,

exp(—1 X, 8) (y: — exp(X;8)) = eXp(%Xt,@)th + residual. (4.55)
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Like the GNR and the BRMR, this regression may be used for a number of
purposes, including estimating the covariance matrix of B It is particularly
useful for testing restrictions on 3 without having to estimate the model more
than once; see Exercise 4.25.

Testing for Overdispersion in the Poisson Regression Model

Although its simplicity makes it attractive, the Poisson regression model is
rarely entirely satisfactory. In practice, even though it may predict the mean
event count accurately, it frequently tends to underpredict the frequency of
zeros and large counts, because the variance of the actual data is larger than
the variance predicted by the Poisson model. This failure of the model is called
overdispersion. Before accepting a Poisson regression model, even tentatively,
it is highly advisable to test it for overdispersion.

Several tests for overdispersion have been proposed. The simplest of these
are based on the artificial OPG regression that we introduced in Section 3.5
for models estimated by maximum likelihood. The regressand of the OPG
regression is equal to 1 for each observation, and the regressors are the partial
derivatives of the loglikelihood contribution with respect to the parameters.
Thus observation ¢ of the OPG regression based on the loglikelihood function
(4.50) can be written as

1= (y: — exp(X;3)) X;b + residual. (4.56)

When the regressors in (4.56) are evaluated at the ML estimates ,5', they are
orthogonal to the regressand.

If the variance of y; is indeed equal to exp(X;3), its expectation according to
the loglinear Poisson regression model, then the quantity

2(8) = (v — exp(XeB)) — e (4.57)

has expectation 0.4 We can test whether the expectation is really zero by
running the OPG regression (4.56), adding an extra regressor with typical
element zt(ﬁ) Both n minus the sum of squared residuals from this aug-
mented OPG regression and the t statistic associated with the extra regressor
provide asymptotically valid test statistics; the former is asymptotically dis-
tributed as x%(1) under the null hypothesis, while the latter is asymptotically
distributed as N(0, 1).

Testing can be made a little simpler if we note that the extra regressor (4.57) is
uncorrelated with the regressors in (4.56) under the null. This is a simple con-
sequence of the fact, which readers are asked to demonstrate in Exercise 4.24,

4 The quantity (y: — exp(X: ,f:'l))2 — exp(X;¢@3) also has expectation 0 and could
be used in place of (4.57) in an OPG test regression. However, the simplifica-
tions that are discussed below would not be possible if the test regressor were
redefined in this way.
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that the third central moment of the Poisson distribution with parameter A
is equal to A. We may write the testing OPG regression as

t = Gb+ c2 + residuals, (4.58)

where ¢ is an n-vector of 1s, the matrix G = G(,@) contains the regressors

of (4.56) evaluated at B, and 2 = z(0) is the extra regressor, with typical

element z;(3). By the FWL Theorem, a test of the hypothesis that ¢ = 0 can
equally well be performed by running the FWL regression

Mgt = cMg# + residuals, (4.59)

where Mg is the orthogonal projection matrix that projects on to the orthog-
onal complement of the span of the columns of G. But, since those columns
are orthogonal to ¢, the regressand of (4.59) is just ¢. In addition, because
z(B) is uncorrelated with the columns of G(3), the regressor is asymptotic-
ally equal to 2. Therefore, regressions (4.58) and (4.59) are asymptotically
equivalent to a regression of ¢ on 2. Once again, either the explained sum of
squares or the t statistic for ¢ = 0 yields an asymptotically valid test.

In Part 1, Exercise 5.10, we saw that every t statistic is proportional to the
cotangent of a certain angle, namely, the angle between the regressand and
the regressor of the FWL regression that can be used to compute the statistic.
Since this angle does not depend on which vector is the regressor and which
vector is the regressand, this result implies that the ¢ statistic from regressing
L on 2 is identical to the ¢ statistic from regressing 2 on ¢. If we run the regres-
sion in this direction, however, we do not obtain the same ESS. Nevertheless,
the ESS can be used as a valid statistic if the variables are scaled by estimates
of the standard deviations of the elements of z(3). This rescaling yields the
artificial regression that is most commonly used to test for overdispersion in
the Poisson regression model.

Observe that, if Y is a random variable which follows the Poisson distribution
with parameter A, then

B0 =02 =) = B0 =07 = 0r =0 =)
=E(Y =N +E((Y — A)?) + A
—2E((Y = A)?) = 2AE((Y — A)?) = 2AE(Y — \)
=AF3AZ A4+ A2 —20 —2)02 =222
where we have used the result of Exercise 4.24 for both the third and fourth

central moments of the Poisson distribution. A suitable testing regression
with scaled variables can therefore be written as

\% exp(—X:8)z(8) = % exp(—X;B8)c + residual, (4.60)
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and both the ¢ statistic and the explained sum of squares provide asymptot-
ically valid test statistics.

The tests based on regression (4.60) were originally proposed by Cameron
and Trivedi (1990). They also suggest tests based on regressions like (4.60),
but with the regressor of (4.60) multiplied by various functions of the fitted
values exp(Xt,@). Common choices are the fitted values themselves or their
squares. Cameron and Trivedi show that a test in which the regressor is
multiplied by the function g(eXp(Xt,é)) of the fitted value has greatest power
against DGPs for which the true variance of g, is of the form exp(X;83) +
ag(exp(X:B)) for some scalar . Tests with more than one degree of freedom
can be performed by using several regressors constructed in this way. In all
cases, an appropriate test statistic is the ESS. It is asymptotically distributed
under the null as x?(r), where r is the number of regressors.

Other tests for overdispersion have been proposed by Cameron and Trivedi
(1986), Lee (1986), and Mullahy (1997). Note that the finite-sample distribu-
tions of all these test statistics may differ substantially from their asymptotic
ones. Better results may well be obtained by using bootstrap P values. A
parametric bootstrap DGP is appropriate. It can easily be implemented by
using a procedure for obtaining drawings from the Poisson distribution similar
to the one we discussed for discrete choice models in the previous section.

Consequences of Overdispersion in the Poisson Regression Model

Finding evidence of overdispersion does not necessarily mean that we must
abandon the Poisson regression model. Since the model is equivalent to
weighted NLS, and weighted NLS is consistent even when the weights are
incorrect, the ML estimator ,@ must be consistent whenever the exponential
mean function A\:(3) is correctly specified. In this situation, ,(3 is actually a
quasi-ML estimator, or QMLE; see Section 3.4. However, as is generally the
case for quasi-ML estimators, the covariance matrix estimator (4.53) is not
valid if the entire model is not specified correctly.

To find the asymptotic covariance matrix of 3 when the model is not correctly
specified, we may use the result (3.40), which is true for every quasi-ML
estimator. If we replace the generic parameter vector 8 of that equation by 3,
the limiting covariance matrix becomes

H 1 (Bo)I(Bo) H~(Bo). (4.61)

For the Poisson regression model, we see from (4.52) that

n—oo

H(Bo) = — plim L )~ exp(X, Bo) X/ X; = — plim L X X(Bo)X.  (4.62)
n i—1 n—oo 1

From the definitions (3.31) and (3.32), and from the expression given in (4.51)
for the gradient of the loglikelihood, it follows that the asymptotic information
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matrix is

9(Bo) = plim %Z (Bo) X/ X, = plim L X702(830) X, (4.63)

TL*)OO

where w?(8y) = E(yt — exp(Xt,BO)) is the conditional variance of y;, and
2(Bo) is the diagonal matrix with typical diagonal element w?(3p).

When the model is correctly specified, the conditional variance w? is equal

to the conditional mean exp(X;3p), and the asymptotic covariance matrix
(4.61) simplifies to I71(By) = —H~1(By). When the model is not correctly
specified, however, this simplification does not occur.

One quite plausible specification for the conditional variance of y; is

wi(B) = 7 exp(X, ), (4.64)

in which the conditional variance is proportional to the conditional expecta-
tion. Under this specification, the asymptotic covariance matrix (4.61) sim-
plifies to 72 times —H~1(By). Since this is not a sandwich covariance matrix,
it is clear that B remains asymptotically efficient in this special case. An easy
way to estimate this covariance matrix is simply to run the artificial regres-
sion (4.55), with 8 = ,3 Because s2 provides a consistent estimator of 2,
the OLS covariance matrix from this regression is asymptotically valid; see
Exercise 4.26.

Even if we do not specify the conditional variance of y;, we can obtain
an asymptotically valid covariance matrix whenever the matrices (4.62) and
(4.63) can be estimated consistently. To do this, we need to use a sandwich
estimator similar to the HCCME. We can estimate (4.62) consistently if we
replace By by ,@ In order to estimate (4.63) consistently, we replace the con-
ditional variance w?(Bg) by the squared residual (y; — exp(Xtﬁ))z. Thus a
valid estimator of Var(8) when only the conditional mean part of the Poisson
regression model is correctly specified is

Var,(8) = (X TX) ' X QX(XTX), (4.65)

where §2 is the n x n diagonal matrix with diagonal element ¢ given by
(¢ — exp(X;B))2 As usual, the “h” subscript indicates that the matrix (4.65)
is valid in the presence of heteroskedasticity of unknown form. Given the sub-
stantial risk of misspecification, it is strongly recommended to use the sand-
wich estimator (4.65) rather than (4.53) in practical applications. Notice that
the sandwich estimator is very easy to calculate without any special software.
If we run the artificial regression (4.55) and ask the regression package to com-
pute an HCCME, it gives us either (4.65) or something that is asymptotically
equal to (4.65); see Exercise 4.27.

Of course, except in the special case of (4.64), the ML estimator ,é is not
asymptotically efficient when the Poisson regression model is not correctly
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specified. The fact that the covariance matrix has the sandwich form makes
this clear. Moreover, ,3 is not even consistent if the conditional mean function
exp(X;3) is not correctly specified. Many other models for count data have
been suggested, and one or more of them may well fit better than the Poisson
regression model does. Wooldridge (1999) and Cameron and Trivedi (2001)
provide more advanced introductions to the topic of count data, and Cameron
and Trivedi (1998) provides a detailed treatment of a large number of different
models for data of this type.

4.6 Models for Censored and Truncated Data

Continuous dependent variables can sometimes take only a limited range of
values. This may happen because they have been censored or truncated in
some way. These two terms are easily confused. A sample is said to be
truncated if some observations have been systematically excluded from the
sample. For example, a sample of households with incomes under $200,000
explicitly excludes households with incomes over that level. It is not a random
sample of all households. If the dependent variable is income, or something
correlated with income, results using the truncated sample could potentially
be quite misleading.

On the other hand, a sample has been censored if no observations have been
systematically excluded, but some of the information contained in them has
been suppressed. Think of a “censor” who reads people’s mail and blacks
out certain parts of it. The recipients still get their mail, but parts of it are
unreadable. To continue the previous example, suppose that households with
all income levels are included in the sample, but for those with incomes in
excess of $200,000, the amount reported is always exactly $200,000. This sort
of censoring is often done in practice, presumably to protect the privacy of
high-income respondents. In this case, the censored sample is still a random
sample of all households, but the values reported for high-income households
are not the true values.

Any dependent variable that has been either censored or truncated is said to
be a limited dependent variable. Special methods are needed to deal with
such variables because, if we simply use least squares, the consequences of
truncation and censoring can be severe. Consider the regression model

yP = P14 Bows +up, up ~ NID(0,02), (4.66)

where y; is a latent variable. We actually observe y;, which differs from
y; because it is either truncated or censored. For simplicity, suppose that
censorship or truncation occurs whenever y; is less than 0. Clearly, the larger
is the disturbance wu;, the larger is y;, and thus the greater must be the
probability that y7 > 0. This probability must also depend on x;. Thus, for
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Figure 4.3 Effects of censoring and truncation

the sample we actually observe, u; does not have conditional expectation 0
and is not uncorrelated with x;. Since the disturbances no longer satisfy these
key assumptions, it is not surprising that OLS estimation using truncated or
censored samples yields estimators that are biased and inconsistent.

The consequences of censoring and truncation are illustrated in Figure 4.3.
The figure shows 200 (x¢,y;) pairs generated from the model (4.66). The 71
observations with y; < 0 are shown as circles, and the 129 observations with
yr = y; > 0 are shown as black dots. The solid line is the true regression
function, and the nearby dotted line is the regression function obtained by
OLS estimation using all the observations. When the data are truncated, the
observations with y; < 0 are discarded. OLS estimation using this truncated
sample yields the regression line shown in dots and dashes. When the data
are censored, these 71 observations are retained, but y; is set equal to 0 for
all of them. OLS estimation using this censored sample yields the dashed
regression line. Neither of these regression lines is at all close to the true one.

In this example, the consequences of either censoring or truncation are quite
severe. Just how severe they are in any particular case depends on o2, the
variance of the disturbances in the model (4.66), and on the extent of the
censoring or truncation. If o2 is very small relative to the variation in the
fitted values, so is the bias induced by limiting the dependent variable. This
bias is also small if few observations are censored or truncated. Conversely,
when o2 is large and many observations are censored or truncated, the bias
can be extremely large.
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Truncated Regression Models

It is quite simple to estimate a truncated regression model by maximum like-
lihood if the distribution of the disturbances in the latent variable model is
assumed to be known. By far the most common assumption is that the distur-
bances are normally, independently, and identically distributed, as in (4.66).
We restrict our attention to this special case.

If the regression function for the latent variable model is X; 3, the probability
that y; is included in the sample is

Pr(y; > 0) =Pr(X;8+u > 0)
=1- Pr(ut < _Xtﬁ) =1- PI‘(Ut/O’ < _XtB/O')
=1-9(-X;8/0) = &(X:B/0).
When y > 0 and y,; is observed, the density of y; is proportional to the
density of y7. Otherwise, the density of y; is 0. The factor of proportionality,

which is needed to ensure that the density of y; integrates to unity, is the
inverse of the probability that yf > 0. Therefore, the density of y; can be

written as
o 'o((ye — X:8)/0)
(X, 8/0) .
This implies that the loglikelihood function, which is the sum over all ¢ of the
log of the density of y, conditional on yy > 0, is

n

- 55> (i —XiB)*
2
20 —

Uy, B.0) = — Llog(2r) — nlog (o)
. (4.67)
— > log ®(X.B/0).

t=1

Maximization of expression (4.67) is generally not difficult. Even though the
loglikelihood function is not globally concave, there is a unique MLE; see
Orme and Ruud (2002).

The first three terms in expression (4.67) comprise the loglikelihood function
that corresponds to OLS regression; see equation (3.10). The last term is
minus the summation over all ¢ of the logarithms of the probabilities that an
observation with regression function X;3 belongs to the sample. Since these
probabilities must be less than 1, this term must always be positive. It can
be made larger by making the probabilities smaller. Thus the maximization
algorithm chooses the parameters in such a way that these probabilities are
smaller than they would be for the OLS estimates. The presence of this
fourth term therefore causes the ML estimates of 8 and o to differ, often
substantially, from their least-squares counterparts, and it ensures that the
ML estimates are consistent.
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It is not difficult to modify this model to allow for other forms of truncation.
The sample can be truncated from above, from below, or from both above
and below. The truncation points must be known, but they can be fixed or
they can vary across observations. See Exercises 4.29 and 4.30.

Censored Regression Models

The most popular model for censored data is the tobit model, which was
first suggested in Tobin (1958), which is quite a famous paper. The simplest
version of the tobit model is

yp = XiB+w, w ~NID(0,07),
ye =y, if y7 >0; y =0 otherwise.

Here y; is a latent variable that is observed whenever it is positive. However,
when the latent variable is negative, the observation is censored, and we simply
observe y; = 0. The tobit model can readily be modified to allow for censoring
from above instead of from below or for censoring from both above and below.
It can also be modified to allow the point at which the censoring occurs to
vary across observations in a deterministic way; see Exercise 4.31.

The loglikelihood function for the tobit model is a little unusual, but it is not
difficult to derive. First, it is easy to see that

Pr(y: = 0) = Pr(yy <0) =Pr(XyB8+ ut <0)

- Pr(ﬂ < @) =o(-X;3/0).

g

Therefore, since there is a positive probability that y; = 0, the contribution
to the loglikelihood function made by observations with y; = 0 is not the log
of the density, but the log of that positive probability, namely,

li(yt, B,0) = log ®(—X;3/0). (4.68)

If y; is positive, the density of y; exists, and the contribution to the loglikeli-
hood is its logarithm,

log (&6 (e — X.8)/0)), (4.69)

which is the contribution to the loglikelihood function for an observation in a
classical normal linear regression model without any censoring.

Combining expression (4.68), the contribution for the censored observations,
with expression (4.69), the contribution for the uncensored ones, we find that
the loglikelihood function for the tobit model is

> log®(-XiB/o) + Y log(Lo((w - XiB)/o)).  (470)

y:=0 y¢ >0
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This loglikelihood function is rather curious. The first term is the sum of the
logs of probabilities, for the censored observations, while the second is the
sum of the logs of densities, for the uncensored observations. This reflects the
fact that the dependent variable in a tobit model has a distribution that is
a mixture of discrete and continuous random variables. This fact does not,
however, prevent the ML estimator for the tobit model from having the usual
properties of consistency and asymptotic normality, as was shown explicitly
by Amemiya (1973c).

It is generally somewhat easier to maximize the loglikelihood function (4.70)
if the tobit model is reparametrized. The new parameters are v = (/o
and h =1/0. Since the loglikelihood function can be shown to be globally
concave in the latter parametrization (Olsen, 1978), there must be a unique
maximum no matter which parametrization is used. Even without any re-
parametrization, it is generally not at all difficult to maximize (4.70) by using
a quasi-Newton algorithm.

The (k + 1) x (k4 1) covariance matrix of the ML estimates may, as usual,
be estimated in several ways. Analytic expressions for the information matrix
exist (Amemiya, 1973c), and at least two artificial regressions are available.
One of these is the OPG regression that we discussed in Section 2.5, and the
other is a double-length regression proposed by Orme (1995). The latter is
substantially more complicated than the former, but it seems to work very
much better. Since the tobit model is fully specified, it is straightforward
to employ the parametric bootstrap. Simulation results in Davidson and
MacKinnon (1999a) suggest that inferences based on it can be much more
reliable than ones based only on asymptotic theory.

Testing the Tobit Model

There is an interesting relationship among the tobit, truncated regression, and
probit models. If we both add and subtract the term »: log(®(X:3/0))
from the tobit loglikelihood function (4.70), it becomes

> 10g( (e — XiB)/0)) = 3 log @(Xi3/0)

Yy >0 y: >0 (4 71)
+ ) log®(—X,B8/0) + Y _ log ®(X,8/0).
y¢=0 y:>0

The first line of (4.71) is the loglikelihood function for a truncated regression
model estimated over all the observations for which y; > 0; compare (4.67).
The second line is the loglikelihood function for a probit model with index
function X;3/0; compare (4.09). Of course, if all we had was the second line
here, we could not identify B and o separately, but since we also have the first
line, that is not a problem.

Writing the tobit loglikelihood function in the form of (4.71) makes it clear
that this model is really a probit model combined with a truncated regression
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model, with the coefficient vectors in the two models restricted to be propor-
tional to each other. This restriction can easily be tested by means of an LR
test with k degrees of freedom. If this test leads to a rejection of the null
hypothesis, then we probably should not be using a tobit model.

Of course, like all econometric models, the tobit model can and should be
tested for a variety of types of possible misspecification. A large number of
tests can be based on the OPG regression and on the double-length regression
of Orme (1995). Tests based on the OPG regression are discussed by Pagan
and Vella (1989) and Smith (1989). See also Chesher and Irish (1987).

4.7 Sample Selectivity

In the previous section, we considered samples truncated on the basis of the
value of the dependent variable. Many samples are truncated on the basis of
another variable that is correlated with the dependent variable. For example,
people may choose to enter the labor force if their market wage exceeds their
reservation wage and choose to stay out of it otherwise. Then a sample of
people who are in the labor force must exclude those whose reservation wage
exceeds their market wage. If the dependent variable, whatever it may be,
is correlated with the difference between reservation and market wages, least
squares yields inconsistent estimates. In this case, the sample is said to have
been selected on the basis of this difference. The consequences of this type of
sample selection are often said to be due to sample selectivity.

Let us consider a simple model that involves sample selectivity. Suppose
that y; and z7 are two latent variables, generated by the bivariate process

o 2
IR T A R CY P
25 Wiy Uy U po 1
where X; and W, are vectors of observations on exogenous or predetermined
variables, 3 and -« are unknown parameter vectors, o is the standard deviation
of u;, and p is the correlation between u; and v;. The restriction that the
variance of v; is equal to 1 is imposed because only the sign of 2z is observed.

In fact, the variables that are actually observed are y; and z;, and they are
related to y; and z; as follows:

yr =y, if z; > 0; y; unobserved otherwise;
(4.73)
zi=11if z; > 0; z =0 otherwise.

Thus there are two types of observations, those for which we observe y; = y;
and z; = 1, along with both X; and W;, and those for which we observe only
z; = 0 and W,
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Each observation contributes a factor to the likelihood function for this model
that can be written as

I(zt = 0)Pr(z: = 0) + 1(zt = 1)Pr(z = 1) f(y; | e = 1),

where f(yp |2+ = 1) denotes the density of yp conditional on z; = 1. This
is the appropriate way to specify the likelihood because, if we integrate with
respect to y; and sum over the two possible values of z;, the result is 1. Note
also that the value of y;y is needed only if it is observed, that is, if z; = 1. The
loglikelihood function is

ZlogPr(zt =0)+ Zlog(Pr(zt =1)f(y; |z = 1)). (4.74)

z2:=0 z=1

The first term of (4.74), which comes from the observations with z; = 0, is
exactly the same as the corresponding term in a probit model. The second
term comes from the observations with z; = 1. By using the fact that we can
factor a joint density any way we please, it can also be written as

3 log(Pr(z = 1]9)£(49)).

zi=1

where f(y7) is the density of yp conditional on predetermined or exogen-
ous variables, which is just a normal density with expectation X;(3 and var-

iance o2.

In order to write out the loglikelihood function (4.74) explicitly, we must
calculate Pr(z: = 1|y7). Since u: and v; are bivariate normal, we can write
ve = put/o + &, where &; is a normally distributed random variable with
expectation 0 and variance 1 — p% Thus

2 = Wiy +p(y7 — XiB)/o +er, e~ NID(0,1 - p%).
Because y; = y; when z; = 1, it follows that

Wy + plyr — Xtﬁ)/a)
(1—p2)L/2 '

Pr(zi=1|yy) = fI’(
Thus the loglikelihood function (4.74) becomes

> log@(-Wiy) + Y log(%aﬁ((yt - Xt,@)/cr))

z¢=0 zt=1
(4.75)
Wiy + oy — XuB) /o
+ Zlog <I>< (= e .
z¢=1

The first term looks like the corresponding term for a standard probit model in
which z; is explained by W, the second term looks like the loglikelihood func-
tion for a linear regression of y; on X3, with normal disturbances, and the third
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term is one that we have not seen before. If p = 0, this term would collapse to
the term corresponding to observations with z; = 1 in the probit model for z;,
and we could estimate the probit model and the regression model separately.
In general, however, this term forces us to estimate both equations together
by making the probability that z; = 1 depend on y; — X;3.

Heckman’s Two-Step Method

From the point of view of asymptotic efficiency, the best way to estimate the
model characterized by (4.72) and (4.73) is simply to maximize the loglike-
lihood function (4.75). With modern computing equipment and appropriate
software, this is not unreasonably difficult to do, although numerical prob-
lems can be encountered when p approaches +1. Instead of ML estimation,
however, it is popular to use a computationally simpler technique, which is
known as Heckman’s two-step method; see Heckman (1976, 1979). Although
we do not recommend that practitioners rely solely on this method, it can be
useful for preliminary work, and it yields insights into the nature of sample
selectivity. In addition, it provides a good starting point for the nonlinear
algorithm used to obtain the MLE.

Heckman’s two-step method is based on the fact that the first equation of
(4.72), for observations where y, is observed, can be rewritten as

Yt :Xt,ﬁ—}—povt—l—et. (476)

Here the disturbance u; is divided into two parts, one perfectly correlated
with vy, the disturbance in the equation for the latent variable z;, and one in-
dependent of v;. The idea is to replace the unobserved disturbance v; in (4.76)
by its expectation conditional on z; = 1 and on the explanatory variables W;.
This conditional expectation is

(W)

E(ve|ze =1, Wp) = E(ve [ve > =Wy, Wy) B(Wiry)’ (4.77)
where readers are asked to prove the last equality in Exercise 4.32. The quan-
tity ¢(x)/®(z) is known as the inverse Mills ratio; see Johnson, Kotz, and
Balakrishnan (1994). In the first step of Heckman’s two-step method, an ordi-
nary probit model is used to obtain consistent estimates 4 of the parameters
of the selection equation. In the second step, the unobserved v; in regression
(4.76) is replaced by the selectivity regressor ¢ (W;¥)/®(W;4), and regression
(4.76) becomes

ye = Xy0+ pa% + residual. (4.78)
This Heckman regression, as it is often called, is easy to estimate by OLS and
yields consistent estimates of 3.
Regression (4.78) provides a test for sample selectivity as well as an estimation
technique. The coefficient of the selectivity regressor is po. Since o # 0, the
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ordinary t statistic for this coefficient to be zero can be used to test the
hypothesis that p = 0, and it is asymptotically distributed as N(0,1) under
the null hypothesis. If this coefficient is not significantly different from zero,
the investigator may reasonably decide that selectivity is not a problem and
proceed to use least squares as usual.

Although the Heckman regression (4.78) yields consistent estimates of 3, the
OLS covariance matrix is valid only when p = 0. The problem is that the
selectivity regressor is being treated like any other regressor, when it is in
fact part of the disturbance. It is possible to obtain a valid covariance matrix
estimate to go along with the two-step estimates of B from (4.78), but the
calculation is quite cumbersome, and the estimated covariance matrix is not
always positive definite. See Greene (1981) and Lee (1982) for details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of bivariate
normality. This can be seen from the specification of the selectivity regressor
as the inverse Mills ratio (4.77). When the elements of W; are the same as
the elements of X;, as is often the case in practice, it is only the nonlinearity
of the inverse Mills ratio as a function of W~ that makes the parameters of
the second-step regression identifiable. The form of the nonlinear relationship
would be different if the disturbances did not follow the normal distribution.

4.8 Duration Models

Economists are sometimes interested in how much time elapses before some
event occurs. For example, they may be interested in the length of labor dis-
putes (that is, strike duration), the age of first marriage for men and women
(that is, the duration of the state of being single), the duration of unemploy-
ment spells, the duration between trades on a stock exchange, or the length
of time people wait before trading in a car. In this section, we will discuss
some simple econometric models for duration data of this type.

In many cases, each observation in the sample consists of a measured duration,
denoted ¢;, and a 1 x k vector of exogenous variables, denoted X;. In adopting
this formulation, we have implicitly ruled out the possibility, which more
complicated models can allow for, that the exogenous variables may change
as time passes. To avoid notational confusion, we use i to index observations.
In theory, duration is a nonnegative, continuous random variable. In practice,
however, t; is often reported as an integer number of weeks or months. When
it is always a small integer, a count data model like the ones discussed in
Section 4.5 may be appropriate. However, when ¢; can take on a large number
of integer values, it is conventional to model duration as being continuous.
Almost all of the literature deals with the continuous case.
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Survivor Functions and Hazard Functions

In practice, interest often centers not so much on how t; is related to X;
but rather on how the probability that a state will endure varies over the
duration of the state. For example, we may be interested in seeing how the
probability that someone finds a job changes as the length of time they have
been unemployed increases. Before we can answer this sort of question, we
need to discuss a few fundamental concepts.

Suppose that how long a state endures is measured by 7', a nonnegative, con-
tinuous random variable with PDF f(¢) and CDF F(t), where t is a realization
of T. Then the survivor function is defined as

This is the probability that a state which started at time t = 0 is still going
on at time t. The probability that it ends in any short period of time, say the
period from time ¢ to time ¢ + At, is

Pr(t <T <t+At) = F(t + At) — F(t). (4.79)

This probability is unconditional. For many purposes, we may be interested in
the probability that a state ends between time ¢t and time t + At, conditional
on having reached time ¢ in the first place. This probability is

F(t+ At) — F(t)

Prit<T <t+At|T>1t)= 50

(4.80)

Since we are dealing with continuous time, it is natural to divide (4.79) and

(4.80) by At and consider what happens as At — 0. The limit of 1/A¢ times

(4.79) as At — 0 is simply the PDF f(¢), and the limit of 1/At times the
right-hand side of equation (4.80) is

f(t) ft)

=t =——"_ 4.81

®) S(t) 1-F(®) (4.81)

The function h(t) defined in (4.81) is called the hazard function. For many

purposes, it is more interesting to model the hazard function than to model
the survivor function directly.

Functional Forms

For a parametric model of duration, we need to specify a functional form for
one of the functions F(t), S(t), f(t), or h(t), which then implies functional
forms for the others. One of the simplest possible choices is the exponential
distribution, which was discussed in Section 3.2. For this distribution,

f(t,0)=0e7% and F(t,0)=1-¢% 6>0.
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Therefore, the hazard function is

t fe~ 0"
)= L = e -

Thus, if duration follows an exponential distribution, the hazard function is
simply a constant.

Since the restriction that the hazard function is a constant is a very strong
one, the exponential distribution is rarely used in applied work. A much more
flexible functional form is provided by the Weibull distribution, which has two
parameters, 6 and «. For this distribution,

F(t,0,a) =1 —exp(—(6t)*). (4.82)

As readers are asked to show in Exercise 4.33, the survivor, density, and
hazard functions for the Weibull distribution are as follows:

S(t) = exp(—(@t)a);
f(t) = ™t texp(—(6)*); (4.83)
h(t) = af*t* 1,

When a = 1, it is easy to see that the Weibull distribution collapses to
the exponential, and the hazard is just a constant. For a < 1, the hazard is
decreasing over time, and for o > 1, the hazard is increasing. Hazard functions
of the former type are said to exhibit negative duration dependence, while
those of the latter type are said to exhibit positive duration dependence. In
the same way, a constant hazard is said to be duration independent.

Although the Weibull distribution is not nearly as restrictive as the exponen-
tial, it does not allow for the possibility that the hazard may first increase
and then decrease over time, which is something that is frequently observed
in practice. Various other distributions do allow for this type of behavior. A
particularly simple one is the lognormal distribution, which was discussed in
Section 3.8. Suppose that logt is distributed as N(u,02). Then we have

F(t) = q)(é(logt*u)}
St =1— @(%(logt - M)) - @(f%(logt - M)),
7(t) = - o(Logt — p)), and

1 ¢((logt —p)/o)
ot &(—(logt —p)/o)’
For this distribution, the hazard rises quite rapidly and then falls rather slowly.

This behavior can be observed in Figure 4.4, which shows several hazard
functions based on the exponential, Weibull, and lognormal distributions.

h(t) =
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Figure 4.3 Various hazard functions

Maximum Likelihood Estimation

It is reasonably straightforward to estimate many duration models by max-
imum likelihood. In the simplest case, the data consist of n independent
observations t; on observed durations, each with an associated regressor vec-
tor X;. The loglikelihood function for ¢, the vector of observations with typical
element ¢;, is just

n
((t,0) = log f(t:| X;,0), (4.84)
i=1
where f(t;|X;,0) denotes the density of ¢; conditional on the data vector

X for the parameter vector 6. In many cases, it may be easier to write the
loglikelihood function as

0(t,0) = logh(t:| X;,0) + > log S(t: | X;,0), (4.85)

i=1 =1

where h(t; | X;, 0) is the hazard function and S(¢; | X;, 0) is the survivor func-
tion. The equivalence of (4.84) and (4.85) is ensured by (4.81), in which the
hazard function was defined.

As with other models we have looked at in this chapter, it is convenient to let

the loglikelihood depend on explanatory variables through an index function.
As an example, suppose that duration follows a Weibull distribution, with
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a parameter 6; for observation i that has the form of the exponential mean
function (4.48), so that 6; = exp(X;3) > 0. From (4.83) we see that the
hazard and survivor functions for observation ¢ are

aexp(aX;B)t* ! and exp(ft“exp(aXi,B)),

respectively. In practice, it is simpler to absorb the factor of « into the
parameter vector 3, so as to yield an exponent of just X; 3 in these expressions.
Then the loglikelihood function (4.85) becomes

L(t,B,a) =nloga + ZXiﬁ + (a— 1)Zlogti - Zt?exp(Xi,BL

i=1 i=1 i=1

and ML estimates of the parameters o and 3 are obtained by maximizing this
function in the usual way.

In practice, many data sets contain observations for which ¢; is not actually
observed. For example, if we have a sample of people who entered unemploy-
ment at various points in time, it is extremely likely that some people in the
sample were still unemployed when data collection ended. If we omit such
observations, we are effectively using a truncated data set, and we therefore
obtain inconsistent estimates. However, if we include them but treat the ob-
served t; as if they were the lengths of completed spells of unemployment, we
also obtain inconsistent estimates. In both cases, the inconsistency occurs for
essentially the same reasons as it does when we apply OLS to a sample that
has been truncated or censored; see Section 4.6.

If we are using ML estimation, it is easy enough to deal with duration data
that have been censored in this way, provided we know that censorship has
occurred. For ordinary, uncensored observations, the contribution to the log-
likelihood function is a contribution like those in (4.84) or (4.85). For censored
observations, where the observed ¢; is the duration of an incomplete spell, it
is the logarithm of the probability of censoring, which is the probability that
the duration exceeds t;, that is, the log of the survivor function. Therefore,
if U denotes the set of uncensored observations, the loglikelihood function for
the entire sample can be written as

n

((t,0) =Y logh(t:| X;,0) + > log S(t:| X;,0). (4.86)

ieU i=1

Notice that uncensored observations contribute to both terms in equation
(4.86), while censored observations contribute only to the second term. When
there is no censoring, the same observations contribute to both terms, and
the loglikelihood function (4.86) reduces to (4.85).



176 Discrete and Limited Dependent Variables

Proportional Hazard Models

One class of models that is quite widely used is the class of proportional hazard
models, originally proposed by Cox (1972), in which the hazard function for
the i*® economic agent is given by

h(Xi,t) = g1(X;) g2(1), (4.87)

for various specifications of the functions ¢1(X;) and go(¢). The latter is called
the baseline hazard function. An implication of (4.87) is that the ratio of the
hazards for any two agents, say the ones indexed by ¢ and j, depends on the
regressors but does not depend on t. This ratio is

h(Xit)  gu(Xi)g2(t)  g1(X5)

MXj,t) (X)) g(t)  gi(X;)°

Thus the ratio of the conditional probability that agent i exits the state to
the probability that agent j does so is constrained to be the same for all ¢.
This makes proportional hazard models econometrically convenient, but they
do impose fairly strong restrictions on behavior.

Both the exponential and Weibull distributions lead to proportional hazard
models. As we have already seen, a natural specification of gi(X;) for these
models is exp(X;3). For the exponential distribution, the baseline hazard
function is just 1, and for the Weibull distribution it is az®~1.

One attractive feature of proportional hazards models is that it is possible to
obtain consistent estimates of the parameters of the function ¢g1(X;), without
estimating those of go(t) at all, by using a method called partial likelihood
which we will not attempt to describe; see Cox and Oakes (1984) or Lancaster
(1990). The baseline hazard function g»(t) can then be estimated in various
ways, some of which do not require us to specify its functional form.

Complications

The class of duration models that we have discussed is quite limited. It does
not allow the exogenous variables to change over time, and it does not allow
for any individual heterogeneity, that is, variation in the hazard function
across agents. The latter has serious implications for econometric inference.
Suppose, for simplicity, that there are two types of agent, each with a constant
hazard, which is twice as high for agents of type H as for those of type L. If we
estimate a duration model for all agents together, we must observe negative
duration dependence, because the type H agents exit the state more rapidly
than the type L agents, and the ratio of type H to type L agents declines as
duration increases.

There has been a great deal of work on duration models during the past
two decades, and there are now numerous models that allow for time-varying
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explanatory variables and/or individual heterogeneity. Classic references are
Heckman and Singer (1984), Kiefer (1988), and Lancaster (1990). More recent
work is discussed in Neumann (1999), Gouriéroux and Jasiak (2001), and van
den Berg (2001).

4.9 Final Remarks

This chapter has dealt with a large number of types of dependent variable
for which ordinary regression models are not appropriate: binary dependent
variables (Section 4.2 and Section 4.3); discrete dependent variables that can
take on more than two values, which may or may not be ordered (Section 4.4);
count data (Section 4.5); limited dependent variables, which may be either
censored or truncated (Section 4.6); dependent variables where the observa-
tions included in the sample have been determined endogenously (Section 4.7);
and duration data (Section 4.8). In most cases, we have made strong distri-
butional assumptions and relied on maximum likelihood estimation. This is
generally the easiest way to proceed, but it can lead to seriously mislead-
ing results if the assumptions are false. It is therefore important to test the
specification of these models carefully.
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4.10 Exercises

*4.1

4.2

4.3

4.4

*4.5

4.6

Consider the contribution made by observation t to the loglikelihood func-
tion (4.09) for a binary response model. Show that this contribution is glob-
ally concave with respect to 3 if the function F is such that F(—z) = 1—-F(z),
and if it, its derivative f, and its second derivative f’ satisfy the condition

f(@)F(z) - f*(x) <0 (4.88)

for all real finite x.

Show that condition (4.88) is satisfied by both the logistic function A(-),
defined in (4.07), and the standard normal CDF &(-).

Prove that, for the logit model, the likelihood equations (4.10) reduce to

me(yt —A(X:B)) =0, i=1,...,k
t=1

Show that the efficient GMM estimating equations (2.82), when applied to
the binary response model specified by (4.01), are equivalent to the likelihood
equations (4.10).

If F1(-) and Fa(-) are two CDFs defined on the real line, show that any
convex combination (1 — «)Fy(-) + aF(-) of them is also a properly defined
CDF. Use this fact to construct a model that nests the logit model for which
Pr(y: = 1) = A(X:¢8) and the probit model for which Pr(y; = 1) = ®(X;8)
with just one additional parameter.

Consider the latent variable model

vt = B1+ Boxt +ue, ur ~ N(0,1),
yr = 1ifyf >0, y¢ =0 if yf <O0.

Suppose that z; ~ N(0, 1). Generate 500 samples of 20 observations on (z¢, yt)
pairs, 100 assuming that f; = 0 and 2 = 1, 100 assuming that 81 = 1 and
B2 = 1, 100 assuming that 81 = —1 and B2 = 1, 100 assuming that f; = 0
and 1 = 2, and 100 assuming that $; = 0 and B2 = 3. For each of the 500
samples, attempt to estimate a probit model. In each of the five cases, what
proportion of the time does the estimation fail because of perfect classifiers?
Explain why there were more failures in some cases than in others.

Repeat this exercise for five sets of 100 samples of size 40, with the same
parameter values. What do you conclude about the effect of sample size on
the perfect classifier problem?

Suppose that there is quasi-complete separation of the data used to estimate
the binary response model (4.01), with a transformation function F' such that
F(—z) = 1 — F(z) for all real z, and a separating hyperplane defined by
the parameter vector 3°. Show that the upper bound of the loglikelihood
function (4.09) is equal to —ny log 2, where ny, is the number of observations
for which X;3® = 0.
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4.7

4.8

*4.9

4.10

4.12

4.13

*4.14

4.15

The contribution to the loglikelihood function (4.09) made by observation ¢
is y¢log F(X:B) + (1 — y¢) log(1 — F(XtB)). First, find Gy;, the derivative
of this contribution with respect to ;. Next, show that the expectation of
G4, is zero when it is evaluated at the true 8. Then obtain a typical element
of the asymptotic information matrix by using the fact that it is equal to
limp oo n_lz?zl E(G¢Gy¢;). Finally, show that the asymptotic covariance
matrix (4.15) is equal to the inverse of this asymptotic information matrix.

Calculate the Hessian matrix corresponding to the loglikelihood function
(4.09). Then use the fact that minus the expectation of the asymptotic Hes-
sian is equal to the asymptotic information matrix to obtain the same result
for the latter that you obtained in the previous exercise.

Plot 73(8), which is defined in equation (4.16), as a function of X;3 for
both the logit and probit models. For the logit model only, prove that 73(3)
achieves its maximum value when X;3 = 0 and declines monotonically as
| X+ 3| increases.

The file participation.data, which is taken from Gerfin (1996), contains data
for 872 Swiss women who may or may not participate in the labor force. The
variables in the file are:

yt Labor force participation variable (0 or 1).

Iy Log of nonlabor income.

A¢  Age in decades (years divided by 10).

FE; Education in years.

nuy Number of children under 7 years of age.
no¢ Number of children over 7 years of age.

F; Citizenship dummy variable (1 if not Swiss).
The dependent variable is y;. For the standard specification, the regressors
are all of the other variables, plus A%. Estimate the standard specification as
both a probit and a logit model. Is there any reason to prefer one of these
two models?
For the probit model estimated in Exercise 4.10, obtain at least three sensible
sets of standard error estimates. If possible, these should include ones based
on the Hessian, ones based on the OPG estimator (3.43), and ones based on
the information matrix estimator (4.18). You may make use of the BRMR,
regression (4.20), and/or the OPG regression (3.70), if appropriate.
Test the hypothesis that the probit model estimated in Exercise 4.10 should
include two additional regressors, namely, the squares of nu; and no¢. Do this
in three different ways, by calculating an LR statistic and two LM statistics
based on the OPG and BRMR regressions.
Use the BRMR (4.30) to test the specification of the probit model estimated
in Exercise 4.10. Then use the BRMR (4.26) to test for heteroskedasticity,
where Z; consists of all the regressors except the constant term.
Show, by use of 'Hopital’s Rule or otherwise, that the two results in (4.29)
hold for all functions 7(-) which satisfy conditions (4.28).
For the probit model estimated in Exercise 4.10, the estimated probability
that y; = 1 for observation ¢ is ®(X;3). Compute this estimated probability
for every observation, and also compute two confidence intervals at the .95
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level for the actual probabilities. Both confidence intervals should be based
on the covariance matrix estimator (4.18). One of them should use the delta
method (Part 1, Section 6.6), and the other should be obtained by transform-
ing the end points of a confidence interval for the index function. Compare
the two intervals for the observations numbered 2, 63, and 311 in the sam-
ple. Are both intervals symmetric about the estimated probability? Which
of them provides more reasonable answers?

Consider the expression

J
flog(Zexp(Vth,Bj)), (4.89)

j=0

which appears in the loglikelihood function (4.35) of the multinomial logit

model. Let the vector 37 have k; components, let k = ko + ...+ ky, and let
B8=[8":...i87]. The k x k Hessmn matrix H of (4.89) Wlth respect to 3
can be partltloned into blocks of dimension k; x kj,i=0,...,J,j=0,...,J,

containing the second-order partial derivatives of (4.89) with respect to an
element of 3* and an element of 37. Show that, for i # j, the (i, j) block can
be written as

i D) Wi Wi,

where p; = exp(Wy; 3" )/(Z] Oexp(VV}]ﬁ])) is the probability ascribed to

choice ¢ by the multinomial logit model. Then show that the diagonal
(4,%) block can be written as

—pi(1 = pi) Wi Wi

Let the k-vector a be partitioned conformably with the above partitioning
of the Hessian H, so that we can write a = [ao i...iay], where each of the
Vectors a; has k; components for j = 0,...,J. Show that the quadratic form

a'Ha is equal to
J 5 J
(ijwj) = i, (4.90)
Jj=0 Jj=0

where the scalar product w; is defined as W;;a;.

Show that expression (4.90) is nonpositive, and explain why this result shows
that the multinomial logit loglikelihood function (4.35) is globally concave.
Show that the nested logit model reduces to the multinomial logit model if
0; =1foralli=1,...,m. Then show that it also does so if all the subsets A;
used to define the former model are singletons.

Show that the expectation of the Hessian of the loglikelihood function (4.41),
evaluated at the parameter vector 0, is equal to the negative of the k x k matrix

where T;;(0) is the 1 x k vector of partial derivatives of II;;(6) with respect
to the components of 8. Demonstrate that (4.91) can also be computed using
the outer product of the gradient definition of the information matrix.

(8 )T%5(0), (4.91)
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Use the above result to show that the matrix of sums of squares and cross-
products of the regressors of the DCAR, regression (4.42), evaluated at 6,
is I(6). Show further that 1/s? times the estimated OLS covariance matrix
from (4. 42) is an asymptotically valid estimate of the covariance matrix of
the MLE 8 if the artificial variables are evaluated at .

Let the one-step estimator 6 be defined as usual for the discrete choice
artificial regression (4.42) evaluated at a root-n consistent estimator 0 as
6=26+b, where b is the vector of OLS parameter estimates from (4.42).
Show that 6 is asymptotically equivalent to the MLE 0.

Consider the binary choice model characterized by the probabilities (4.01).
Both the BRMR (4.20) and the DCAR (4.42) with J = 1 apply to this model,
but the two artificial regressions are obviously different, since the BRMR has
n artificial observations when the sample size is n, while the DCAR has 2n.
Show that the two artificial regressions are nevertheless equivalent, in the
sense that all scalar products of corresponding pairs of artificial variables,
regressand or regressor, are identical for the two regressions.

In terms of the notation of the DCAR, regression (4.42), the probability II;
that y: = j, 7 = 0,...,J, for the nested logit model is given by expres-
sion (4.40). Show that, if the index i(j) is such that j € Aj(j), the partial
derivative of IIy; with respect to 6;, evaluated at 0, = 1 for k = 1,...,m,
where m is the number of subsets Ay, is

oTly;
— = Ht] z(])zvtj Z 1_[tlvtl
%% I€A;

Here vy = —V[/}jﬁj + hy;(j), where hy; denotes the inclusive value (4.39) of
subset A;, and §;; is the Kronecker delta.

When 0, =1, k =1,...,m, the nested logit probabilities reduce to the multi-
nomial logit probabilities (4.34). Show that, if the II;; are given by (4.34),

then the vector of partial derivatives of II;; with respect to the components
of /3 is Hthth(djl — ).

Explain how to use the DCAR (4.42) to test the ITA assumption for the
conditional logit model (4.36). This involves testing it against the nested
logit model (4.40) with the 87 constrained to be the same. Do this for the
special case in which J = 2, A1 = {0,1}, A2 = {2}. Hint: Use the results
proved in the preceding exercise.

Using the fact that the infinite series expansion of the exponential function,
convergent for all real z, is

oo n

z
expz = E -,
n!

n=0

where by convention we define 0! = 1, show that ZZO:O e_>‘)\y/y! =1, and
that therefore the Poisson distribution defined by (4.47) is well defined on
the nonnegative integers. Then show that the expectation and variance of a
random variable Y that follows the Poisson distribution are both equal to .

Let the n'® uncentered moment of the Poisson distribution with parameter A
be denoted by My (). Show that these moments can be generated by the
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recurrence My, +1(\) = A(Mn(\) + M), ()\)), where M), ()\) is the derivative of
My, (X\). Using this result, show that the third and fourth central moments of
the Poisson distribution are A and X + 3A%, respectively.

Explain precisely how you would use the artificial regression (4.55) to test the
hypothesis that 32 = 0 in the Poisson regression model for which A\ (3) =
exp(X#1 81 + X2082). Here B1 is a ki-vector and Bz is a ka—vector, with
k = k1 + k2. Consider two cases, one in which the model is estimated subject
to the restriction and one in which it is estimated unrestrictedly.

Suppose that y; is a count variable, with conditional expectation E(y;) =
exp(X:0) and conditional variance E(y: — exp(Xt,B))2 = y2exp(X;3). Show
that ML estimates of 3 under the incorrect assumption that y; is generated by
a Poisson regression model with mean exp(X;3) are asymptotically efficient
in this case. Also show that the OLS covariance matrix from the artificial
regression (4.55) is asymptotically valid.

Suppose that y; is a count variable with conditional mean E(y;) = exp(X;/3)
and unknown conditional variance. Show that, if the artificial regression
(4.55) is evaluated at the ML estimates for a Poisson regression model which
specifies the conditional mean correctly, the HCCME HCj for that artificial
regression is numerically equal to expression (4.65), which is an asymptotically
valid covariance matrix estimator in this case.

The file count.data, which is taken from Gurmu (1997), contains data for 485
household heads who may or may not have visited a doctor during a certain
period of time. The variables in the file are:

yt Number of doctor visits (a nonnegative integer).
C3; Number of children in the household.

A; A measure of access to health care.

H; A measure of health status.

Using these data, obtain ML estimates of a Poisson regression model to ex-
plain the variable y;, where

M (B) = exp(B1 + B2Cr + B3Ar + B4 Hy).

In addition to the estimates of the parameters, report three different standard
errors. One of these should be based on the inverse of the information matrix,
which is valid only when the model is correctly specified. The other two
should be computed using the artificial regression (4.55). One of them should
be valid under the assumption that the conditional variance is proportional
to A¢(8B), and the other should be valid whenever the conditional mean is
specified correctly. Can you explain the differences among the three sets of
standard errors?

Test the model for overdispersion in two different ways. One test should be
based on the OPG regression, and the other should be based on the testing
regression (4.60). Note that this model is not the one actually estimated in
Gurmu (1997).

Consider the latent variable model

yf = XeB +ue, ur ~ NID(0,0°), (4.92)
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where y; = yf whenever y; < y™®* and is not observed otherwise. Write

down the loglikelihood function for a sample of n observations on y;.

As in the previous question, suppose that y; is given by (4.92). Assume that
yt = y¢ whenever y™" < y7 < y™?* and is not observed otherwise. Write
down the loglikelihood function for a sample of n observations on y;.

Suppose that y; = X;8 + u; with u; ~ NID(0, 02). Suppose further that
ye = yp if yf < yf, and y = yf otherwise, where yf is the known value
at which censoring occurs for observation ¢. Write down the loglikelihood
function for this model.

Let z be distributed as N(0,1). Show that E(z|z < ) = —¢(z)/®(x), where
® and ¢ are, respectively, the CDF and PDF of the standard normal distri-
bution. Then show that E(z|z > z) = ¢(z)/®(—z) = ¢(—z)/P(—z). The
second result explains why the inverse Mills ratio appears in (4.77).

Starting from expression (4.82) for the CDF of the Weibull distribution, show

that the survivor function, the PDF, and the hazard function are as given in
(4.83).



Chapter 5
Multivariate Models

5.1 Introduction

Up to this point, almost all the models we have discussed have involved just
one equation. In most cases, there has been only one equation because there
has been only one dependent variable. Even in the few cases in which there
were several dependent variables, interest centered on just one of them. For
example, in the case of the simultaneous equations model that was discussed
in Chapter 10, we chose to estimate just one structural equation at a time.

In this chapter, we discuss models which jointly determine the values of two or
more dependent variables using two or more equations. Such models are called
multivariate because they attempt to explain multiple dependent variables.
As we will see, the class of multivariate models is considerably larger than
the class of simultaneous equations models. Every simultaneous equations
model is a multivariate model, but many interesting multivariate models are
not simultaneous equations models.

In the next section, which is quite long, we provide a detailed discussion of
GLS, feasible GLS, and ML estimation of systems of linear regressions. Then,
in Section 5.3, we discuss the estimation of systems of nonlinear equations
which may involve cross-equation restrictions but do not involve simultaneity.
Next, in Section 5.4, we provide a detailed treatment of the linear simultaneous
equations model. We approach it from the point of view of GMM estimation,
which leads to the well-known 3SLS estimator. In Section 5.5, we discuss
the application of maximum likelihood to this model. Finally, in Section 5.6,
we briefly discuss some of the methods for estimating nonlinear simultaneous
equations models.

5.2 Seemingly Unrelated Linear Regressions

The multivariate linear regression model was investigated by Zellner (1962),
who called it the seemingly unrelated regressions model. An SUR system, as
such a model is often called, involves n observations on each of g dependent
variables. In principle, these could be any set of variables measured at the
same points in time or for the same cross-section. In practice, however, the
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dependent variables are often quite similar to each other. For example, in the
time-series context, each of them might be the output of a different industry
or the inflation rate for a different country. In view of this, it might seem more
appropriate to speak of “seemingly related regressions,” but the terminology
is too well-established to change.

We suppose that there are g dependent variables indexed by 4. Let y; denote
the n-vector of observations on the i*" dependent variable, X; denote the
n X k; matrix of regressors for the i*® equation, B; denote the k;—vector of
parameters, and u; denote the n—vector of disturbances. Then the i " equation
of a multivariate linear regression model may be written as

Y, = X,Lﬂz + u;, E(uzu;r) = UiiI'na (501)

where I,, is the n X n identity matrix. The reason we use o;; to denote the
variance of the disturbances will become apparent shortly. In most cases,
some columns are common to two or more of the matrices X;. For instance,
if every equation has a constant term, each of the X; must contain a column
of 1s.

Since equation (5.01) is just a linear regression model with IID disturbances,
we can perfectly well estimate it by ordinary least squares if we assume that
all the columns of X; are either exogenous or predetermined. If we do this,
however, we ignore the possibility that the disturbances may be correlated
across the equations of the system. In many cases, it is plausible that uy;, the
disturbance for observation ¢ of equation %, should be correlated with u;, the
disturbance for observation t of equation j. For example, we might expect
that a macroeconomic shock which affects the inflation rate in one country
would simultaneously affect the inflation rate in other countries as well.

To allow for this possibility, the assumption that is usually made about the
disturbances in the model (5.01) is

E(utuj) = 045 for all t, E(uyus;) =0 for all ¢ # s, (5.02)

where 0;; is the ij*" element of the g x g positive definite matrix X. This
assumption allows all the wuy; for a given ¢ to be correlated, but it specifies
that they are homoskedastic and independent across t. The matrix X' is called
the contemporaneous covariance matrix, a term inspired by the time-series
context. The disturbances u;; may be arranged into an n x g matrix U, of
which a typical row is the 1 x g vector U;. It then follows from (5.02) that

EU'U) =1EUU) = 2. (5.03)

If we combine equations (5.01), for i« = 1,..., g, with assumption (5.02), we
obtain the classical SUR model.

We have not yet made any sort of exogeneity or predeterminedness assump-
tion. A rather strong assumption is that E(U | X) = O, where X is an n x [
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matrix with full rank, the set of columns of which is the union of all the linearly
independent columns of all the matrices X;. Thus [ is the total number of
variables that appear in any of the X; matrices. This exogeneity assumption,
which is the analog of assumption (F4.11) for univariate regression models, is
undoubtedly too strong in many cases. A considerably weaker assumption is
that E(U; | X;) = 0, where X, is the t'" row of X. This is the analog of the
predeterminedness assumption (F4.13) for univariate regression models. The
results that we will state are valid under either of these assumptions.

Precisely how we want to estimate a linear SUR system depends on what
further assumptions we make about the matrix X' and the distribution of the
disturbances. In the simplest case, X' is assumed to be known, at least up to
a scalar factor, and the distribution of the disturbances is unspecified. The
appropriate estimation method is then generalized least squares. If we relax
the assumption that X' is known, then we need to use feasible GLS. If we
continue to assume that X' is unknown but impose the assumption that the
disturbances are normally distributed, then we may want to use maximum
likelihood, which is generally consistent even when the normality assumption
is false. In practice, both feasible GLS and ML are widely used.

GLS Estimation with a Known Covariance Matrix

Even though it is rarely a realistic assumption, we begin by assuming that the
contemporaneous covariance matrix X' of a linear SUR system is known, and
we consider how to estimate the model by GLS. Once we have seen how to
do so, it will be easy to see how to estimate such a model by other methods.
The trick is to convert a system of g linear equations and n observations into
what looks like a single equation with gn observations and a known gn x gn
covariance matrix that depends on X.

By making appropriate definitions, we can write the entire SUR system of
which a typical equation is (5.01) as

Yo = XoBe + Ua. (5.04)

Here y, is a gn-vector consisting of the n-vectors y; through y, stacked
vertically, and u, is similarly the vector of u; through u, stacked vertically.
The matrix X, is a gn x k block-diagonal matrix, where k is equal to Zle k;.
The diagonal blocks are the matrices X; through X,. Thus we have

X, O -~ O
O X, -~ O

X.=|. . . (5.05)
O O - X,

where each of the O blocks has n rows and as many columns as the X; block
that it shares those columns with. To be conformable with X,, the vector 3,
is a k-vector consisting of the vectors 8y through 3, stacked vertically.
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From the above definitions and the rules for matrix multiplication, it is not
difficult to see that

Y1 X6 U
Eyo:Xoﬁo+uo: +
Yy XyBy Ug

Thus it is apparent that the single equation (5.04) is precisely what we obtain
by stacking the equations (5.01) vertically, fori = 1,...,g. Using the notation
of (5.04), we can write the OLS estimator for the entire system very compactly
as

B = (XJX.) Xy, (5.06)

as readers are asked to verify in Exercise 5.4. But the assumptions we have
made about u, imply that this estimator is not efficient.

The next step is to figure out the covariance matrix of the vector u,. Since
the disturbances are assumed to have mean zero, this matrix is just the ex-
pectation of the matrix UeUe . Under assumption (5.02), we find that

[E(wiui") - E(uiug)
E(ueul) = : : :
| E(ugu’) -+ E(ugug) (5.07)
(oL, - o1gly .
= ==
Logiln oo oggln

Here, X4 is a symmetric gn x gn covariance matrix. In Exercise 5.1, readers
are asked to show that X, is positive definite whenever X' is.

The matrix X, can be written more compactly as Xy = X ® I,, if we use
the Kronecker product symbol ®. The Kronecker product A ® B of a p X ¢
matrix A and an r X s matrix B is a pr X ¢s matrix consisting of pg blocks,
laid out in the pattern of the elements of A. Fori=1,...,pand j=1,...,¢q,
the 75" block of the Kronecker product is the = x s matrix a;; B, where a;;
is the ij* element of A. As can be seen from (5.07), that is exactly how the
blocks of X, are defined in terms of I,, and the elements of X .

Kronecker products have a number of useful properties. In particular, if A,
B, C, and D are conformable matrices, then the following relationships hold:

(A®B)'=A"® B,
(A® B)(C @ D) = (AC) ® (BD), and (5.08)
(A B '=A"1e B
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Of course, the last line of (5.08) can be true only for nonsingular, square
matrices A and B. The Kronecker product is not commutative, by which we
mean that A ® B and B ® A are different matrices. However, the elements
of these two products are the same; they are just laid out differently. In fact,
it can be shown that B ® A can be obtained from A ® B by a sequence of
interchanges of rows and columns. Exercise 5.2 asks readers to prove these
properties of Kronecker products. For an exceedingly detailed discussion of
the properties of Kronecker products, see Magnus and Neudecker (1988).

As we have seen, the system of equations defined by (5.01) and (5.02) is
equivalent to the single equation (5.04), with gn observations and disturbances
that have covariance matrix . Therefore, when the matrix X' is known, we
can obtain consistent and efficient estimates of the 3;, or equivalently of 3,,
simply by using the classical GLS estimator (F9.04). We find that

BEY = (X Z X)X 2y,

— (XS eL)X.) XS (2 eL,)y., (5.09)

where, to obtain the second line, we have used the last of equations (5.08).
This GLS estimator is sometimes called the SUR estimator. From the result
(F9.05) for GLS estimation, its covariance matrix is

Var(B8") = (X (Z ' e 1,)X.) .

(5.10)
Since X is assumed to be known, we can use this covariance matrix directly,
because there are no variance parameters to estimate.

As in the univariate case, there is a criterion function associated with the
GLS estimator (F9.04). This criterion function is simply expression (F9.06)
adapted to the model (5.04), namely,

(Yo — Xoﬁo)T(Z_l @1,)(Ye — Xofs). (5.11)

The first-order conditions for the minimization of (5.11) with respect to B
can be written as

X (X' ®L,)(ye — Xof.) = 0. (5.12)

These moment conditions, which are analogous to conditions (F9.07) for the
case of univariate GLS estimation, can be interpreted as a set of estimating
equations that define the GLS estimator (5.09).

In the slightly less unrealistic situation in which X' is assumed to be known
only up to a scalar factor, so that X = 024, the form of (5.09) would be
unchanged, but with A replacing ¥, and the covariance matrix (5.10) would
become

Var(88") = o (X (A @ 1) X.) .
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In practice, to estimate Var(B,GLS), we replace o2 by something that estimates
it consistently. Two natural estimators are

1
62 = —aJ (At ®1,)d,, and
an
1
82 = A:r A71 ® ITL 1/)"7
(gn — k) ( )

where @, denotes the vector of disturbances from GLS estimation of (5.04).
The first of these estimators is analogous to the ML estimator of o2 in the
linear regression model, and the second is analogous to the GLS estimator.

At this point, a word of warning is in order. Although the GLS estimator
(5.09) has quite a simple form, it can be expensive to compute when gn
is large. In consequence, no sensible regression package would actually use
this formula. We can proceed more efficiently by working directly with the
estimating equations (5.12). Writing them out explicitly, we obtain

XJ(Z ' ®L,)(ye — Xofs)

(X -+ O 7[e"L, - oYL, ][y — X185
O .- XgT o911, - o991, Yy — Xg,égGLs
[ollxyT o oMXT [y — X BES

= : : : =0, (5.13)
_UnggT . agngT Yy — Xgﬁ;}LS

where 0% denotes the iith element of the matrix X~!'. By solving the &
equations (5.13) for the 3;, we find easily enough (see Exercise 5.5) that

cUXTXy - oYX X T, 0 Xy,
JOLS : : : ) (5.14)
o9t XgTXl e gY99 Xngg Z?:l o997 XgTyj

Although this expression may look more complicated than (5.09), it is much
less costly to compute. Recall that we grouped all the linearly independent
explanatory variables of the entire SUR system into the n x [ matrix X. By
computing the matrix product X "X, we may obtain all the blocks of the form
X/ X; merely by selecting the appropriate rows and corresponding columns
of this product. Similarly, if we form the n x g matrix Y by stacking the g
dependent variables horizontally rather than vertically, so that

Y=[y1 - ygl,
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then all the vectors of the form Xj y; needed on the right-hand side of (5.14)
can be extracted as a selection of the elements of the j*™ column of the
product X'Y.

The covariance matrix (5.10) can also be expressed in a form more suitable
for computation. By a calculation just like the one that gave us (5.13), we
see that (5.10) can be expressed as

XX, - oMXTX, 7!
Var(381%) = - : (5.15)

gl x T 99 x T
09" X, Xy 099X, X,

Again, all the blocks here are selections of rows and columns of X TX.

For the purposes of further analysis, the estimating equations (5.13) can be
expressed more concisely by writing out the 7" row as follows:

g
> o X (y; - X;875) = 0. (5.16)
j=1

The matrix equation (5.13) is clearly equivalent to the set of equations (5.16)
fori=1,...,9.

Feasible GLS Estimation

In practice, the contemporaneous covariance matrix X' is very rarely known.
When it is not, the easiest approach is simply to replace X in (5.09) by a
matrix that estimates it consistently. In principle, there are many ways to do
so, but the most natural approach is to base the estimate on OLS residuals.
This leads to the following feasible GLS procedure, which is probably the
most commonly-used procedure for estimating linear SUR systems.

The first step is to estimate each of the equations by OLS. This yields consis-
tent, but inefficient, estimates of the 3;, along with g vectors of least-squares
residuals ;. The natural estimator of X' is then

y=10'U, (5.17)

where U is an n X g matrix with i*® column ;. By construction, the matrix
Y is symmetric, and it is positive definite whenever the columns of U are not
linearly dependent. The feasible GLS estimator is given by

B = (XJ(Z ' eL)X.) ' XJ (2 @ 1,)y., (5.18)

and the natural way to estimate its covariance matrix is

Var(8) = (X/(Z7 e L)X.) (5.19)
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As expected, the feasible GLS estimator (5.18) and the estimated covariance
matrix (5.19) have precisely the same forms as their full GLS counterparts,
which are (5.09) and (5.10), respectively.

Because we divided by n in (5.17), 3 must be a biased estimator of X. If k; is
the same for all 4, then it would seem natural to divide by n — k; instead, and
this would produce unbiased estimates of the diagonal elements if X, were
exogenous. But we cannot do that when k; is not the same in all equations.
If we were to divide different elements of UTU by different quantities, the
resulting estimate of X' would not necessarily be positive definite.

Replacing ¥ with an estimator 3 based on OLS estimates, or indeed any
other estimator, inevitably degrades the finite-sample properties of the GLS
estimator. In general, we would expect the performance of the feasible GLS
estimator, relative to that of the GLS estimator, to be especially poor when
the sample size is small and the number of equations is large. Under the
strong assumption that all the regressors are exogenous, exact inference based
on the normal and x? distributions is possible whenever the disturbances are
normally distributed and X' (or A) is known, but this is not the case when X
has to be estimated. Not surprisingly, there is evidence that bootstrapping can
yield more reliable inferences than using asymptotic theory for SUR models;
see, among others, Rilstone and Veall (1996) and Fiebig and Kim (2000).

Cases in Which OLS Estimation Is Efficient

The SUR estimator (5.09) is efficient under the assumptions we have made,
because it is just a special case of the GLS estimator (F'9.04), the efficiency of
which was proved in Section 7.2. In contrast, the OLS estimator (5.06) is, in
general, inefficient. The reason is that, unless the matrix X' is proportional
to an identity matrix, the disturbances of equation (5.04) are not IID. Never-
theless, there are two important special cases in which the OLS estimator is
numerically identical to the SUR estimator, and therefore just as efficient.

In the first case, the matrix X is diagonal, although the diagonal elements
need not be the same. This implies that the disturbances of equation (5.04)
are heteroskedastic but serially independent. It might seem that this het-
eroskedasticity would cause inefficiency, but that turns out not to be the case.
If X is diagonal, then so is X!, which means that ¢/ = 0 for i # j. In that
case, the estimating equations (5.16) simplify to

o X (yi — XiBES) =0, i=1,....9.

The factors ¢, which must be nonzero, have no influence on the solutions
to the above equations, which are therefore the same as the solutions to the
g independent sets of equations X (y; — X; Bz) = 0 which define the equation-
by-equation OLS estimator (5.06). Thus, if the disturbances are uncorrelated
across equations, the GLS and OLS estimators are numerically identical. The
“seemingly” unrelated equations are indeed unrelated in this case.
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In the second case, the matrix X' is not diagonal, but all the regressor matrices
X through X, are the same, and are thus all equal to the matrix X that
contains all the explanatory variables. Thus the estimating equations (5.16)
become

g
> o X (y; - XB) =0, i=1,...,9
j=1

If we multiply these equations by o,,;, for any m between 1 and g, and sum
over ¢ from 1 to g, we obtain

g g
3> omic X (y; — XB5S) = 0. (5.20)
i=1 j=1

Since the o,,; are elements of X and the o are elements of its inverse, it
follows that the sum Zle Omi o™ is equal to Omj, the Kronecker delta, which
is equal to 1 if m = j and to 0 otherwise. Thus, for each m = 1,..., g, there
is just one nonzero term on the left-hand side of (5.20) after the sum over i is
performed, namely, that for which j = m. In consequence, equations (5.20)
collapse to

X (ym — XB5S) = 0.

Since these are the estimating equations that define the OLS estimator of the
m™ equation, we conclude that BS™S = BOS for all m.

A GMM Interpretation

The above proof is straightforward enough, but it is not particularly intuitive.
A much more intuitive way to see why the SUR estimator is identical to the
OLS estimator in this special case is to interpret all of the estimators we have
been studying as GMM estimators. This interpretation also provides a number
of other insights and suggests a simple way of testing the overidentifying
restrictions that are implicitly present whenever the SUR and OLS estimators
are not identical.

Consider the gl theoretical moment conditions
E(X(y; — XiB3:)) =0, fori=1,...,g, (5.21)

which state that every regressor, whether or not it appears in a particular
equation, must be uncorrelated with the disturbances for every equation. In
the general case, these moment conditions are used to estimate k parameters,
where k = >°7_| k;. Since, in general, k < gl, we have more moment condi-
tions than parameters, and we can choose a set of linear combinations of the
conditions that minimizes the covariance matrix of the estimator. As is clear
from the estimating equations (5.12), that is precisely what the SUR estima-
tor (5.09) does. Although these estimating equations were derived from the
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principles of GLS, they are evidently the empirical counterpart of the optimal
moment conditions (2.18) given in Section 11.2 in the context of GMM for
the case of a known covariance matrix and exogenous regressors. Therefore,
the SUR estimator is, in general, an efficient GMM estimator.

In the special case in which every equation has the same regressors, the number
of parameters is also equal to gl. Therefore, we have just as many parameters
as moment conditions, and the empirical counterpart of (5.21) collapses to

XT(y; — XBi) =0, fori=1,...,g,

which are just the moment conditions that define the equation-by-equation
OLS estimator. Each of these g sets of equations can be solved for the [ para-
meters in 3;, and the unique solution is B°S.

We can now see that the two cases in which OLS is efficient arise for two quite
different reasons. Clearly, no efficiency gain relative to OLS is possible unless
there are more moment conditions than the OLS estimator utilizes. In other
words, there can be no efficiency gain unless gl > k. In the second case, OLS
is efficient because gl = k. In the first case, there are in general additional
moment conditions, but, because there is no contemporaneous correlation,
they are not informative about the model parameters.

We now derive the efficient GMM estimator from first principles and show
that it is identical to the SUR estimator. We start from the set of gl sample
moments

(I, X) (2 @ L) (ys — Xufs). (5.22)

These provide the sample analog, for the linear SUR model, of the left-hand
side of the theoretical moment conditions (2.18). The matrix in the middle
is the inverse of the covariance matrix of the stacked vector of disturbances.
Using the second result in (5.08), expression (5.22) can be rewritten as

(Z7' @ XT)(ye — Xof3s). (5.23)
The covariance matrix of this gl-vector is
(Xl X (ZeL)(X 'eX) =Yoo X'X, (5.24)

where we have made repeated use of the second result in (5.08). Combining
(5.23) and (5.24) to construct the appropriate quadratic form, we find that
the criterion function for fully efficient GMM estimation is

(Yo — XoB:) (T 0 X) (T (X'X) ) (Z 0 XT)(ye — Xu0)
= (Yo — Xo3s) (X' © Px)(ye — Xo3s), (5.25)

where, as usual, Px is the hat matrix, which projects orthogonally on to the
subspace spanned by the columns of X.
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It is not hard to see that the vector B,GMM which minimizes expression (5.25)
must be identical to BS™S. The first-order conditions may be written as

g9
Z o' X Px (y; — XijGMM) =0. (5.26)

j=1

But since each of the matrices X; lies in §(X), it must be the case that
PxX; = X;, and so conditions (5.26) are actually identical to conditions
(5.16), which define the GLS estimator.

Since the GLS, and equally the feasible GLS, estimator can be interpreted
as efficient GMM estimators, it is natural to test the overidentifying restric-
tions that these estimators depend on. These are the restrictions that certain
columns of X do not appear in certain equations. The usual Hansen-Sargan
statistic, which is just the minimized value of the criterion function (5.25), is
asymptotically distributed as x2(gl — k) under the null hypothesis. As usual,
the degrees of freedom for the test is equal to the number of moment condi-
tions minus the number of estimated parameters. Investigators should always
report the Hansen-Sargan statistic whenever they estimate a multivariate re-
gression model using feasible GLS.

Since feasible GLS is really a feasible efficient GMM estimator, we might
prefer to use the continuously updated GMM estimator, which was introduced
in Section 11.2. Although the latter estimator is asymptotically equivalent
to the one-step feasible GMM estimator, it may have better properties in
finite samples. In this case, the continuously updated estimator is simply
iterated feasible GLS, and it works as follows. After obtaining the feasible GLS
estimator (5.18), we use it to recompute the residuals. These are then used
in the formula (5.17) to obtain an updated estimate of the contemporaneous
covariance matrix X, which is then plugged back into the formula (5.18) to
obtain an updated estimate of 3,. This procedure may be repeated as many
times as desired. If the procedure converges, then, as we will see shortly,
the estimator that results is equal to the ML estimator computed under the
assumption of normal disturbances.

Determinants of Square Matrices

The most popular alternative to feasible GLS estimation is maximum like-
lihood estimation under the assumption that the disturbances are normally
distributed. We will discuss this estimation method in the next subsection.
However, in order to develop the theory of ML estimation for systems of
equations, we must first say a few words about determinants.

A p X p square matrix A defines a mapping from Euclidean p-dimensional
space, EP, into itself, by which a vector € EP is mapped into the p-vector
Az. The determinant of A is a scalar quantity which measures the extent to
which this mapping expands or contracts p—dimensional volumes in EP.
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as az
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ai ay
0 0
(a) The parallelogram defined (b) Rectangle of equal area formed
by a; and as with a; and Mjas

Figure 5.1 Determinants in two dimensions

Consider a simple example in £2. Volume in 2-dimensional space is just area.
The simplest area to consider is the unit square, which can be defined as the
parallelogram defined by the two unit basis vectors e; and ey, where e; has
only one nonzero component, in position . The area of the unit square is, by
definition, 1. The image of the unit square under the mapping defined by a
2 x 2 matrix A is the parallelogram defined by the two columns of the matrix

A[el 62]:AI:AE[G1 ag],

where a; and as are the two columns of A. The area of a parallelogram in
Fuclidean geometry is given by base times height, where the length of either
one of the two defining vectors can be taken as the base, and the height is then
the perpendicular distance between the two parallel sides that correspond to
this choice of base. This is illustrated in Figure 5.1.

If we choose a; as the base, then, as we can see from the figure, the height is
the length of the vector Mjas, where M, is the orthogonal projection on to
the orthogonal complement of a;. Thus the area of the parallelogram defined
by a; and as is ||a1||||Miaz||. By use of Pythagoras’ Theorem and a little
algebra (see Exercise 5.6), it can be seen that

a1 || Mias|| = |a11a22 — ar2a21], (5.27)

where a;; is the ij*® element of A. This quantity is the absolute value of
the determinant of A, which we write as |det A|. The determinant itself,
which is defined as ai1a20 — a12a01, can be of either sign. Its signed value
can be written as “det A”, but it is more commonly, and perhaps somewhat
confusingly, written as |A]|.

Algebraic expressions for determinants of square matrices of dimension higher
than 2 can be found easily enough, but we will have no need of them. We
will, however, need to make use of some of the properties of determinants.
The principal properties that will matter to us are as follows:

e The determinant of the transpose of a matrix is equal to the determinant
of the matrix itself. That is, |A"| = |A|.
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e The determinant of a triangular matrix is the product of its diagonal
elements.

e Since a diagonal matrix can be regarded as a special triangular matrix,
its determinant is also the product of its diagonal elements.

e Since an identity matrix is a diagonal matrix with all diagonal elements
equal to unity, the determinant of an identity matrix is 1.

e If a matrix can be partitioned so as to be block-diagonal, then its deter-
minant is the product of the determinants of the diagonal blocks.

e Interchanging two rows, or two columns, of a matrix leaves the absolute
value of the determinant unchanged but changes its sign.

e The determinant of the product of two square matrices of the same di-
mensions is the product of their determinants, from which it follows that
the determinant of A~ is the reciprocal of the determinant of A.

e If a matrix can be inverted, its determinant must be nonzero. Conversely,
if a matrix is singular, its determinant is 0.

e The derivative of log|A| with respect to the ij*® element a;; of A is the
ji* element of A~ 1.

Maximum Likelihood Estimation

If we assume that the disturbances of an SUR system are normally distributed,
the system can be estimated by maximum likelihood. The model to be esti-
mated can be written as

Yo = XofBe + Ue, ue ~N(0,XR®1I,). (5.28)

The loglikelihood function for this model is the logarithm of the joint density
of the components of the vector y,. In order to derive that density, we must
start with the density of the vector u,.

Up to this point, we have not actually written down the density of a random
vector that follows the multivariate normal distribution. We will do so in
a moment. But first, we state a more fundamental result, which extends
the result (3.95) that was proved in Section 10.8 for univariate densities of
transformations of variables to the case of multivariate densities.

Let z be a random m~-vector with known density f,(z), and let  be another
random m-vector such that z = h(x), where the deterministic function h(-)
is a one to one mapping of the support of the random vector @, which is a
subset of R™, into the support of z. Then the multivariate analog of the result
(3.95) is

fo(@) = f2(h(x)) ’det J(w)| , (5.29)

where J(x) = 0h(x)/0x is the Jacobian matrix of the transformation, that is,
the m x m matrix containing the derivatives of the components of h(x) with

5.2 Seemingly Unrelated Linear Regressions 197

respect to those of @, and we have written |det J(x)| to signify the absolute
value of the determinant.

Using (5.29), it is not difficult to show that, if the m x 1 vector z follows the
multivariate normal distribution with mean vector 0 and covariance matrix §2,
then its density is equal to

(2m)~™/2| 2|7 V/? exp(—%z—rﬂflz). (5.30)

Readers are asked to prove a slightly more general result in Exercise 5.8.

For the system (5.28), the function h(-) that gives u, as a function of y, is
the right-hand side of the equation

Ue = Yo — Xolgo- (531)

Thus we see that, if there are no lagged dependent variables in the matrix X,
then the Jacobian of the transformation is just the identity matrix, of which
the determinant is 1.

The Jacobian is, in general, much more complicated if there are lagged de-
pendent variables, because the elements of X, depend on the elements of y,.
However, as readers are invited to check in Exercise 5.10, even though the
Jacobian is not equal to the identity matrix in such a case, its determinant is
still 1. Therefore, we can ignore the Jacobian when we compute the density
of yo. When we substitute (5.31) into (5.30), as the result (5.29) tells us to
do, we find that the density of y, is (27)~9"/2 times

| ¥ ® In‘_l/Q exp(—%(y. - X-/BO)T(E_I ®In)(ye — X.IB.))' (5.32)

Jointly maximizing the logarithm of this function with respect to B, and the
elements of X gives the ML estimator of the SUR system.

The argument of the exponential function in (5.32) plays the same role for a
multivariate linear regression model as the sum of squares term plays in the
loglikelihood function (3.10) for a linear regression model with IID normal
disturbances. In fact, it is clear from (5.32) that maximizing the loglikelihood
with respect to B, for a given X' is equivalent to minimizing the function

(Yo — Xof30) (X7 O L) (Yo — Xof3s)

with respect to B.. This expression is just the criterion function (5.11) that is
minimized in order to obtain the GLS estimator (5.09). Therefore, the ML es-
timator BMY must have exactly the same form as (5.09), with the matrix X
replaced by its ML estimator 3w, which we will derive shortly.

It follows from (5.32) that the loglikelihood function £(X, 3,) for the model
(5.28) can be written as

f%log%' - %log X1, — %(y. — XB) (2R L) (Yo — Xofa).
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The properties of determinants set out in the previous subsection can be used
to show that the determinant of X ® I, is |X|™; see Exercise 5.11. Thus this
loglikelihood function simplifies to

*%IOg%" - glog | X - %(yo - X‘ﬁ.)T(E_l @ 1) (Yo — XofBe).  (5.33)

We have already seen how to maximize the function (5.33) with respect to Be
conditional on Y. Now we want to maximize it with respect to X.

Maximizing £(X, B.) with respect to X is of course equivalent to maximizing it
with respect to X1, and it turns out to be technically simpler to differentiate
with respect to the elements of the latter matrix. Note first that, since the
determinant of the inverse of a matrix is the reciprocal of the determinant
of the matrix itself, we have —log|X| = log|X~!|, so that we can readily
express all of (5.33) in terms of X! rather than X.

It is obvious that the derivative of any p x ¢ matrix A with respect to its ij ™
element is the p x ¢ matrix E;;, all the elements of which are 0, except for
the 75", which is 1. Recall that we write the i element of X! as o%. We
therefore find that )
0x~
where in this case E;; is a g X g matrix. We remarked in our earlier discussion
of determinants that the derivative of log|A| with respect to a;; is the jith
element of A~%. Armed with this result and (5.34), we see that the derivative
of the loglikelihood function £(X, B,) with respect to the element 0%/ is

86(23 /Bo) 1

T o0 = %Uij - E(yO - X’IB.)T(Eij L) (ye — Xofs). (5.35)
The Kronecker product E;; ® I, has only one nonzero block containing I,,. It
is easy to conclude from this that

(Yo — XofBe) (Eij @ 1,)(ye — XofBe) = (yi — XiBi) (y; — X;8).

By equating the partial derivative (5.35) to zero, we find that the ML estima-
tor ML is

ij
. 1 5 5
Gyt = —(yi — X 3"y, — X;8,"™).

If we define the n x g matrix U(B,) to have i" column y; — X;3;, then we
can conveniently write the ML estimator of X' as follows:

S = LUTEM U B, (5.36)

This looks like equation (5.17), which defines the covariance matrix used in
feasible GLS estimation. Equations (5.36) and (5.17) have exactly the same
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form, but they are based on different matrices of residuals. Equation (5.36)
and equation (5.09) evaluated at XMF that is

BMY = (X (Eyt 9 L)X XJ(Sk © L)y, (5.37)

together define the ML estimator for the model (5.28).

Equations (5.36) and (5.37) are exactly the ones that are used by the con-
tinuously updated GMM estimator to update the estimates of X' and ,,
respectively. It follows that, if the continuous updating procedure converges,
it converges to the ML estimator. Consequently, we can estimate the covar-
iance matrix of BME in the same way as for the GLS or GMM estimator, by
the formula -

Var (BMY) = (XJ(Z5L o L) X.) (5.38)

It is also possible to estimate the covariance matrix of the estimated con-
temporaneous covariance matrix, XML, although this is rarely done. If the
elements of X are stacked in a vector of dimension ¢2, a suitable estimator is

Var(2(8M)) = 2 2(8M) @ 2(BMY). (5.39)

Notice that the estimated variance of any diagonal element of X is just twice
the square of that element, divided by n. This is precisely what is obtained
for the univariate case in Exercise 10.10. As with that result, the asymptotic
validity of (5.39) depends critically on the assumption that the disturbances
are multivariate normal.

As we saw in Chapter 9, ML estimators are consistent and asymptotically effi-
cient if the underlying model is correctly specified. It may therefore seem that
the asymptotic efficiency of the ML estimator (5.37) depends critically on the
multivariate normality assumption. However, the fact that the ML estimator
is identical to the continuously updated efficient GMM estimator means that
it is in fact efficient in the same sense as the latter. When the disturbances are
not normal, the estimator is more properly termed a QMLE (see Section 9.4).
As such, it is consistent, but not necessarily efficient, under assumptions about
the disturbances that are no stronger than those needed for feasible GLS to be
consistent. Moreover, if the stronger assumptions made in (5.02) hold, even
without normality, then the estimator (5.38) of Var(8ML) is asymptotically
valid. If the disturbances are not normal, it would be necessary to have infor-
mation about their actual distribution in order to derive an estimator with a
smaller asymptotic variance than (5.37).

It is of considerable theoretical interest to concentrate the loglikelihood func-
tion (5.33) with respect to X. In order to do so, we use the first-order condi-
tions that led to (5.36) to define X(3,) as the matrix that maximizes (5.33)
for given B,. We find that

X(Bs) = - U'(Bs)U(Bs).

1
n
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A calculation of a type that should now be familiar then shows that

(Yo — XoBa) (X7 @ 1) (e — Xof)

9.9
N Z o (yi — XiBi) (y; — X;8)- (5.40)

When ¢% = ¢%(83,), which denotes the ij'" element of X~!(3,), the right-
hand side of equation (5.40) is

ZZ ﬁc UT(/BQ) ( o = Z ﬁ. Tij ,B.)

™M= ||'Mm

I
—

n (Ig)i = nTr(Iy) = gn,

7

where we have made use of the trace operator, which sums the diagonal ele-
ments of a square matrix; see Section 2.6. By substituting this result into
expression (5.33), we see that the concentrated loglikelihood function can be
written as

~ L (log2r + 1) — Llog| - UT(B.)U(B,)|. (5.41)

This expression depends on the data only through the determinant of the
covariance matrix of the residuals. It is the multivariate generalization of the
concentrated loglikelihood function (3.11) that we obtained in Section 9.2 in
the univariate case. We saw there that the concentrated function depends on
the data only through the sum of squared residuals.

It is quite possible to minimize the determinant in (5.41) with respect to Be
directly. It may or may not be numerically simpler to do so than to solve the
coupled equations (5.37) and (5.36).

We saw in Section 3.6 that the squared residuals of a univariate regression
model tend to be smaller than the squared disturbances, because least-squares
estimates make the sum of squared residuals as small as possible. For a similar
reason, the residuals from ML estimation of a multivariate regression model
tend to be too small and too highly correlated with each other. We observe
both effects, because the determinant of X' can be made smaller either by
reducing the sums of squared residuals associated with the individual equa-
tions or by increasing the correlations among the residuals. This is likely to
be most noticeable when g and/or the k; are large relative to n.

Although feasible GLS and ML with the assumption of normally distributed
disturbances are by far the most commonly used methods of estimating linear
SUR systems, they are by no means the only ones that have been proposed.
For fuller treatments, a classic reference on linear SUR systems is Srivastava
and Giles (1987), and a useful recent survey paper is Fiebig (2001).
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5.3 Systems of Nonlinear Regressions

Many multivariate regression models are nonlinear. For example, economists
routinely estimate demand systems, in which the shares of consumer expen-
diture on various classes of goods and services are explained by incomes,
prices, and perhaps other explanatory variables. Demand systems may be
estimated using aggregate time-series data, cross-section data, or mixed time-
series/cross-section (panel) data on households.?

The multivariate nonlinear regression model is a system of nonlinear regres-
sions which can be written as

ytizmti(B)Jruti, t:1,...,n, i:1,...,g. (542)
Here yy; is the ¢'" observation on the i*" dependent variable, x4;(3) is the t*?
observation on the regression function which determines the conditional mean
of that dependent variable, 3 is a k-vector of parameters to be estimated,
and uy; is a disturbance which is assumed to have expectation zero conditional
on all the explanatory variables that implicitly appear in all the regression
functions x4;(8), 7 = 1,...,g. In the demand system case, y; would be the
share of expenditure on commodity i for observation ¢, and the explanatory
variables would include prices and income. We assume that the disturbances
in (5.42), like those in (5.01), satisfy assumption (5.02). They are serially
uncorrelated, homoskedastic within each equation, and have contemporaneous
covariance matrix X with typical element o;;.

The equations of the system (5.42) can also be written using essentially the
same notation as we used for univariate nonlinear regression models in Chap-
ter 7. If, for each i = 1,..., g, the n-vectors y;, €;(3), and u; are defined to
have typical elements y;, us;, and x4 (3), respectively, then the entire system
can be expressed as

We have written (5.42) and (5.43) in such a way that there is just a single
vector of parameters, denoted 3. Every individual parameter may, at least in
principle, appear in every equation, although that is rare in practice. In the
demand systems case, however, some but not all of the parameters typically do
appear in every equation of the system. Thus systems of nonlinear regressions
very often involve cross-equation restrictions.

Multivariate nonlinear regression models can be estimated in essentially the
same way as the multivariate linear regression model (5.01). Feasible GLS

L The literature on demand systems is vast; see, among many others, Christensen,
Jorgenson, and Lau (1975), Barten (1977), Deaton and Muellbauer (1980),
Pollak and Wales (1981, 1987), Browning and Meghir (1991), Lewbel (1991),
and Blundell, Browning, and Meghir (1994).
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and maximum likelihood are both commonly used. The results we obtained
in the previous section still apply, provided they are modified to allow for the
nonlinearity of the regression functions and for cross-equation restrictions.
Our discussion will therefore be quite brief.

Estimation

Nonlinear GLS estimates can be obtained either by minimizing the criterion
function

(y—=(8) 27 (y —x(B)), (5.44)

or, equivalently, by solving the set of first-order conditions

XT(8)27 (y - x(8)) = . (5.45)

For the multivariate nonlinear regression model (5.42), the criterion function
can be written so that it looks very much like expression (5.11). Let yo once
again denote a gn-vector of the y; stacked vertically, and let x4(3) denote a
gn-vector of the x;(8) stacked in the same way. The criterion function (5.44)
then becomes

(yo - mO(B))T(E_l ®In) (yo - m.(IB)) (5.46)

Minimizing (5.46) with respect to B yields nonlinear GLS estimates which,
by the results of Section 8.2, are consistent and asymptotically efficient under
standard regularity conditions.

The first-order conditions for the minimization of (5.46) give rise to the fol-
lowing moment conditions, which have a very similar form to the moment
conditions (5.12) that we found for the linear case:

XJ(B)(Z L) (ye —ze(8)) =0. (5.47)

Here, the gn x k matrix X,(0) is a matrix of partial derivatives of the z.;(3).
If the n x k matrices X;(83) are defined, just as in the univariate case, so
that the ¢j element of X;(8) is 9z (8)/08;, for t =1,...,n, j =1,...,k,
then X,(8) is the matrix formed by stacking the X;(3) vertically. Except in
the special case in which each parameter appears in only one equation of the
system, X,(3) does not have the block-diagonal structure of X, in (5.05).

Despite this fact, it is not hard to show that the moment conditions (5.47)
can be expressed in a compact form like (5.16), but with a double sum. As
readers are asked to check in Exercise 5.12, we obtain estimating equations of
the form

Z Z o X7 (B)(y; — x;(8)) = 0. (5.48)

The vector ,@GLS that solves these equations is the nonlinear GLS estimator.
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Adapting expression (F'9.05) to the model (5.43) gives the standard estimate
of the covariance matrix of the nonlinear GLS estimator, namely,

Var(B61%) = (X,J(BCM%) (27 @ L) X, (BC19)) . (5.49)

This can also be written (see Exercise 5.12 again) as

Var(8615) (ZZU”XT BELS) X (,BGLS))_I. (5.50)

=1 j5=1

Feasible GLS estimation works in essentially the same way for nonlinear multi-
variate regression models as it does for linear ones. The individual equations of
the system are first estimated separately by either ordinary or nonlinear least
squares, as appropriate. The residuals are then grouped into an n x g matrix
U, and equation (5.17) is used to obtain the estimate 3. We can then replace
X by ¥ in the GLS criterion function (5.46) or in the moment conditions
(5.47) to obtain the feasible GLS estimator BF. We may also use a continu-
ously updated estimator, alternately updating our estimates of 8 and X. If
this iterated feasible GLS procedure converges, then we have obtained ML
estimates, although there may well be more computationally attractive ways
to do so.

Maximum likelihood estimation under the assumption of normality is very
popular for multivariate nonlinear regression models. For the system (5.42),
the loglikelihood function can be written as

~Llog2m — 21og|Z| = 2 (ye — e(8)) (T O L) (e — 2a(8)). (5.51)

This is the analog of the loglikelihood function (5.33) for the linear case.
Maximizing (5.51) with respect to 3 for given X' is equivalent to minimizing
the criterion function (5.46) with respect to 3, and so the first-order conditions
are equations (5.47). Maximizing (5.51) with respect to X for given 3 leads
to first-order conditions that can be written as

() =, U (BU),
in exactly the same way as the maximization of (5.33) with respect to X' led to
equation (5.36). Here the n x g matrix U () is defined so that its i*" column
is y; — x;(0).
Thus the estimating equations that define the ML estimator are
XJ(BM) (St © 1) (ye — zo(6"1)) = 0, and
S = U (B UBMY).

As in the linear case, these are also the estimating equations for the continu-
ously updated GMM estimator. The covariance matrix of SM is, of course,
given by either of the formulas (5.49) or (5.50) evaluated at BML and 3.
The loglikelihood function concentrated with respect to X can be written,

(5.52)
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just like expression (5.41), as
—Z(log2m +1) — Llog| - UT(B)U(B)|. (5.53)

As in the linear case, it may or may not be numerically easier to maximize the
concentrated function directly than to solve the estimating equations (5.52).

The Gauss-Newton Regression

The Gauss-Newton regression can be very useful in the context of multivariate
regression models, both linear and nonlinear. The starting point for setting
up the GNR for both types of multivariate model is the GNR for the standard
univariate model y = x(8) + u, with Var(u) = £2. This GNR takes the form

U'(y—z(B)) = ¥ X(B)b + residuals, (5.54)

where, as usual, X (8) is the matrix of partial derivatives of the regression
functions, and ¥ is such that @' = 21

Expressed as a univariate regression, the multivariate model (5.43) becomes
Yo = To(B) + Ue, Var(u.) =X ®1IL,. (5.55)
If we now define the g x ¢ matrix ¥ such that & = X1 it is clear that
@eL)PeL,) =@eL) (P ol,)= PP ol,)=X"1a1,

where the last expression is the inverse of the covariance matrix of w,.
From (5.54), the GNR corresponding to (5.55) is therefore

(T 1,)(ye — e(B)) = (F'®1,)X.(B)b + residuals. (5.56)

The gn x k matrix X,(3) is the matrix of partial derivatives that we already
defined for use in the moment conditions (5.47). Observe that, as required
for a properly defined artificial regression, the inner product of the regressand
with the matrix of regressors yields the left-hand side of the moment condi-
tions (5.47), and the inverse of the inner product of the regressor matrix with
itself has the same form as the covariance matrix (5.49).

The Gauss-Newton regression (5.56) can be useful in a number of contexts.
It provides a convenient way to solve the estimating equations (5.47) in order
to obtain an estimate of 3 for given X and it automatically computes the
covariance matrix estimate (5.49) as well. Because feasible GLS and ML esti-
mation are algebraically identical as regards the estimation of the parameter
vector 3, the GNR is useful in both contexts. In practice, it is frequently used
to calculate test statistics for restrictions on 3; see Section 7.7. Another im-
portant use is to impose cross-equation restrictions after equation-by-equation
estimation. For this purpose, the multivariate GNR is just as useful for linear
systems as for nonlinear ones; see Exercise 5.13.
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5.4 Linear Simultaneous Equations Models

In Chapter 10, we dealt with instrumental variables estimation of a single
equation in which some of the explanatory variables are endogenous. As we
noted there, it is necessary to have information about the data-generating
process for all of the endogenous variables in order to determine the optimal
instruments. However, we actually dealt with only one equation, or at least
only one equation at a time. The model that we consider in this section and
the next, namely, the linear simultaneous equations model, extends what we
did in Chapter 10 to a model in which all of the endogenous variables have
the same status. Our objective is to obtain efficient estimates of the full set
of parameters that appear in all of the simultaneous equations.

The Model

The i*® equation of a linear simultancous system can be written as
yi = XiBi t ui = Z;B1i + YiBoi + u, (5.57)

where X is an n X k; matrix of explanatory variables that can be partitioned
as X; =[Z; Y;]. Here Z, is an n X ky; matrix of variables that are assumed
to be exogenous or predetermined, and Y; is an n x ky; matrix of endogenous
variables, with ki; + ko; = k;. The k;—vector 3; of parameters can be parti-
tioned as [B1; i B2;] to conform with the partitioning of X. The g endogenous
variables y; through y, are assumed to be jointly generated by g equations
of the form (5.57). The number of exogenous or predetermined variables that
appear anywhere in the system is {. This implies that ky; <[ for all 4.2

We make the standard assumption (5.02) about the disturbances. Thus we
allow for contemporaneous correlation, but not for heteroskedasticity or serial
correlation. It is, of course, quite possible to allow for these extra complica-
tions, but they are not admitted in the context of the model currently under
discussion, which thus has a distinctly classical flavor, as befits a model that
has inspired a long and distinguished literature.

Except for the explicit distinction between endogenous and predetermined ex-
planatory variables, equation (5.57) looks very much like the typical equation
(5.01) of an SUR system. However, there is one important difference, which
is concealed by the notation. It is that, as with the simple demand-supply

2 Readers should be warned that the notation we have introduced in equation
(5.57) is not universal. In particular, some authors reverse the definitions of
X, and Z; and then define X to be the n x [ matrix of all the exogenous
and predetermined variables, which we will denote below by W. Our notation
emphasizes the similarities between the linear simultaneous equations model
(5.57) and the linear SUR system (5.01), as well as making it clear that W
plays the role of a matrix of instruments.
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model of Section 10.2, the dependent variables y; are not necessarily distinct.
Since equations (5.57) form a simultaneous system, it is arbitrary which one
of the endogenous variables is put on the left-hand side with a coefficient of 1,
at least in any equation in which more than one endogenous variable appears.
It is a matter of simple algebra to select one of the variables in the matrix Y;,
take it over to the left-hand side while taking y; over to the right, and then
rescale the coefficients so that the selected variable has a coefficient of 1. This
point can be important in practice.

Just as we did with the linear SUR model, we can convert the system of
equations (5.57) to a single equation by stacking them vertically. As before,
the gn-vectors y, and u, consist of the y; and the u;, respectively, stacked
vertically. The gn x k matrix X,, where k = k1 + ... + kg, is defined to be
a block-diagonal matrix with diagonal blocks X, just as in equation (5.05).
The full system can then be written as

Yo = XofBe + Us, E(ueus ) =X ®1,, (5.58)

where the k-vector 3, is formed by stacking the 3; vertically. As before, the
g X g matrix ¥ is the contemporaneous covariance matrix of the disturbances.
The true value of B, will be denoted 3.

Efficient GMM Estimation

One of the main reasons for estimating a full system of equations is to obtain
an efficiency gain relative to single-equation estimation. In Section 11.2; we
saw how to obtain the most efficient possible estimator for a single equation in
the context of efficient GMM estimation. The theoretical moment conditions
that lead to such an estimator are given in equation (2.18), which we rewrite
here for easy reference:

E(X'2 ' (y - XB)) =0. (2.18)

Because we are assuming that there is no serial correlation, these moment
conditions are also valid for the linear simultaneous equations model (5.57).
We simply need to reinterpret them in terms of that model.

In reinterpreting the moment conditions (2.18), it is clear that y, replaces the
vector y, XoB. replaces the vector X3, and X! ® I,, replaces the matrix
021, What is not quite so clear is what replaces the matrix X. Recall that X
in (2.18) is the matrix defined row by row so as to contain the expectations of
the explanatory variables for each observation conditional on the information
that is predetermined for that observation. We need to obtain the matrix that
corresponds to X in equation (2.18) for the model (5.58).

Let W denote an n x [ matrix of exogenous and predetermined variables,
the columns of which are all of the linearly independent columns of the Z;.
For these variables, the expectations conditional on predetermined informa-
tion are just the variables themselves. Thus we only need worry about the
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endogenous explanatory variables. Because their joint DGP is given by the
system of linear equations (5.57), it must be possible to solve these equations
for the endogenous variables as functions of the predetermined variables and
the disturbances. Since these equations are linear and have the same form for
all observations, the solution must have the form

y; = Wm; + disturbances, (5.59)

where 7r; is an [-vector of parameters that are, in general, nonlinear functions
of the parameters (3,. As the notation indicates, the variables contained in
the matrix W serve as instrumental variables for the estimation of the model
parameters. Later, we will investigate more fully the nature of the m;. We
pay little attention to the disturbances, because our objective is to compute
the conditional expectations of the elements of the y;, and we know that each
of the disturbances must have expectation 0 conditional on all the exogenous
and predetermined variables.

The vector of conditional expectations of the elements of y; is just Wrr,.
Since equations (5.59) take the form of linear regressions with exogenous and
predetermined explanatory variables, OLS estimates of the 7; are consistent.
As we saw in Section 5.2, they are also efficient, even though the disturbances
generally display contemporaneous correlation, because the same regressors
appear in every equation. Thus we can replace the unknown 7r; by their
OLS estimates based on equations (5.59). This means that the conditional
expectations of the vectors y; are estimated by the OLS fitted values, that
is, the vectors W#r; = Pwy;. When this is done, the matrices that contain
the estimates of the conditional expectations of the elements of the X; can be
written as .

We write X, rather than X; because the unknown conditional expectations
are estimated. The step from the second to the third expression in (5.60) is
possible because all the columns of all the Z; are, by construction, contained
in the span of the columns of W.

We are now ready to construct the matrix to be used in place of X in (2.18).
It is the block-diagonal gn x k matrix X,, with diagonal blocks the X;. This
allows us to write the estimating equations for efficient GMM estimation as

X (Z7' @ L,)(ys — Xofs) = 0. (5.61)

These equations, which are the empirical versions of the theoretical moment
conditions (2.18), can be rewritten in several other ways. In particular, they
can be written in the form

0’11X1TPW O’nglTPW Y1 —Xlﬁl
A .| =0,
UglngPW ... gggXQTPW Yy — X8y
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by analogy with equation (5.13), and in the form

g
Y 0" X{Pw(y,— X;8;) =0, i=1,..4 (5.62)
j=1

by analogy with equation (5.16). It is also straightforward to check (see
Exercise 5.14) that they can be written as

X, (X7 ® Pw)(ye — Xuf0s) = 0, (5.63)

from which it follows immediately that equations (5.61) are equivalent to the
first-order conditions for the minimization of the criterion function

(Yo — Xoﬂo)T(E_l @ Pw)(Ye — Xof3e). (5.64)

The efficient GMM estimator ,@PMM defined by (5.63) is the analog for a
linear simultaneous equations system of the GLS estimator (5.09) for an SUR
system.

The asymptotic covariance matrix of ﬁ.GMM can readily be obtained from
expression (2.29). In the notation of (5.61), we find that

Var(plim n*/2(8EMM — 80)) = plim (%Xf(z*l ® In)f(.)_l. (5.65)

n— 00 n— 00

This covariance matrix can also be written, in the notation of (5.63), as

—1
plim (%X.T(Z*l ® PW)X.) . (5.66)

n—00

Of course, the estimator 3EMM

. is not feasible if, as is almost always the case,
the matrix X' is unknown. However, it is obvious that we can deal with this
problem by using a procedure analogous to feasible GLS estimation of an SUR

system. We will return to this issue at the end of this section.

Two Special Cases

If the matrix X is diagonal, then equations (5.62) simplify to
"X Pw(y; — X;B:) =0, i=1,...,g. (5.67)

The factors of o% have no influence on the solutions to these equations, which
are therefore just the generalized IV, or 2SLS, estimators for each of the
equations of the system treated individually, with a common matrix W of
instrumental variables. This result is the analog of what we found for an SUR
system with diagonal X. Here it is the equation-by-equation IV estimator
that takes the place of the equation-by-equation OLS estimator.
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Just as single-equation OLS estimation is consistent but in general inefficient
for an SUR system, so is single-equation IV estimation consistent but in gen-
eral inefficient for the linear simultaneous equations model. As readers are
asked to verify in Exercise 5.15, the estimating equations (5.67), without the
factors of 0%, can be rewritten for the entire system as

X (1, ® Pw)(ye — Xof3s) = 0. (5.68)

In general, solving equations (5.68) yields an inefficient estimator unless the
true contemporaneous covariance matrix X' is diagonal.

There is, however, another case in which the estimating equations (5.68) yield
an asymptotically efficient estimator. This case is analogous to the case of
an SUR system with the same explanatory variables in each equation, but it
takes a rather different form in this context. What we require is that each of
the equations in the system should be just identified.

When we say that a single equation is just identified by an IV estimator, part
of what we mean is that the number of instruments is equal to the number of
explanatory variables, or, equivalently for a linear regression, to the number
of parameters. If equation i is just identified, therefore, the two matrices W
and Pw X, have the same dimensions. In fact, they span the same linear
subspace provided that Py X; is of full column rank. Consequently, there
exists an [ x [ matrix J; such that Py X;J; = W. Premultiplying the ith

equation of (5.62) by J thus gives
g ..
> oW (y; - X;8;) = 0.
j=1

If all the equations of a simultaneous equations system are just identified,
then the above relation holds for each ¢ = 1,...,9. We can then multiply
equation i by o,,; and sum over ¢, as in equation (5.20). This yields the
decoupled estimating equations

WT(ym_Xmﬁm):Oa m:17"'7gv

which define the single-equation (simple) IV estimators in the just-identified
case. Therefore, as with the SUR model, there is no advantage to system
estimation rather than equation-by-equation estimation when every equation
is just identified, because the estimating equations use up all of the available
moment conditions.

Identification

In order to be able to solve the estimating equations (5.63) for B, it must be
possible to invert the matrix

X, (X7 ® Pw)X.. (5.69)
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Thus, in finite samples, the parameters of the model (5.58) are identified if
this matrix is nonsingular. Although this statement is accurate, it is neither
complete nor transparent. In particular, even if the matrix (5.69) is singular,
it may still be possible to identify some of the parameters.

Whenever the contemporaneous covariance matrix X is nonsingular, it can
be shown, as spelled out in Exercise 5.16, that the matrix (5.69) is singular if
and only if at least one of the matrices Py X; does not have full column rank.
In other words, the system of equations is unidentified if and only if at least
one of its component equations is unidentified. The result of the exercise also
shows that the parameters of those equations for which Py, X; does have full
column rank can be identified uniquely by the estimating equations (5.63).
In consequence, provided that X is nonsingular, we can study identification
equation by equation without loss of generality.

A necessary condition for Py X; to have full column rank is that [, the number
of instruments contained in the matrix W, should be no less than k;, the
number of explanatory variables contained in X;. This condition is called the
order condition for identification of equation 7. It is an accounting condition,
and, as such, can be expressed in more than one way. Recall that we defined
k1; as the number of exogenous or predetermined explanatory variables in X,
that is, the dimension of the matrix Z;. Since the total number of exogenous
or predetermined variables in the full system is [, the number of such variables
excluded from equation 4 is | — k1;. The number of endogenous explanatory
variables included in equation i is, by definition ko;, which is the dimension
of the matrix Y;. Therefore, the inequality [ > k; is equivalent to

l > kli + kgi or [ — kli > k2i~ (570)

The second inequality here says that the number of predetermined variables
excluded from an equation must be at least as great as the number of endo-
genous explanatory variables in that equation.

The necessary and sufficient condition for the identification of the parameters
of equation 7 is that Py X; should have full column rank of &;. This condition,
which is, not surprisingly, called the rank condition for identification, holds
whenever the k; x k; matrix X; PwX; is nonsingular. It is easy to check
whether the rank condition holds for any given data set. However, it is not so
easy to check whether it holds asymptotically. The problem is that, because
some of the columns of X; are endogenous, plimn~'X; Py X; depends on
the parameters of the DGP. This point is important, and we will discuss it at
some length below.

Structural and Reduced Forms

When the equations of a linear simultaneous equations model are written
in the form (5.57), it is normally the case that each equation has a direct
economic interpretation. In the model of Section 8.2, for instance, the two
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equations are intended to correspond to demand and supply functions. It is
for this reason that these are called structural equations. The full system of
equations constitutes what is called the structural form of the model.

It is convenient for our subsequent analysis to stack the equations (5.57)
horizontally, instead of vertically as in the system (5.58). We thus define the
n X g matrix Y as [y1 Y2 --- Yg). Similarly, the vectors u; of disturbances
can be stacked side by side to form the n x g matrix U. In this notation, the
entire set of equations (5.57) can be represented as

YI'=WB+U, (5.71)

where the g x g matrix I' and the | x g matrix B are defined in such a way
as to make (5.71) equivalent to (5.57). Each equation of the system (5.57)
contributes one column to (5.71). This can be seen by writing equation 4
of (5.57) in the form

1
—Bai

All of the columns of Y; are also columns of Y, as is y; itself, and so column 3
of the matrix I' has 1 for element i, and the elements of the vector —3,; for
the other nonzero elements. The endogenous variables that are excluded from
equation ¢ contribute zero elements to the column. Similarly, all the columns
of Z; are also columns of W, and so the nonzero elements of column 7 of B
are the elements of (3y;, in appropriate positions. The “structure” of the
structural equations is embodied in the structure of the matrices I" and B.

[yi lfi}{ } = ZiP; + ui. (5.72)

If (5.71) is to represent a model by which the g endogenous variables are
generated, it is necessary for I' to be nonsingular. We can thus postmultiply
both sides of equation (5.71) by I'"! to obtain

Y =WBI'+V, (5.73)

where V' = UI'"L The representation (5.73) is called the reduced form of the
model, and its component equations (the columns of the matrix equation) are
the reduced form equations. These reduced form equations are regressions,
which in general are nonlinear in the parameters. Because they have only
exogenous or predetermined regressors, they can be estimated consistently by
nonlinear least squares.

Unless all the equations of the system are just identified, (5.73) is in fact
what is called the restricted reduced form or RRF. This is in contrast to the
unrestricted reduced form, or URF, which can be written as

Y =WIT+V, (5.74)

where IT is an unrestricted [ x g matrix. Notice that equation (5.59) is simply
the i*" equation of this system, with y; the i*® column of the matrix Y and
7; the ¢ column of the matrix IT.
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It may at first sight seem odd to refer to (5.73) as the restricted reduced
form and to (5.74) as the unrestricted one. The URF (5.74) has gl regression
coefficients, since IT is an [ x g matrix, while the RRF (5.73) appears to
have gl 4+ g?> parameters, since B is [ x g and I' is ¢ x g. But remember
that I'" has g elements which are constrained to equal 1, and both I' and B
have many zero elements corresponding to excluded endogenous and predeter-
mined explanatory variables, respectively. As readers are invited to show in
Exercise 5.18, if all the equations of the system are just identified, so that
the order condition (5.70) is satisfied with equality for each i = 1,..., g, then
there are exactly as many parameters in the RRF as in the URF. When some
of the order conditions are inequalities, there are fewer parameters in the RRF
than in the URF.

Asymptotic Identification

Whether or not the parameters of a linear simultaneous system are identified
by a given data set depends only on the order condition and the properties
of the actual data, but this is not true of asymptotic identification. Since
the parameters must be asymptotically identified if the parameter estimates
are to be consistent, it is worth studying in some detail the conditions for
asymptotic identification in such a system.

We assume that the probability limit of n~'W TU is a zero matrix and that
the [ x | matrix
Swmw = plim %WTW
n—00

is positive definite and, consequently, nonsingular. The nonsingularity of the
matrix W TW is not necessary for identification by a given data set, since,
if there are enough instruments, it is quite possible that each of the matrices
PwX,;,i=1,...,g, should have full column rank even though some of the
instruments are linearly dependent. Similarly, it is not necessary that Sy
should be nonsingular for asymptotic identification. However, since it is al-
ways possible to eliminate linearly dependent instruments, it is convenient to
make the nonsingularity assumption. By doing so, we make it clearer how
asymptotic identification depends on the actual parameter values.

For simplicity of notation, we focus on the asymptotic identification of the
first equation of the system, which can be written as

y1 = Z1Bu + Y1821 + uy. (5.75)

Since identification can be treated equation by equation without loss of gen-
erality, and since the ordering of the equations is quite arbitrary, our results
will be perfectly general. The matrix X; of explanatory variables for the first
equation is X3 = [Z; Yi]. Recall that the n x [ matrix W contains all the
linearly independent columns of the Z;, and in particular those of Z;. Let us
order the columns of W so that the k17 columns of Z; come first.
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The n x ko; matrix Y7 is given by a selection of the columns of the matrix Y.
The first column of Y, which corresponds to the equation we are studying,
is not among these, because y; appears only on the left-hand side of that
equation. However, we can freely reorder the remaining columns of Y so that
the ko1 columns of Y7 are the columns 2 through ko1 + 1 of Y. This done,
we can express the first ko; + 1 columns of the URF (5.74), in partitioned
form, as

(SR J 5F1

ly1 Yi]=[Z, W1}|:7721 Iy,

[+w vl 6
where we have introduced some further convenient notation. First, the
n X (I — k11) matrix Wi contains all the columns of W that are not in Zj.
Then, for the ordering that we have chosen for the columns of Y and W,
711 is the k11 X 1 vector of parameters in the first reduced form equation
(that is, the equation that defines y;) associated with the instruments in
the matrix Z;, while the (I — k11) X 1 vector ro; contains the parameters
of the first reduced form equation associated with the instruments in Wj.
Finally, the matrices IT;; and IT5; are, respectively, of dimensions k11 X ko
and (I — k11) X koy. They contain the parameters of the reduced form equa-
tions numbered 2 through k91 4+ 1 and associated with the instruments in Z;
and W7, respectively. The matrix [v; Vi | of disturbances is partitioned in
the same way as the left-hand side of (5.76).

We can write the matrix Py X7 as
PwX,=Pw|Z, Y1|=[Z, PwYi], (5.77)

because Pw Z; = Z;. With the help of (5.76), the second block of the
rightmost expression above becomes

IT
PwY: =[Z Wl][ ”} + Py Wi, (5.78)
115,
where we again use the fact that Pw[Z; Wi] = [Z7 Wi, and ITy4

and IT»; contain the true parameter values. Reorganizing equations (5.77)
and (5.78) gives

I, II,

Py X, =W
wx—w |

} +]0 PwVi]. (5.79)

The necessary and sufficient condition for the asymptotic identification of the
parameters of the first equation is the nonsingularity of the probability limit
as n — oo of the matrix n~ X Py X,. It is easy to see from (5.79) that this
limit is

plim %XJ Pw X, =

n— 00

[I;€11 (0)

:|S ’ |:Ik11 H11:|
wWTw .
I, 11

O IIy
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In Exercise 5.19, readers are invited to check that everything that depends on
the matrix V does indeed tend to zero in the above limit. Since we assumed
that Sy is positive definite, it follows that equation (5.75) is asymptotic-
ally identified if and only if the matrix

I, Iy
5.80
|: O H21:| ( )

is of full column rank k; = k17 + ko1. Because this matrix has [ rows, this
is not possible unless [ > kq, that is, unless the order condition is satisfied.
However, even if the order condition is satisfied, there can perfectly well ex-
ist parameter values for which (5.80) does not have full column rank. The
important conclusion of this analysis is that asymptotic identification of an
equation in a linear simultaneous system depends not only on the properties
of the instrumental variables W, but also on the specific parameter values of
the DGP.

In Exercise 5.20, readers are asked to show that the matrix (5.80) has full col-
umn rank if and only if the (I —k;1) X k21 submatrix ITs; has full column rank.
While this is a simple enough condition, it is expressed in terms of the reduced
form parameters, which are usually not subject to a simple interpretation. It is
therefore desirable to have a characterization of the asymptotic identification
condition in terms of the structural parameters. In Exercise 5.21, notation
that is suitable for deriving such a characterization is proposed, and readers
are asked to develop it in Exercise 5.22.

The numerical condition that the matrix (5.69) be nonsingular is satisfied
by almost all data sets, even when the rank condition for asymptotic iden-
tification is not satisfied. When this happens, the failure of that condition
manifests itself as the phenomenon of weak instruments that we discussed
in Section 10.4. In such a case, we might be tempted to add additional in-
struments, such as lags of the instruments themselves or other predetermined
variables that may be correlated with them. But doing this cannot lead to
asymptotic identification, because it would simply append columns of zeros
to the matrix IT of reduced form coefficients, and it is obvious that such an
operation cannot convert a matrix of deficient rank into one of full rank.

A discussion of asymptotic identification that is more detailed than the present
one, but still reasonably compact, is provided by Davidson and MacKinnon
(1993, Section 18.3). Much fuller treatments may be found in Fisher (1976)
and Hsiao (1983).

Three-Stage Least Squares

The efficient GMM estimator defined by the estimating equations (5.63) is
not feasible unless X is known. However, we can compute a feasible GMM
estimator if we can obtain a consistent estimate of X', and this is easy to do.
We first estimate the individual equations of the system by generalized IV,
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or two-stage least squares, to use the traditional terminology. This inefficient
equation-by-equation estimator is characterized formally by the estimating
equations (5.68). After computing it, we then use the 2SLS residuals to com-
pute the matrix ﬁ’QSLS, as in (5.17). Using f]QSLS in place of X in equations
(5.63) yields the popular three-stage least-squares, or 3SLS, estimator, which
was originally proposed by Zellner and Theil (1962). This estimator can be
written as

A e AN 71 1 —
Ig.SSLS _ (X.T(EgleS ® PW)X.) X'T(ZQSlLS ® PW)y. (581)

The relationship between this 3SLS estimator and the 2SLS estimator for the
entire system is essentially the same as the relationship between the feasible
GLS estimator (5.18) for an SUR system and the OLS estimator (5.06). As
with (5.18), we may wish to compute the continuously updated version of the
3SLS estimator (5.81), in which case we iteratively update the estimates of 3,
and X' by using equations (5.81) and (5.17), respectively.
From the results (5.65) and (5.66), it is clear that we can estimate the covar-
iance matrix of the classical 3SLS estimator (5.81) by

Var(33515) = (XJ (2341 © Pw) X.) ', (5.82)
which is analogous to (5.19) for the SUR case. Asymptotically valid inferences
can then be made in the usual way. As with the SUR estimator, we can
perform a Hansen-Sargan test of the overidentifying restrictions by using the
fact that, under the null hypothesis, the criterion function (5.64) evaluated at
B35S and Xagrs is asymptotically distributed as y2 (gl — k). Of course, this
is also true if the procedure has been iterated one or more times.

5.5 Maximum Likelihood Estimation

Like the SUR model, the linear simultaneous equations model can be esti-
mated by maximum likelihood under the assumption that the disturbances,
in addition to satisfying the requirements (5.02), are normally distributed.
In contrast to the situation with an SUR system, where the ML estimator
is numerically identical to the continuously updated feasible GLS estimator,
the ML estimator of a linear simultaneous equations model is, in general,
different from the continuously updated 3SLS estimator. The ML and 3SLS
estimators are, however, asymptotically equivalent, whether or not the latter
is continuously updated.

Because the algebra of ML estimation is quite complicated, we have divided
our treatment of the subject between this section and a technical appendix,
which appears at the end of the chapter, just prior to the exercises. All of the
principal results are stated and discussed in this section, but many of them
are derived in the appendix.
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Full-Information Maximum Likelihood

The maximum likelihood estimator of a linear simultaneous system is called
the full-information maximum likelihood, or FIML, estimator. It is so called
because it uses information about all the equations in the system, unlike
the limited-information maximum likelihood estimator (LIML) that will be
discussed later in this section.

The loglikelihood function that must be maximized to obtain the FIML esti-
mator can be written in several different ways. In terms of the notation used
in equation (5.58), it is

— %log%r—§10g|2|+nlog|det1“|

— 5 = XuB)(Z7 O L) (ge — XuBo)-

(5.83)

This looks very much like the loglikelihood function (5.51) for a multivariate
nonlinear regression model with normally distributed disturbances. The prin-
cipal difference is the third term, nlog | det I'|, which is a Jacobian term. This
term is the logarithm of the absolute value of the Jacobian of the transforma-
tion from u, to ye. As we will see in the appendix, the loglikelihood function
can also be written without an explicit Jacobian term if we start from the
restricted reduced form (5.73).

Maximizing the loglikelihood function (5.83) with respect to X is exactly the
same as maximizing the loglikelihood function (5.33) with respect to it. If we
had ML estimates of 3, or, equivalently, of B and I", the ML estimate of X
would be

Sy = (Y — WBw) (YT — WBwL), (5.84)

which is just the sample covariance matrix of the structural-form disturbances;
compare equation (5.36).

Recall from (5.57) that the parameter vector 8; of equation 4 contains both
the vector By;, which is associated with the predetermined explanatory vari-
ables, and the vector (33;, which is associated with the endogenous explanatory
variables. As is clear from equation (5.72), the matrix B is determined by
the B1; alone, and the matrix I'" by the B2; alone. We can obtain the first-
order conditions for maximizing the loglikelihood function (5.83) with respect
to the B1; in exactly the same way as we obtained conditions (5.12) from the
criterion function (5.11) for an SUR system. The first-order conditions that
we seek can be written as

Z/ (X7 0L)(ye — Xofs) =0, (5.85)
where the gn x )~ k1; matrix Z, is defined, similarly to X,, as a matrix with

diagonal blocks Z;. The number of equations in (5.85) is >, k1;, since there
is one equation for each of the 3y;.
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Since it is rather complicated to work out the first-order conditions for the
maximization of (5.83) with respect to the Bs;, we leave this derivation to the
appendix. These conditions can be expressed as

Y. (B, ) (X' ®1,)(ye — Xof3s) = 0, (5.86)

where the gn x Y, ko; matrix Y, (B, I") is again defined in terms of diagonal
blocks. Block i is the n x ko; matrix Y;(B,I'), which is the submatrix of
WBI~! formed by selecting the columns that correspond to the columns
of the matrix Y; of included endogenous explanatory variables in equation 4.
The conditions (5.85) and (5.86) can be grouped together as

XJ(B,N)(Z'9L,)(ys — Xu8.) =0, (5.87)

where the i*h diagonal block of X, (B, I') is the n x k; matrix [Z; Y;(B,TI)].
There are k =, k1; + >, k2; equations in (5.87).

With (5.84) and (5.87), we have assembled all of the first-order conditions
that define the FIML estimator. We write them here as a set of estimating
equations:

XQT(BMLa fML)(ZA‘I\_/[i o In)(yo - XoﬁA.ML) = 07 and ( )
3 3 A . ) 5.88
Sy = (Y — WBw) (YT — WBwL).

Solving these equations, which must of course be done numerically, yields the
FIML estimator.

There are many numerical methods for obtaining FIML estimates. One of
them is to make use of the artificial regression

(PTR1,)(ye — XoBe) = (' @1,) X, (B, I')b + residuals, (5.89)

where, as usual, W@ = ¥~1. This is analogous to the multivariate GNR
(5.56). If we start from initial consistent estimates, this artificial regression
can be used to update the estimates of B and I', and equation (5.84) can be
used to update the estimate of X. Like other artificial regressions, (5.89) can
also be used to compute test statistics and covariance matrices.

Another approach is to concentrate the loglikelihood function with respect
to X. As readers are asked to show in Exercise 5.24, the concentrated log-
likelihood function can be written as

~Z(log 2+ 1) +nlog |det I'| — 2 log| (YT = WB) (YT = WB)|, (5.90)

which is the analog of (5.41) and (5.53). Expression (5.90) may be maximized
directly with respect to B and I' to yield By, and I'ygr,. This approach may
or may not be easier numerically than solving equations (5.88).
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The FIML estimator is not defined if the matrix (YI' — WB) (YT — WB)
that appears in (5.90) does not have full rank for all admissible values of B
and I', and this requires that n > g+ k. This result suggests that n may have
to be substantially greater than g + k if FIML is to have good finite-sample
properties; see Sargan (1975) and Brown (1981).

Comparison with Three-Stage Least Squares

Even though the FIML and 3SLS estimators are asymptotically equivalent,
the FIML estimator is not, in general, equal to the continuously updated
3SLS estimator. In order to study the relationship between the two estimators,
we write out explicitly the estimating equations for 3SLS and compare them
with the estimating equations (5.88) for FIML. Equations (5.61) and (5.17)
imply that the continuously updated version of the 3SLS estimator is defined
by the equations

X’T(ZA‘Z%_SILS ® In)(yO - Xo/é.z;SLS) = 0, and
- S S " N (5.91)
Y3sLs = %(YngLs - WBgsLs)T(Y.ngLS — WBBSLS)-

The second of these equations has exactly the same form as the second equa-
tion of (5.88). The first equation is also very similar to the first equation
of (5.88), but there is one difference. In (5.88), the leftmost matrix on the
left-hand side of the first equation is the transpose of X.(BML,fML), of
which the typical diagonal block is [ Z; K(BML,fML)]. In contrast, the
corresponding matrix in the first equation of (5.91) is the transpose of X., of
which the typical diagonal block is, from (5.60), [Z; PwY;].

In both cases, the matrix is an estimate of the matrix of optimal instruments
for equation i, that is, the matrix of the expectations of the explanatory
variables conditional on all predetermined information. It is clear from the
RRF (5.73) that this matrix is [Z; Y;(B,I")], where B and I" are the true
parameters of the DGP. FIML uses the FIML estimates of B and I" in place
of the true values, while 3SLS estimates Y;(B,I") by PwY;, that is, by the
fitted values from estimation of the wunrestricted reduced form (5.74). The
latter is, in general, less efficient than the former.

If the restricted and unrestricted reduced forms are equivalent, as they must
be if all the equations of the system are just identified, then the estimating
equations (5.91) and (5.88) are also equivalent, and the 3SLS and FIML esti-
mators must coincide. In this case, as we saw in the last section, 3SLS is also
the same as 2SLS, that is, equation-by-equation IV estimation. Thus all the
estimators we have considered are identical in the just-identified case. When
there are overidentifying restrictions, and 3SLS is used without continuous
updating, then the 3SLS estimators of B and I" are replaced by the 2SLS
ones in the second equation of (5.91). Solving this equation yields the clas-
sical 3SLS estimator (5.81), which is evidently much easier to compute than
the FIML estimator.
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Our treatment of the relationship between 3SLS and FIML has been quite
brief. For much fuller treatments, see Hausman (1975) and Hendry (1976).

Inference Based on FIML Estimates

Since the first equation of (5.88) is just an estimating equation for efficient
GMM, we can estimate the covariance matrix of B3M™ by the obvious estimate
of n~! times the asymptotic covariance matrix (5.66), namely,

Var(BMY) = (XJ(Buw, ) (Enh @ L) Xo(Buw, ) - (5.92)

Notice that, if we evaluate the artificial regression (5.89) at the ML estimates,
then 1/s2 times the OLS covariance matrix is equal to this matrix.

There are two differences between the estimated covariance matrix for FIML
given in equation (5.92) and the estimated covariance matrix for the classical
3SLS estimator given in equation (5.82). The first is that they use different
estimates of X. The second is that, in (5.92), the endogenous variables in
X, are replaced by their fitted values, based on the FIML estimates, while in
(5.82) they are replaced by their projections on to 8(W).

If the model (5.57) is correctly specified, and the disturbances really do satisfy
the assumptions we have made about them, then each row V; of the matrix
of disturbances V' in the URF (5.74) must have properties like those of the
structural disturbances Uy in (5.03). This implies that the disturbances in
every equation of the URF must be homoskedastic and serially independent.
This suggests that the first step in testing the statistical assumptions on which
FIML estimation is based should always be to perform tests for heteroskedas-
ticity and serial correlation on the equations of the unrestricted reduced form;
suitable testing procedures were discussed in Sections 8.5 and 8.7. If there
is strong evidence that the V; are not IID, then either at least one of the
structural equations is misspecified, or we need to make more complicated
assumptions about the disturbances.

It is also important to test any overidentifying restrictions. In the case of
FIML, it is natural to use a likelihood ratio test rather than a Hansen-Sargan
test, as we suggested for 3SLS and SUR estimation. The number of restric-
tions is, once again, gl — k, the difference between the number of coefficients
in the URF and the number in the structural model. The restricted value
of the loglikelihood function is the maximized value of either the loglikeli-
hood function (5.83) or the concentrated loglikelihood function (5.90), and
the unrestricted value is

~ 2 (log2m + 1) — ;log‘%(Y W)Y - WII)|,

where IT denotes the matrix of OLS estimates of the parameters of the URF.
Twice the difference between the unrestricted and restricted values of the
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loglikelihood function is asymptotically distributed as x%(gl — k) if the model
is correctly specified and the overidentifying restrictions are satisfied.

Limited-Information Maximum Likelihood

When a system of equations consists of just one structural equation, together
with one or more reduced-form equations, the FIML estimator of the struc-
tural equation reduces to a single-equation estimator. We can write the single
structural equation as

y=201+Y0B: +u, (5.93)

where we use a notation similar to that of (5.57), but without indices on the
variables and parameters. There are ki elements in B; and ko in B2, with
k = k1 + ka. A complete simultaneous system can be formed by combining
(5.93) with the equations of the unrestricted reduced form for the endogenous
variables in the matrix Y. We write these equations as

Y =WIT+V = ZIT, + W, IT, + V, (5.94)

where the matrix Wi contains all the predetermined instruments that are
excluded from the matrix Z.

Since the equations of the unrestricted reduced form are just identified by
construction, the only equation of the system consisting of (5.93) and (5.94)
that can be overidentified is (5.93) itself. If it is also just identified, then, as
we have seen, 3SLS and FIML estimation both give exactly the same results
as IV estimation of (5.93) by itself. If equation (5.93) is overidentified, then
it turns out that 3SLS, without continuous updating, also gives the same
estimates of the parameters of (5.93) as IV estimation. Readers are asked to
prove this result in Exercise 5.27. However, continuously updated 3SLS and
ML give different, and possibly better, estimates in this case.

Maximum likelihood estimation of equation (5.93), implicitly treating it as
part of a system with (5.94), is called limited-information maximum like-
lihood, or LIML. The terminology “limited-information” refers to the fact
that no use is made of any overidentifying or cross-equation restrictions that
may apply to the parameters of the matrix IT of reduced-form coefficients.
Formally, LIML is FIML applied to a system in which only one equation is
overidentified. However, as we will see, LIML is in fact a single-equation
estimation method, in the same sense that 2SLS applied to (5.93) alone is
a single-equation method. The calculations necessary to see this are rather
complicated, and so here we will simply state the principal result, which dates
back as far as Anderson and Rubin (1949). A derivation of this result may be
found in Davidson and MacKinnon (1993, Chapter 18).

The Anderson-Rubin result is that the LIML estimate of 3, in equation (5.93)
is given by minimizing the ratio
(y —YB32) Mz (y — YS3)

"=y = Y8 My —YBa) (5.95)
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where Mz projects off the predetermined variables included in (5.93), and
My projects off all the instruments, both those in Z and those in Wj.
The value # that minimizes (5.95) may be found by a non-iterative procedure
that is discussed in the appendix. The maximized value of the loglikelihood
function is then

—% log2m — Zlog & — 4 log [Y. Mw Y. |, (5.96)

where Y, =[y Y.

If we write equation (5.93) as y = X8 + u, then the LIML estimator of 3 is
defined by the estimating equations

X (I - & Mw)(y — XB"™ML) =0, (5.97)
which can be solved explicitly once & has been computed. We find that
BUME — (XTI — AMw)X) ' X'(1—iMw)y. (5.98)

A suitable estimate of the covariance matrix of the LIML estimator is

Var(BMMY) — 62 (X (T — & Mw)X) (5.99)
where
5,2 = %(y _ XIéLIML)T(y _ X,éLIML).

Given (5.99), confidence intervals, asymptotic ¢ tests, and Wald tests can
readily be computed in the usual way.

Since W = [Z W] is the matrix containing all the instruments, we can
decompose My as Mz — Ppar,w,. This makes it clear that « > 1, since
the numerator of (5.95) cannot be smaller than the denominator. If equation
(5.93) is just identified, then, by the order condition, Y and W have the
same number of columns. In this case, it can be shown that the minimized
value of k is actually equal to 1; see Exercise 5.28.

In the context of 2SLS estimation, we saw in Section 10.6 that the Hansen-
Sargan test can be used to test overidentifying restrictions. In the case of
LIML estimation, it is easier to test these restrictions by a likelihood ratio test.
As shown in Exercise 5.28, the maximized loglikelihood of the unconstrained
model for which the overidentifying restrictions of (5.93) are relaxed is the
same as expression (5.96) for the constrained model, but with x = 1. Thus
the LR statistic for testing the overidentifying restrictions, which is twice
the difference between the unconstrained and constrained maxima, is simply
equal to nlog 4. This test statistic was first proposed by Anderson and Rubin
(1950). Since there are | — k overidentifying restrictions, the LR statistic is
asymptotically distributed as x2(I — k).
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K-Class Estimators

In equation (5.97), we have written the LIML estimating equations in the form
of the estimating equations for a K-class estimator, following Theil (1961).
The K-class is the set of estimators defined by the estimating equations (5.97)
with an arbitrary scalar K replacing 4. The LIML estimator is thus a K-
class estimator with K = k. Similarly, the 2SLS estimator (5.63) is a K-class
estimator with K = 1, and the OLS estimator is a K-class estimator with
K =0.

Numerous other K-class estimators have been proposed. It can be shown that,
under standard regularity conditions, these estimators are consistent whenever
the plim of K is 1. Thus 2SLS is consistent, and OLS is inconsistent. Since
nlog & is asymptotically distributed as x?(I — k) when the overidentifying
restrictions are satisfied, it must be the case that plimlog & = 0, which implies
that plim & = 1. It follows that LIML is asymptotically equivalent to 2SLS. In
finite samples, however, the properties of LIML may be quite different from
those of 2SLS. The strangest feature of the LIML estimator is that it has no
finite moments. This implies that its density tends to have very thick tails,
as readers are asked to illustrate in Exercise 5.32. However, if we measure
bias by comparing the median of the estimator with the true value, the LIML
estimator is generally much less biased than the 2SLS estimator.

Fuller (1977) has proposed a modified LIML estimator that sets K equal to
k —a/(n — k), where « is a positive constant that must be chosen by the
investigator. One good choice is @ = 1, since it yields estimates that are
approximately unbiased. In contrast to the LIML estimator, which has no
finite moments, Fuller’s modified estimator has all moments finite provided
the sample size is large enough. Mariano (2001) provides a recent summary
of the finite-sample properties of LIML, 2SLS, and other K-class estimators.

Invariance of ML Estimators

One important feature of the FIML and LIML estimators is that they are
invariant to any reparametrization of the model. This is actually a general
property of all ML estimators, which was explored in Exercise 9.15. Since
simultaneous equations systems can be parametrized in many different ways,
this is a useful property for these estimators to have. It means that two
investigators using the same data set must obtain the same estimates even if
they employ different parametrizations.

As an example, consider the two-equation demand-supply model that was first
discussed in Section 10.2:

G = Yapt + X{Ba + uf (5.100)
a =Vs Pt + XiBs +uj. (5.101)

As the notation indicates, equation (5.100) is a demand function, and equation
(5.101) is a supply function. In this system, p; and ¢; denote the price and
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quantity of some commodity in period ¢, which may well be in logarithms, Xtd
and X are row vectors of exogenous or predetermined variables, B4 and G;
are the corresponding vectors of parameters, and 4 and v, are the slopes of
the demand and supply functions, which can be interpreted as elasticities if
p¢ and ¢; are in logarithms.

Now suppose that we reparametrize the supply function as
P = Vear + X7 By + i, (5.102)

where v, = 1/v5 and B, = —Bs/7s. The invariance property of maximum
likelihood implies that, if we first use FIML to estimate the system consisting
of equations (5.100) and (5.101) and then use it to estimate the system con-
sisting of equations (5.100) and (5.102), we obtain exactly the same estimates
of the parameters of equation (5.100). Moreover, the estimated parameters of
equations (5.101) and (5.102) bear precisely the same relationship as the true
parameters. That is,

§o=1/%s and B = —B/4s. (5.103)

If we use LIML to estimate equations (5.101) and (5.102), the two sets of
LIML estimates likewise satisfy conditions (5.103).

The invariance property of LIML and FIML is not shared by 2SLS, 3SLS, or
any other GMM estimator. If, for example, we use 3SLS to estimate the two
versions of this system of equations, the two sets of estimates do not satisfy
conditions (5.103); see Exercise 5.31.

5.6 Nonlinear Simultaneous Equations Models

As we saw in Section 5.3, it is fairly straightforward to extend the SUR model
so as to allow for the possibility of nonlinearity. However, additional com-
plications can arise with nonlinear simultaneous equations models. With an
SUR system, the right-hand sides of the several regressions do not depend on
current endogenous variables, but this is not true of a simultaneous system.
If endogenous variables enter nonlinearly in such a system, then, since it is
not always possible to find solutions to nonlinear equations in closed form, it
may be infeasible to set up a reduced form in which each endogenous variable
is expressed as a function only of predetermined variables and parameters.

Feasible Efficient GMM

The easiest way to take account of all interesting cases is to work in terms of
zero functions and treat the nonlinear simultaneous system by the methods
we developed in Section 11.5 for nonlinear GMM. The main extension needed
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for a simultaneous system is just that each elementary zero function depends,
in general, on a vector of endogenous variables, rather than on just one.

Suppose that there are g equations that, for each observation, simultaneously
determine g endogenous variables, and suppose further that these equations
can be written as

fti(lft,g):ut,-7 t:1,...,n, iZl,...,g.

The functions f;(-) depend implicitly on predetermined explanatory variables.
They are, in general, nonlinear functions of both the 1 x g vector Y; that
contains the endogenous variables for observation ¢ and the k-vector € of
model parameters. The uy; are disturbances with expectation zero. In some
cases, we may be ready to assume that the uy; satisfy the conditions (5.02)
that we have imposed on the other models considered in this chapter.

It is clear that the f;; are elementary zero functions. We may stack them
in the way we stacked the dependent variables of an SUR system. First, we
define the n-vectors f;(Y,80),i=1,...,g, so that the ¢*" element of f;(Y,8)
is f1;(Y;,0), where Y is the n x g matrix of which the ¢*" row is Y;. Then
we stack the f; vertically to construct the gn x 1 vector fo(Y,0). Under
assumptions (5.02), the covariance matrix of this stacked vector is ¥ ® I,,.

According to the theory developed in Section 11.5, the optimal instruments
for efficient GMM are given in terms of the matrix F(8) defined in equation
(2.85). If, as before, we define the g x g matrix ¥ such that @' = X~ then
the matrix ¥ of (2.85) becomes ¥ ®I,, in the present case. The matrix F(6)
of that equation becomes a gn x k matrix F,(Y, ), of which the ¢i*" element
is the derivative of the t*® element of f,(Y,8) with respect to 6;, the i*"
element of . Under assumptions (5.02), the matrix F, needed for the optimal
estimating equations is just the gn x k matrix of which the ¢ row is the
expectation of the ¢** row of F, conditional on all information predetermined
at time t. The estimating equations we need correspond to equations (2.82).
However, as discussed in the paragraph following (2.82), we must use F,(8)
instead of Fq(0) in formulating the optimal instruments. We obtain

FJ0)(X'21,)f.(Y,0) =0. (5.104)

Although the notation differs slightly, the only important difference between
(2.82) and (5.104) is that the latter equations involve F,(8) instead of Fy(8).
There is also no factor of n~! in (5.104), an omission that evidently has no
effect on the solution.

It is precisely in the construction of the matrix F, that difficulties may arise.
Since there may be no analytical expression for some or all of the endogenous
variables, there may be no direct way of computing or even estimating F,.
In that case, we may proceed as in Section 11.5 by selecting a set of | > k
instruments, that we group into the n x [ matrix W. We then replace the
estimating equations (5.104) by

FJ(Y,0) (X' ® Pw)f.(Y,0) =0, (5.105)
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which closely resemble equations (5.63) for the linear case. Equivalently, we
may minimize the criterion function

£ (Y,0)( X7 @ Pw)f.(Y,0), (5.106)

which is comparable to expression (5.64) for the linear case. The first-order
conditions for minimizing (5.106) with respect to @ are equivalent to the es-
timating equations (5.105).

If, as is usually the case, the matrix X' is not known, then we must first obtain
preliminary consistent estimates, say 6. We might do this by solving the
estimating equations (5.105) or minimizing the criterion function (5.106) with
X replaced by an identity matrix. Alternatively, if cross-equation restrictions
are not needed for identification, we might estimate each equation separately
by the methods of Section 9.5. We can then use these preliminary estimates
to form an estimate of X' by the formula

f1(Y,0)
r=2 : [£1(Y,0) - f,(Y.6)].
£(Y,6)

This estimate can then be used in either (5.105) or (5.106) to obtain more
efficient estimates. We can either stop after one round or iterate to obtain
continuously updated estimates.

The one-round procedure yields a generalization of the nonlinear instrumen-
tal variables, or NLIV, estimator éNLIV, which we first encountered in Sec-
tion 10.9. It was originally proposed by Jorgenson and Laffont (1974). In
Exercise 5.33, readers are asked to write down the first-order conditions that
define the estimator éNLI\u along with the usual estimate of its covariance
matrix.

The NLIV estimator is sometimes called nonlinear three-stage least squares,
or NL3SLS. We prefer not to do so, because that name is quite misleading.
For the reasons discussed in Section 8.9 in connection with nonlinear two-
stage least squares, we never actually replace endogenous variables by their
fitted values from reduced-form regressions. Moreover, there are really just
two stages, the first in which preliminary consistent estimates are obtained,
the second in which (5.105) or (5.106) is used with the estimated X.

Nonlinear FIML Estimation

The other full-system estimation method that is widely used is nonlinear
FIML. In order to derive the loglikelihood function, it is convenient to stack
the vectors f;(Y, 0) horizontally. Let h: (Y%, 0) be a 1x g row vector containing
the elements f;1,..., fig. Then the model to be estimated can be written as

h(Y;,0) =U;, U; ~NID(0, ). (5.107)
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The row vector U; contains the disturbances uy;, i = 1,..., g, which are now
assumed to be multivariate normal. In order to obtain the density of Y;,
we start from the density of Uy, replace U; by h.(Y;,0), and multiply by
the Jacobian factor |det J;|, where J; = 0h.(0)/9Y; is the g X g matrix of
derivatives of h; with respect to the elements of Y;. The result is

(2m)7 /2 |det J,| | 2|72 exp(~ S hu(Y:, )57 'h] (Y,6)).

Taking the logarithm of this, summing it over all observations, and then con-
centrating the result with respect to X, yields the concentrated loglikelihood
function for the model (5.107):

n 1 n
~ P (log2m +1) + Y log |det J,| — glog‘EZhJ(n,e)ht(Y;,e) .
t=1 t=1

The main difference between this function and its counterpart for the linear
case, expression (5.90), is that the Jacobian matrices J; are in general dif-
ferent for each observation. Evaluating all these determinants could well be
expensive when n is large and ¢ is not very small.

Another difference between the linear and nonlinear cases is that, in the latter,
FIML and NLIV are not even asymptotically equivalent in general. In fact,
if the disturbances are not normally distributed, the FIML estimator may
actually be inconsistent; see Phillips (1982). If the disturbances are indeed
normal, then, for the usual reasons, the FIML estimator is more efficient
asymptotically than the NLIV estimator, although its efficiency may come at
a price in terms of computational complexity. More detailed treatments of
nonlinear FIML estimation may be found in Amemiya (1985, Chapter 8) and
Gallant (1987, Chapter 6).

5.7 Final Remarks

Notation is a bugbear with multivariate regression models. These models
can be written in many equivalent ways, and notation that is well suited to
one estimation method may not be convenient for another. Once the nota-
tional hurdle has been crossed, we have seen that it is not excessively difficult
to estimate multivariate regression models, including simultaneous equations
models, using a variety of familiar techniques. All the procedures we have
discussed use some combination of (feasible) generalized least squares, in-
strumental variables, GMM, and maximum likelihood. Except in the case of
nonlinear simultaneous equations models, there is always a technique based on
feasible GLS and/or instrumental variables that is asymptotically equivalent
to maximum likelihood.
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5.8 Appendix: Detailed Results on FIML

This appendix derives several results on FIML estimation that were too tech-
nical to include in the main text.

First-Order Conditions for FIML

For the purpose of obtaining the first-order conditions (5.86), it is convenient
to write the loglikelihood function (5.83) in terms of the restricted reduced
form (5.73). In the RRF, the y; are stacked horizontally. However, if we are to
use the same approach as for the SUR model, we must stack them vertically.
The i*" column of (5.73) can be written as

yi = WB~' + v, (5.108)

where the g-vector 4 is the *" column of I'"!, and v; is the i*" column of V.
Then equations (5.108) can be written as

Yo = (Ig ®@ WB)~y* + v,
= I, @ W)me + v, (5.109)
= mﬂ-o + Vs,

Here the g?-vector 4* contains the 4 stacked vertically, the gn-vector v,
contains the v; stacked vertically, the gl x gn matrix W, denotes I, ® W, and
the gl-vector m, contains the 7; stacked vertically. The m; are the columns
of the matrix IT, defined here as BI'™1, as in the restricted reduced form.

By rewriting the last equation in (5.109) so that v, is a function of y,, we
obtain the transformation that gives v, in terms of y,. Exactly as with the
transformation (5.31), the determinant of the Jacobian of this transformation
is 1. Thus, in order to obtain the joint density of y,, we simply have to find
the density of the vector v, and then replace ve by Yo — Wer,.

Since we have assumed that v, is multivariate normal, and we know that its
expectation is a zero vector, the only thing we need to write down its density
is its covariance matrix. Recall that V' = UI'"!, where U is the matrix of
structural form disturbances. Thus

g
vizU"/i:Zujwji, 1=1,...,9,
j=1

where ~7? is the ji*" element of I'"!. By stacking these equations vertically,
it is not hard to see that

Ve = ((FT)_l ® In)u..
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Since the covariance matrix of u, is assumed to be X’ ®I,,, it follows that the
covariance matrix of ve can be written as

Var(ve) = E(vevs ) = (I'") '@ L) (X @L,) I ' ®1,)
=(r"y'2rter,.

For some of the following calculations, it will be convenient to denote the
matrix (I'T)"1XT~! by £2.
Using this notation, the density of y, is (27)~9"/2 times

‘Q ® In|71/2 eXp(—%(y. - VVcﬂ'c)T(971 X In)(yo - Woﬂ'o))'

This may be compared with (5.32), the analogous expression for a linear SUR
system. It follows that the loglikelihood function for the linear simultaneous
equations model can be written as

—%log 21 — glog |£2| — %(y. - W/'.Tr.)—r(.(l*1 ®1,)(ye — Wem,). (5.110)

This expression is deceptively simple, because the vector 7, depends in a com-
plicated way on the vector of structural parameters 3,. However, since (5.110)
depends on §2 in precisely the same way in which expression (5.33), the log-
likelihood function for a linear SUR system, depends on X, the ML estimator
of 2 must have exactly the same form as (5.36).

It is of interest to compare the loglikelihood functions (5.110) and (5.83). A
little algebra, which is detailed in Exercise 5.23, shows that

(I 1) (ye — Wars) = yo — Xaf3s, (5.111)

which is the vector of residuals from the structural form expressed as in (5.58)
in stacked form. Thus the quadratic form that appears in (5.110) can also be
written as

(Yo — X.IB.)T(E_l R I,)(Ye — Xof). (5.112)

Now consider the second term in (5.110). By the definition of 2 and the
properties of determinants, this term is

fglog”?\ = fglog(|det1"\_2|2|) =nlog|det I'| — %log\E\. (5.113)

If we start with (5.110) and replace the quadratic form by expression (5.112)
and the second term by the rightmost expression in (5.113), we obtain the
loglikelihood function (5.83). Thus we see that these two ways of writing the
loglikelihood function are indeed equivalent.

In order to write down the ML estimator of {2, we define the n x g matrix
V' (B.) to have i*! column y; — WB~?, which is just the i*" block of the vector
Yo — Wem,. It follows that V(B,) = Y — WBI'~!. When evaluated at the
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ML estimator ,31\“‘, this is just the ML estimator of the disturbances of the
RRF (5.73). By analogy with (5.36), we find that

D = VI(BVBM™).
We are entitled to write V' as a function of 3, here because, as we saw when
defining the RRF, the matrices B and I" on which (5.110) depends through
the vector W7, are uniquely determined by the structural parameters in the

vector B,. Conversely, if we obtain ML estimators of the matrices B and I,
these uniquely determine the ML estimator of 3,.

Only the last term of the loglikelihood function (5.110) depends on B and I
Therefore, conditional on X, the maximization of (5.110) reduces as usual to
the minimization of a quadratic form, which in this case is

(Yo — VV.7r.)T(.Q_1 ®1,)(yo — Wat,). (5.114)

From the definition of 2 and the properties (5.08) of Kronecker products, we
observe that 27 ' @I, = (' L) (Z'L)(I'"®1,).

From the first equation in (5.109), we can see that the quadratic form (5.114)
can also be written as

(yo - (Ig Y WB)'7.>T(971 ® In)(y- - (Ig Y WB)'V.)'

From this expression, we see that the partial derivatives of (5.110) with respect
to the g2 elements of 4* are the g2 elements of the vector

I, @ BTWH (27 2L,)(ye — (I, ® WB)¥*). (5.115)

The conditions we seek are not given by simply equating the elements of
this vector to zero, because many elements of the matrix I' are restricted
to be equal to 0 or 1. The restrictions translate into complicated conditions
on the elements of 4* which, fortunately, we need not concern ourselves with.
Rather, we compute the derivatives of v* with respect to any element ~y;; of I"
which is not restricted, and then use the chain rule to obtain the derivative
of (5.110) with respect to y;;. We can then quite properly equate the resulting
derivative to zero in order to obtain a first-order condition.

The vectors that are stacked in 4* are the columns of I'"!, and it is therefore
not hard to see that (I'" ® I,;)y® is a vector of g components that are all
either 0 or 1, and thus independent of the elements of I'. Differentiating this
relation with respect to 7;; thus gives

0
(Bji 9Ly + (I''® 19)37 =0,
Yij

where Ej; is a g x g matrix of which the ji*" element is 1 and the other

elements are 0. Consequently, the derivative of v* with respect to v;; is the

gQ—Vector

- ((FT)_l ® Ig) (Eji & Ig)’Y.-
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The derivative of expression (5.110) with respect to 7;; is the scalar product
of this vector with the vector (5.115), that is, the negative of

Y NE; 1) (I ' eL,)1, BW) (2 aL,)(y. — Wer,)
=By @L) (I '@ BW )T oL)(X ' @L)(ye — X.5)
=7 (E; @ B'W ) (Z7' @ L,)(ys — X..). (5.116)

The second line above makes use of the expression of §2 in terms of I' and X,
and of the result (5.111). It is straightforward to see that (5.116) is one
row of the left-hand side of (5.86), which therefore contains all the first-order
conditions with respect to the unrestricted elements of I'.

Eigenvalues and Eigenvectors

Before we can discuss LIML estimation, we need to introduce a few more
concepts of matrix algebra. A scalar A is said to be an eigenvalue (also called
a characteristic root or a latent root) of a matrix A if there exists a nonzero
vector € such that

A€ = \E. (5.117)

Thus the action of A on & produces a vector with the same direction as &, but
a different length unless A = 1. The vector £ is called the eigenvector that
corresponds to the eigenvalue A. Although these concepts are defined quite
generally, we will restrict our attention to the eigenvalues and eigenvectors of
real symmetric matrices.

Equation (5.117) implies that
(A= AI)¢ =0, (5.118)

from which we conclude that the matrix A — AI is singular. Its determinant,
|A — M|, is therefore equal to zero. It can be shown that this determinant is
a polynomial in A\. The degree of the polynomial is m if A is m x m. The
fundamental theorem of algebra tells us that such a polynomial has m complex
roots, say Aq,...,Am,. To each \; there must correspond an eigenvector &;.
This eigenvector is determined only up to a scale factor, because if &; is an
eigenvector corresponding to \;, then so is a&; for any nonzero scalar a. The
eigenvector &; does not necessarily have real elements if A; itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues \; are all
real and that the eigenvectors can be chosen to be real as well. If A is also a
positive definite matrix, then all its eigenvalues are positive. This follows from
the facts that £'A¢ = AET€ and that both £7¢ and £€TA€ must be positive
scalars when A is positive definite.
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The eigenvectors of a real symmetric matrix can be chosen to be mutually
orthogonal. Consider any two eigenvectors &; and &; that correspond to two
distinct eigenvalues A; and )\;. We see that

Ni€f& = 6] = (A€) ¢ = N ¢¢ (5.119)

But this is impossible unless £;/¢; = 0. Thus we conclude that &; and &; are
necessarily orthogonal. If not all the eigenvalues are distinct, then two (or
more) eigenvectors may correspond to one and the same eigenvalue. When
that happens, these two eigenvectors span a space that is orthogonal to all
other eigenvalues by the reasoning just given. Since any linear combination of
the two eigenvectors is also an eigenvector corresponding to the one eigenvalue,
we may choose an orthogonal set of them. Thus, whether or not all the
eigenvalues are distinct, eigenvectors may be chosen to be orthonormal, by
which we mean that they are mutually orthogonal and each has norm equal
to 1. When the eigenvectors of a real symmetric matrix A are chosen in this
way, they provide an orthonormal basis for S(A).

Let & =[& --- &n] be a matrix the columns of which are an orthonormal
set of eigenvectors of A, corresponding to the eigenvalues \;, i = 1,...,m.
Then we can write the eigenvalue relationship (5.117) for all the eigenvalues
at once as

A

where A is a diagonal matrix with \; as its i** diagonal element. The "
column of AZ is AE;, and the it column of ZEA is \;&;. Since the columns
of the matrix = are orthonormal, we find that &= = I, which implies that
ET = Z-1. A matrix with this property is said to be an orthogonal matrix.

Postmultiplying (5.120) by =T gives

iy}
iy}

A, (5.120)

=EAE" (5.121)

Taking determinants of both sides of (5.121), we obtain
Al = |E||IET|A = |E]|E7'A] = [A] = [T A
i=1

from which we may deduce the important result that the determinant of a
symmetric matrix is the product of its eigenvalues. In fact, this result holds
for nonsymmetric matrices as well.

LIML Estimation

Consider the system of equations consisting of the structural equation (5.93)
and the reduced form equations (5.94). The matrix of coefficients of the
endogenous variables in this system of equations is

s 1)
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Because this matrix is triangular, its determinant is simply the product of
the elements on the principal diagonal, which is 1. Therefore, there is no
Jacobian term in the loglikelihood function (5.83) for such a system, and the
ML estimates may be obtained by minimizing the determinant

(Y —WBr—'YY(y -WBI' )| =|(YI' - WB)" (YT - WB)|.

It can, with considerable effort, be shown that minimizing this determinant
is equivalent to minimizing the ratio
(y—YB:) Mz(y—YB:) ~ Y. MzY.y

= = 122
" (y —YB2) Mw(y—YB2) ~TYMwY.y (5.122)

with respect to B2, where Y, = [y Y] and v = [1 i —33]; see Davidson and
MacKinnon (1993, Chapter 18).

It is possible to minimize x without doing any sort of nonlinear optimization.
The first-order conditions obtained by differentiating the middle expression
in (5.122) with respect to B can be rearranged as

Y (Mz — iMw)Y.y = 0, (5.123)

where £ is defined by (5.122) with the minimizing value of B2. From (5.122),
we see that the expression

Y'Y (Mg — iMw)Y.y =y (Mz — iMw)Y.y — BY (M7 — Mw) Yy

is equal to zero. By (5.123), the second term on the right-hand side is zero
for any 3. Therefore, the first term must also be zero, which implies that

Y, (Mz — iMw )Y,y = 0.

If we premultiply this equation by (Y, Myw/Y,)~'/? and insert that factor

multiplied by its inverse before =, we see, after some rearrangement, that
(V. MwY,) 2V, M Y.(Y. MwY.)" /% — i1)y* = 0,

where v* = (Y*TMWY*)l/ 2~. This set of first-order conditions now has
the form of a standard eigenvalue-eigenvector problem for a real symmetric
matrix; see equation (5.118). Thus it is clear that & is an eigenvalue of the
matrix

(Y. "MwY.,) ' ?Y. MzY, (Y. MwY.) /2, (5.124)

which depends only on observable data, and not on unknown parameters. In
fact, # must be the smallest eigenvalue, because it is the smallest possible
value of the ratio (5.122). Given &, we can use equations (5.98) to compute
the LIML estimates. It is worthy of note that, if there is only one endogenous
variable in the matrix Y, then the determinantal equation that determines the
eigenvalues of (5.124) is just a quadratic equation, of which the smaller root
is &, which can therefore be expressed in this case as a closed-form function
of the data.

5.9 Exercises 233

5.9 Exercises

*5.1 Show that the gn x gn covariance matrix Xe defined in equation (5.07) is
positive definite if and only if the g x g matrix X' used to define it is positive
definite.

*5.2 Prove the first result of equations (5.08) for an arbitrary p x ¢ matrix A and
an arbitrary r X s matrix B. Prove the second result for A and B as above,
and for C and D arbitrary ¢ X t and s X u matrices, respectively. Prove
the third result in (5.08) for an arbitrary nonsingular p X p matrix A and
nonsingular r X r matrix B.

Give details of the interchanges of rows and columns needed to convert A® B
into B® A, where A is p x g and B is r X s.

*5.3 If B is positive definite, show that I® B is also positive definite, where I is an
identity matrix of arbitrary dimension. What about B ® I? If A is another
positive definite matrix, is it the case that B ® A is positive definite?

5.4 Show explicitly that expression (5.06) provides the OLS estimates of the para-
meters of all the equations of the SUR system.

5.5 Show explicitly that expression (5.14) for the GLS estimator of the parameters
of an SUR system follows from the estimating equations (5.13).

5.6 Show that, for any two vectors a1 and ap in E the quantity ||a1|?||Mias|?,
where M is the orthogonal projection on to the orthogonal complement
of ay in Ez, is equal to the square of ajjazs — aiz2az1, where a;; denotes the
i*™ element of a;, fori,j=1,2.

5.7 Using only the properties of determinants listed at the end of the subsection on
determinants in Section 5.2, show that the determinant of a positive definite
matrix B is positive. (Hint: write B = AA") Show further that, if B is
positive semidefinite, without being positive definite, then its determinant
must be zero.

*5.8 Suppose that m independent random variables, z;, each of which is distributed
as N(0, 1), are grouped into an m-vector z. Let € = p + Az, where p is an
m~vector and A is a nonsingular m X m matrix, and let 2 = AA". Show
that the mean of the vector « is p and its covariance matrix is 2. Then show
that the density of @ is

@2m) "2 1027 exp(~ L (x — ) '27 (2 — ). (5.125)

This extends the result of Exercise 4.5 for the bivariate normal density to the
multivariate normal density. Hints: Remember that the joint density of m
independent random variables is equal to the product of their densities, and
use the result (5.29).

5.9 Consider a univariate linear regression model in which the regressors may
include lags of the dependent variable. Let y and w denote, respectively, the
vectors of observations on the dependent variable and the disturbances, and
assume that u ~ N(O,chIn). Show that, even though the Jacobian matrix
of the transformation (5.31) is not an identity matrix, the determinant of the
Jacobian is unity. Then write down the loglikelihood function for this model.
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For simplicity, assume that any lagged values of the dependent variable prior
to the sample period are observed.

Consider a multivariate linear regression model of the form (5.28) in which the
regressors may include lags of the dependent variables and the disturbances
are normally distributed. By ordering the data appropriately, show that the
determinant of the Jacobian of the transformation (5.31) is equal to unity.
Then explain why this implies that the loglikelihood function, conditional on
pre-sample observations, can be written as (5.33).

Let A and B be square matrices, of dimensions p X p and ¢ X ¢, respectively.
Use the properties of determinants given in Section 5.2 to show that the
determinant of A ® B is equal to that of B ® A.

Use this result, along with any other needed properties of determinants given
in Section 5.2, to show that the determinant of ¥ ® I, is | X|™.

Verify that the moment conditions (5.47) and the estimating equations (5.48)
are equivalent. Show also that expressions (5.49) and (5.50) for the covariance
matrix estimator for the nonlinear SUR model are equivalent. Explain how
(5.50) is related to the covariance matrix estimator (5.15) that corresponds
to it in the linear case.

The linear expenditure system is a system of demand equations that can be

written as 1
D E =300 piv
s = % + oy (%) (5.126)
Here, s;, for i = 1,...,m, is the share of total expenditure FE spent on com-
modity ¢ conditional on E and the prices p;, fori =1,...,m+1. The equation

indexed by i = m + 1 is omitted as redundant, because the sum of the expen-
diture shares spent on all commodities is necessarily equal to 1. The model
parameters are the o, i =1,...,m, the y;, it =1,...,m+ 1, and the m x m
contemporaneous covariance matrix 3.

Express the system (5.126) as a linear SUR system by use of a suitable nonlin-
ear reparametrization. The equations of the resulting system must be subject
to a set of cross-equation restrictions. Express these restrictions in terms of
the new parameters, and then set up a GNR in the manner of Section 5.3
that allows one to obtain restricted estimates of the «a; and ~;.

Show that the estimating equations (5.63) are equivalent to the estimating
equations (5.61).

Show that the estimating equations (5.68) are equivalent to the equations
that correspond to the equation-by-equation IV (or 2SLS) estimator for all
the equations of the system jointly.

The k x k matrix Xo (X' ® Py)Xe given in expression (5.69) is positive
semidefinite by construction. Show this property explicitly by expressing the
matrix in the form ATA, where A is a matrix with k& columns and at least
k rows that should depend on a g x g nonsingular matrix ¥ which satisfies
the relation ¥¥' = X1,

Show that a positive semidefinite matrix expressed in the form A'A s positive
definite if and only if A has full column rank. In the present case, the matrix A
fails to have full column rank if and only if there exists a k-vector 3, different
from zero, such that A@ = 0. Since k = Zle k;, we may write the vector
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5.17

5.18

5.19

5.20

*5.21

Bas[B1i...i08y], where 3; is a k;—vector for i = 1,...,g. Show that there
exists a nonzero 3 such that A3 = 0 if and only if, for at least one 4, there
is a nonzero B3; such that Py X;3; = 0, that is, if Py, X; does not have full
column rank.

Show that, if Py, X; has full column rank, then there exists a unique solution
of the estimating equations (5.63) for the parameters 3; of equation 4.

Consider the linear simultaneous equations model

Y1 = P11 + Berzi2 + B312:3 + V21Yt2 + w1
(5.127)

Y2 = P12 + Po2ze2 + Baz zta + Bs2 2e5 + Y12yl + w2

If this model is written in the matrix notation of (5.71), precisely what are
the matrices B and I" equal to?

Demonstrate that, if each equation in the linear simultaneous equations model
(5.57) is just identified, in the sense that the order condition for identification
is satisfied as an equality, then the number of restrictions on the elements of
the matrices I' and B of the restricted reduced form (5.73) is exactly g% In
other words, demonstrate that the restricted and unrestricted reduced forms
have the same number of parameters in this case.

Show that all terms that depend on the matrix V' of disturbances in the finite-
sample expression for nlelTPWXl obtained from equation (5.79) tend to
Zero as n — oo.

Consider the following p x ¢ partitioned matrix

_ In A12
A= a2)

where m < min(p, q). Show that A has full column rank if and only if Ago
has full column rank. Hint: In order to do so, one can show that the existence
of a nonzero g-vector & such that Ax = 0 implies the existence of a nonzero
(¢ — m)=vector @2 such that Aggaxs = 0, and vice versa.

Consider equation (5.75), the first structural equation of the linear simultan-
eous system (5.71), with the variables ordered as described in the discussion
of the asymptotic identification of this equation. Let the matrices I' and B
of the full system (5.71) be partitioned as follows:

8, B 1 T2
B= "1 TP and I'=|-Bu Il
0 By
0 Iy

where 811 is a k11-vector, Bi2 and Bag are, respectively, k11 X (g — 1) and
(I — k11) % (9 — 1) matrices, Bo1 is a kai-vector, and Iy, I'2, and Ihg are,
respectively, 1 x (g — 1), k21 X (g — 1), and (g — k21 — 1) X (g — 1) matrices.
Check that the restrictions imposed in this partitioning correspond correctly
to the structure of (5.75).

Let I'"! be partitioned as

. 400 Ol o2
r = 710 rito el



236

*5.22

*5.23

5.24

5.25

5.26

*5.27

Multivariate Models

where the rows of I'"! are partitioned in the same pattern as the columns
of I, and vice versa. Show that F22F12 is an identity matrix, and that
Iy ' is a zero matrix, and specify the dimensions of these matrices. Show
also that the matrix [F11 F12] is square and nonsingular.

It was shown in Section 5.4 that the rank condition for the asymptotic iden-
tification of equation (5.75) is that the (I — k11) X ko1 matrix ITa; of the
unrestricted reduced form (5.76) should have full column rank. Show that, in
terms of the structural parameters, ITo; is equal to BQQFll. Then consider

the matrix
Izo }
, 5.128
[ Bay (5.128)

and show, by postmultiplying it by the nonsingular matrix [I"1:l I"12]7 that
it is of full column rank g — 1 if and only if BaoI''? is of full column rank.
Conclude that the rank condition for the asymptotic identification of (5.75)
is that (5.128) should have full column rank.

Consider the expression (I"T® I,)ye, in the notation of Section 5.5. Show
that it is equal to a gn-vector that can be written as

Y

Y vm
where v;, i =1,...,g, is the i*" column of T
Show similarly that (I'" ® 1,)(I; ® WB)~*® is equal to a gn-vector that can
be written as

Wb,

Wb,
where b; is the it" column of B.
Using these results, demonstrate that (I'' @ 1,,)(ye — (I, @ WB)~®) is equal
t0 Yo — XeBe. Explain why this proves the result (5.111).
By expressing the loglikelihood function (5.110) for the linear simultaneous
equations model in terms of X' rather than £2, show that concentrating the
resulting function with respect to X yields the concentrated loglikelihood
function (5.90).
Write down the concentrated loglikelihood function for the restricted reduced
form (5.73) as a special case of (5.53). Then show that this concentrated
loglikelihood function is identical to expression (5.90).
In the model (5.127), what is the identification status of each of the two
equations? How would your answer change if an additional regressor, xg,
were added to the first equation only, to the second equation only, or to both
equations?
Consider the linear simultaneous system of equations (5.93) and (5.94). Write
down the estimating equations for the 3SLS estimator for the system, and

show that they define the same estimator of the parameters of (5.93) as the
IV estimator applied to that equation alone with instruments W.
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5.29

5.30

5.31

5.32

State and prove the analogous result for an SUR system in which only one
equation is overidentified.

In the just-identified case of LIML estimation, for which, in the notation
of (5.94), the number of excluded instruments in the matrix W7 is equal to
the number of included endogenous variables in the matrix Y, show that the
minimized value of the ratio x given by (5.95) is equal to the global minimum
of 1. Show further that the vector of estimates B that attains this minimum
is the IV, or 2SLS, estimator of B2 for equation (5.93) with instruments W.

In the overidentified case of LIML estimation, explicitly formulate a model
containing the model consisting of (5.93) and (5.94) as a special case, with the
overidentifying restrictions relaxed. Show that the maximized loglikelihood
for this unconstrained model is the same function of the data as for the
constrained model, but with & replaced by 1.

Consider the demand-supply model

qt = P11 + B217i2 + B31Te3 + Y210t + U1
(5.129)

qt = P12 + BaoTia + Pr2x5 + Yo2pt + ur2,

where g is the log of quantity, p; is the log of price, z42 is the log of income,
x¢3 is a dummy variable that accounts for regular demand shifts, and x4 and
x5 are the prices of inputs. Thus the first equation of (5.129) is a demand
function and the second equation is a supply function.

For this model, precisely what is the vector Be that was introduced in equation
(5.58)? What are the matrices B and I' that were introduced in equation
(5.71)? How many overidentifying restrictions are there?

The file demand-supply.data contains 120 observations generated by the model
(5.129). Estimate this model by 2SLS, LIML, 3SLS, and FIML. In each case,
test the overidentifying restrictions, either for each equation individually or
for the whole system, as appropriate.

The second equation of (5.129) can be rewritten as

pt = B2 + Bhatia + Bramis + Vi qr + uia. (5.130)

Estimate the system that consists of the first equation of (5.129) and equa-
tion (5.130) by 3SLS and FIML. What is the relationship between the FIML
estimates of this system and the FIML estimates of (5.129)7 What is the
relationship between the two sets of 3SLS estimates?

Consider the system
y1=B+7y2+u, yz2=Wm +v, (5.131)

in which the first equation is the only structural equation and the first column
of W' is a vector of 1s. For sample size n = 25, and for [ = 2,4, 6,8, generate
I — 1 additional instrumental variables as independent drawings from N(0, 1).
Generate the endogenous variables y; and yo using the DGP given by (5.131)
with =1 and v =1, 71 an [-vector with every element equal to 1, and the
2 X 2 contemporaneous covariance matrix X such that the diagonal elements
are equal to 4, and the off-diagonal elements to 2. Estimate the parameters
B and ~y using both IV (2SLS) and LIML.
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Repeat the exercise many times and plot the empirical distributions of the
two estimators of v. How do their properties vary with the degree of over-
identification?

5.33 What are the first-order conditions for minimizing expression (5.106), the
NLIV criterion function? What is the usual estimate of the covariance matrix
of the NLIV estimator?
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and censoring, 175
exponential distribution, 172-173, 176
functional forms, 172-173
individual heterogeneity, 176
loglikelihood function, 174-175
lognormal distribution, 173
parametric, 172-175
partial likelihood, 176
proportional hazards, 176
Weibull distribution, 173, 176, 183

Dynamic regression model, 3

Efficiency
asymptotic, 10-11
of GMM estimator, 46
of ML estimator, 100-101
of Z-estimator, 4

of OLS estimator of SUR model,
191-193

Efficient GMM estimation, 46, 68-70, 75,
78

of linear simultaneous system, 206208
of linear SUR system, 192-194
Efficient score estimator, 108

Efficient score variant of LM statistic,
108

Eigenvalues, 230-231
of positive definite matrix, 230
of symmetric matrix, 230-231
Eigenvectors, 230231
orthonormal, 231
of symmetric matrix, 230-231

Elementary zero function, 61-62

Subject Index

for binary response models, 138, 178
Empirical moment, 45
Estimating equation, 3—4

for linear regression, 3—4

for nonlinear regression, 4, 11-12, 40
Estimating equations, 62-63

for FIML, 217

for GLS estimation of SUR system,
188-190

for GMM estimation of linear
simultaneous system, 207-208, 234

limiting, 63
Estimating function, 3-4
for linear regression, 3—4
Estimating functions, 61-63
limiting, 63—-64
Estimator
asymptotically efficient, 10-11
extremum, 39
GMM, 44-53
infeasible, 11
ML, 82-88
NLS, 11-15
Type 1 MLE, 87
Type 2 MLE, 87-88
estimator
asymptotic efficiency, 10-11
sandwich covariance matrix, 10-11
Event count data, 157-163
Expectation
conditional, 39
Exponential distribution, 82-83, 126
and duration models, 172-173, 176
ML estimator, 82-83
Exponential mean function, 157-158

Extremum estimator, 39

F statistic

and GNR, 34, 41

and NLS estimation, 31-32
Feasible efficient GMM estimation,

48-49, 56-57, 223-225

Feasible GLS

covariance matrix, 190-191

iterated, 194, 203

Subject Index

for linear SUR model, 190-191

for multivariate nonlinear regression,
203

and SUR system, 190-191

FIML estimator, 216-220

artificial regression, 217

compared with 3SLS, 218-219,
236237

covariance matrix, 219

estimating equations, 217

first-order conditions, 227-230

invariance to reparametrization,
222-223

loglikelihood function, 216-217, 228
nonlinear, 225-226

Full-information maximum likelihood, see

FIML estimator

Fully efficient GMM estimation, 49-53,

65-70

Gauss-Newton methods for minimization,

24-25

Gauss-Newton regression (GNR), 23-38

and accuracy of NLS estimates, 26
evaluated at NLS estimates, 26
and F statistic, 34, 41

and HCCME for NLS estimator, 27
heteroskedasticity-robust, 42

and hypothesis tests, 32-35, 41-42
and IV estimation, 35-36

for linear regression model, 26

and LM statistic, 109-110

for multivariate regression, 204
and NLS covariance matrix, 27
and numerical minimization, 25
and one-step estimation, 28-29, 42

and tests for serial correlation, 36-38

Generalized IV estimator, 208-209, 234

and GMM, 66-68, 78

Generalized method of moments, see

GMM estimation and GMM
estimator

Global minimum (of SSR function),

20-21

GLS estimator
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computation, 189-190
covariance matrix, 188, 190
for linear SUR model, 186-194

for multivariate linear regression,
186-194

for multivariate nonlinear regression,
202-203

GMM criterion function, 46-48, 75-77

nonlinear, 70-71

for nonlinear simultaneous equations
model, 224-225

optimal, 70-71
for SUR model, 193
tests based on, 5761, 71-72

GMM estimation

artificial regression, 7879
of binary response models, 138, 178

continuously updated, 49, 74, 194,
203-204

efficient, 46, 68-70, 75, 78

feasible efficient, 48-49, 56-57, 223-225
fully efficient, 49-53, 65-70

and generalized IV, 66-68, 78

and heteroskedasticity, 48-49
introduction, 43-44

iterative, 49

of linear regression model, 44-53

of linear simultaneous system, 206-208
of linear SUR system, 192-194
moment conditions, 45-46

of nonlinear models, 61-74

of nonlinear simultaneous equations
model, 223-225

optimal instruments, 50-53, 206-207
tests of linear restrictions, 59-61

tests of overidentifying restrictions,
57-59

weighting matrix, 47-48

GMM estimator

asymptotic efficiency, 65-70
asymptotic identification, 65
asymptotic normality, 64-65
consistency, 63-64

continuously updated, 49, 74, 194,
203204
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feasible efficient, 48-49, 56-57

fully efficient, 49-53

linear, 44-53

nonlinear, 63-68

sandwich covariance matrix, 46
GNR, see Gauss-Newton regression
Gradient

of a criterion function, 16-17

of loglikelihood function, 87-88, 92-93

matrix of contributions to, 92-93

of sum-of-squares function, 23-24

HAC covariance matrix estimators,
53-56, 77-78

Hansen-White estimator, 55-56
Newey-West estimator, 55-56, 78
Hansen’s J statistic, 59, 71-72

Hansen’s overidentification statistic, 59,
71-72

Hansen-Sargan statistic, 59, 71-72

for 3SLS estimator, 215

for SUR model, 194
Hansen-White HAC estimator, 55-56
Hazard function, 172

baseline, 176

duration dependence, 173
Heckman regression, 170
Heckman’s two-step method, 170-171
Hessian

asymptotic, 94

of a criterion function, 16-17

empirical, 96

as estimator of ML covariance matrix,
96

of a loglikelihood function, 88

of sum-of-squares function, 23-24
Heteroskedasticity

in binary response models, 146-147

and GMM estimation, 48-49

testing for, 146-147

Heteroskedasticity-consistent covariance
matrix estimator

and GMM estimation, 48-49
for NLS estimator, 27

Subject Index

Hypothesis tests

based on GMM criterion function,
57-61, 7T1-72

and GNR, 32-35, 41-42

and IVGNR, 35-36

and ML estimation, 101-111
and NLS estimation, 31-35

Identification
asymptotic, 4-7, 9-10, 21-22, 39-40,
65, 91, 94
and consistency of MLE, 89
by a data set, 4, 7-8
exact, 209, 211-212
of IV estimator, 209

in linear simultaneous equations
model, 209-210, 212214

of NLS estimator, 21-22, 39-40
order condition, 210
rank condition, 210
Identity matrix
determinant of, 196
ITA property
of multinomial logit model, 152
IID disturbances, 1-2
Inclusive value
for nested logit model, 153
Incomplete spell, 175

Independence of irrelevant alternatives,
see IIA property

Index function
for binary response model, 134-135
for duration models, 174-175
for multinomial probit model, 155
for ordered probit model, 149
for Poisson regression model, 157158
Individual heterogeneity, 176
Infeasible estimator, 11
Information matrix, 93-94, 126-127
asymptotic, 94

for classical normal linear model,
98-100

contribution to, 93-94
efficient score estimator, 108
equality, 94, 126-127

Subject Index

OPG estimator, 97

as precision matrix, 96
Information set, 4
Instruments

optimal, 50-53

valid, 51-53

weak, 214
Invariance

of LM statistic to reparametrization,
107

of ML estimator to reparametrization,
128-129, 222223

Inverse Mills ratio, 170-171, 183
Iterated feasible GLS, 194, 203
IV estimation

and GMM, 66-68, 78
IV estimator

exactly identified, 209

just identified, 209

nonlinear, 225
IVGNR, 35-36

and hypothesis tests, 35-36

J statistic

for overidentification, 59, 71-72
Jacobian factors

in likelihood functions, 121
Jacobian matrix, 120-122, 197, 233-234
Jacobian terms

in loglikelihood functions, 121-122
Jensen’s Inequality, 89-90, 126

K-class estimators, 222
Kronecker product, 187-188, 233-234
Kurtosis

excess, 129

Lag truncation parameter, 55
Lagged dependent variable
and ML estimation, 233-234

Lagrange multiplier (LM) statistic,
105-110

and artificial regression, 108-110
asymptotic theory, 112-113

efficient score variant, 108
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and GNR, 109-110

for linear regression model, 109,
128-129

LM form, 107-108

and OPG regression, 108-109, 125
OPG variant, 108-109

and quadratic approximation, 115

relation with LR and Wald statistics,
111-117

score form, 107
Lagrange multiplier (LM) tests, 105-110
and drifting DGP, 115-117
Latent roots, see Eigenvalues
Latent variable model, 135-136
Latent variables, 135-136
and censored regression, 166
and multinomial probit model, 155-156
and ordered probit model, 148
and probit model, 135-136
and sample selectivity, 168170
and tobit model, 163-164
Likelihood equations, 87—88
Likelihood function, 81-82
with dependent observations, 91-92
for discrete dependent variable, 137
Likelihood ratio (LR) statistic, 102-103
asymptotic theory, 111-112
for binary response models, 143

for linear regression model, 102-103,
128

relation with LM and Wald statistics,
111-117

Likelihood ratio (LR) tests, 102-103
for binary response models, 143
and drifting DGP, 115-117
Limited dependent variable, 133-134,
163-164
Limited-information maximum likelihood
(LIML) estimator, 220-223
covariance matrix, 221
detailed derivation, 231-232

invariance to reparametrization,
222-223

loglikelihood function, 220-221

Linear expenditure system, 234
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as SUR system, 234
Linear regression model, 1-3

with AR(1) disturbances, 2-3, 30,
117-119

and Box-Cox regression model, 124
GMM estimation, 44-53
LM statistic, 109, 128-129
LR statistic, 102-103, 128
test against loglinear model, 124-125
Wald statistic, 104-105, 128
Linear restrictions
and GMM estimation, 59-61

Linear simultaneous equations model, see
Simultaneous equations model

Linear vs. loglinear regression models,
120-125

LM statistic, see Lagrange multiplier
statistic

LM tests, see Lagrange multiplier tests
Local minimum (of SSR function), 20-21
Logistic function, 136
Logit model, 136, 178

conditional, 151-152

multinomial, 150-153, 180

nested, 152-153, 180-181

relation to probit model, 139-140, 178
Loglikelihood function, 81-82

for binary response models, 137-138

for classical normal linear model, 84

concentrated, 84-85, 126

with dependent observations, 92

for discrete choice models, 154

for duration models, 174-175

for exponential distribution, 82-83

for FIML, 216-217, 228

for LIML, 220221

for multinomial logit model, 150

for multivariate nonlinear regression,
203-204

for ordered probit model, 149
for Poisson regression model, 158
quadratic, 114-115

for regression model with AR(1)
disturbances, 117-118

for selectivity model, 168-170

Subject Index

for SUR system, 197-198
for uniform distribution, 86

Loglinear Poisson regression model,
157-158

Loglinear regression model, 119-120
and Box-Cox regression model, 124
test against linear model, 124-125
Lognormal distribution, 79
and duration models, 173
LR statistic, see Likelihood ratio statistic

LR tests, see Likelihood ratio tests

Matrix
block-diagonal, 196
of contributions to the gradient, 92-93
diagonal, 196
identity, 196
orthogonal, 231
positive definite, 233-235
singular, 196
triangular, 195-196
Matrix inverse
determinant of, 196
Maximization
numerical, 15-16
Maximum likelihood estimate (MLE), 81
computation of, 88-89
Maximum likelihood estimation
basic concepts, 81-88
of binary response models, 137-142
of classical normal linear model, 84-85
classical tests, 101-102
computation, 88-89
of duration models, 174-175
hypothesis testing, 101-111

of linear simultaneous equations
model, 215-221

of linear SUR model, 196-200
LM tests, 105-110
LR tests, 102-103

of models with autoregressive
disturbances, 117-119

of ordered probit model, 149

of Poisson regression model, 158

Subject Index

of regression model with AR(1)
disturbances, 117-119, 129-130

and reparametrization, 128—-129,
222-223

subject to restrictions, 107-108
of tobit model, 166-167
of truncated regression model, 165
Wald tests, 103-105

Maximum likelihood estimator (MLE), 83
of 02, 85
asymptotic efficiency, 100-101
asymptotic identification, 91, 94
asymptotic normality, 95-96
consistency, 89-91
covariance matrix, 96-98
for exponential distribution, 82-83

for multivariate nonlinear regression,
203204

sandwich covariance matrix, 9698,
127

for SUR model, 196-200

Type 1, 87

Type 2, 87-88

for uniform distribution, 8687, 126
Mills ratio, 170-171, 183
Minimization

Gauss-Newton methods, 24-25

modified Newton methods, 18-19

numerical, 15-22, 24-25

quasi-Newton methods, 18-19

MLE, see Maximum likelihood estimate
and Maximum likelihood estimator

Model
parametric, 81
Modified Newton methods, 19
Moment condition
sample, 45-46
theoretical, 45
Moments
empirical, 45
sample, 45
Multinomial logit model, 150-153, 180
ITA property, 152
loglikelihood function, 150
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Multinomial probit model, 155-156
Multiple logit model, 150-153

Multivariate Gauss-Newton regression
(GNR), 204

Multivariate linear regression model,
184-200

covariance matrix, 188, 190-191
GLS estimation, 186-194
ML estimation, 196-200

Multivariate nonlinear regression model,
201-204

covariance matrix, 202-203

estimation, 202-204

feasible GLS, 203

GLS estimator, 202-203

and GNR, 204

ML estimator, 203204
Multivariate normal distribution, 233

Multivariate regression, see Multivariate
linear regression model and
Multivariate nonlinear regression
model

Negative duration dependence, 173
Nested logit model, 152-153, 180-181
inclusive value, 153
Newey-West HAC estimator, 55-56, 78
Newton’s Method, 16-18, 88-89
for minimization, 16-18
for ML estimation, 8889
NL3SLS, see Three-stage least squares
NLS estimation
computation, 15-21
criterion function, 15-16
hypothesis testing, 31-35
NLS estimator, 11-15
asymptotic efficiency, 13
asymptotic normality, 13
consistency, 12-13
covariance matrix, 13, 27, 33-34
HCCME for, 27
identification, 21-22, 39-40
NLS residuals, 14-15, 40-41
Nonlinear FIML estimator, 225-226
Nonlinear GMM estimator, 6374
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Nonlinear IV, 23
Nonlinear IV estimator, 225, 238

Nonlinear least squares, see NLS
estimation and NLS estimator

Nonlinear regression
geometry of, 22-23
multivariate, 201-204
notation, 8
Nonlinear regression function, 1
Nonlinear regression model, 1-3
bootstrap tests, 38-39
estimation, 4-11
GMM estimation, 61-74
and GNR, 32-35
hypothesis tests, 31-35
LM statistic, 109-110
NLS estimation, 11-23
Wald statistic, 32, 34

Nonlinear simultaneous equations model,
223-226

GMM estimation, 223-225
Nonlinear three-stage least squares, 225
Normal distribution

multivariate, 233

truncated, 170, 183
Numerical maximization, 15-16
Numerical minimization, 15-22

algorithms for, 16-21

convergence tolerance, 19-20

Gauss-Newton methods, 24-25

global minima, 20-21

starting values, 20-21

stopping rules, 19-20

Observations
dependent, 91-92
Odds
logarithm of, 136
OLS estimator

of a linear SUR model, 186-187,
191-192

One-step estimation, 28-30
for discrete choice models, 181
efficient, 28-29, 42

Subject Index

OPG estimator
of information matrix, 97
of ML covariance matrix, 97
OPG regression, 108-109, 129
and LM statistic, 108-109, 125
and tests for overdispersion, 159-160
OPG variant of LM statistic, 108-109
Optimal GMM criterion function, 57-58
nonlinear, 70-71
Optimal instruments
and GMM, 50-53

for linear simultaneous equations
model, 206-207

Order condition
for identification, 210
Ordered probit model, 148-150
loglikelihood function, 149
ML estimation, 149
threshold parameters, 148
Ordered responses, 148
Orthogonal matrix, 231
Orthogonality condition, 45-46
Orthonormal basis, 231
Outer product
of the gradient, 94, 97
Overdispersion, 159-161
consequences of, 161-163
Overidentifying restrictions
and FIML, 219-220
and GMM estimation, 57-59

Hansen-Sargan tests, 59, 71-72, 194,
215

and LIML, 221
for SUR model, 194
tests of, 57-59, 71-72, 194, 215

P value

bootstrap, 38-39, 42
Parameter space, 87
Parameters

of loglikelihood function, 81-82
Parametric model

fully specified, 81
Partial likelihood, 176

Subject Index

Perfect classifier, 140-141, 178
Pitman drift, 116-117
Poisson distribution, 157
expectation, 181
fourth moment, 181182
third moment, 181-182
variance, 181
Poisson regression model, 157-163
artificial regression, 158-159, 162, 182
consequences of overdispersion,
161-163
covariance matrix, 158, 161-162, 182
loglikelihood function, 158
loglinear, 157-158
OPG regression, 159-160
sandwich covariance matrix, 162-163
tests for overdispersion, 159-161
Positive definite matrix, 233-235
determinant of, 233
eigenvalues of, 230
Positive duration dependence, 173
Precision matrix
information matrix as, 96
Predeterminedness condition
for GMM, 52-53, 77
Probability density function (density)
and transformation, 120-122
Probit model, 135-136
multinomial, 155-156
ordered, 148-150
relation to logit model, 139-140, 178
Proportion
as dependent variable, 132

Proportional hazard models, 176

QMLE, 98
for Poisson regression model, 161-163

and sandwich covariance matrix, 98,
127

Quadratic form

and chi-squared distribution, 42

Quadratic loglikelihood function, 114-115

Qualitative response models, 148-157

bootstrap for, 155
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Quasi-complete separation, 141

Quasi-maximum-likelihood estimator, see

QMLE
Quasi-Newton methods
for minimization, 18-19
for ML estimation, 83-89

Random variables

binary, 5
Rank condition

for identification, 210
Recursive simulation, 41
Reduced form, 211-212
Reduced form equation, 211-212
Regression function

nonlinear, 1
Regression model

with AR(1) disturbances, 41, 76,
117-119, 129-130

censored, 166—168, 183
linear, 1-3
nonlinear, 1-3
normal disturbances, 84-85
truncated, 165-166, 182183
Reparametrization
and LM statistics, 107
and ML estimation, 128-129, 222-223
and Wald statistics, 104-105
RESET test, 147
Residuals
NLS, 14-15, 4041
Restricted reduced form (RRF), 211-212
RRF, see Restricted reduced form

Sample
censored, 163
truncated, 163, 165-166
Sample autocovariance matrix, 54-55
Sample moment, 45
Sample selectivity, 168-171
Heckman’s two-step method, 170-171
loglikelihood function, 168-170
Sandwich covariance matrix

for Z-estimator, 10-11
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for GMM estimator, 46
as HCCME, 27
for ML estimator, 96-98, 127
for NLS estimator, 27
for Poisson regression model, 162-163
and QMLE, 98, 127
Score tests, 107
Score vector
of loglikelihood function, 87-88

Seemingly unrelated regressions, see SUR

system
Selectivity regressor, 170
Serial correlation, 2-3, 30
first-order, 2-3, 30, 36-37
second-order, 37-38
testing for, 36-38
Simulation
recursive, 41
Simultaneous equations model, 205-226
3SLS estimation, 214-215, 218-219,
236-237
asymptotic identification, 212-214
FIML estimation, 216-220, 236237
GMM estimation, 206-208
identification, 209-210
IV estimation, 208-209
linear, 205-223
ML estimation, 215-221
nonlinear, 223-226
reduced form, 211-212
structural form, 210-211
Singular matrix
determinant of, 196
Skewness
and transformations, 119-120
Specification tests
of binary response models, 146-147

SSR function, see Sum-of-squared-
residuals function

Starting values (for numerical
minimization, 20-21

Stationarity condition
for AR(1) process, 118

Stationarity region

Subject Index

for AR(1) process, 118
Stopping rules, 19-20

Strong asymptotic identification, 9-10,
21-22, 65, 94

Structural equation, 210-211
Structural form, 210-211

Sum-of-squared-residuals (SSR) function,
12, 40

Super-consistency, 86-87
Support of a random variable, 89-90
SUR system, 184-204

concentrated loglikelihood function,
199-200

covariance matrix of feasible GLS
estimator, 190-191

covariance matrix of GLS estimator,
188, 190, 234

estimation methods for, 186
feasible GLS estimation, 190-191
GLS criterion function, 188, 197
GLS estimation, 186-194, 233
linear case, 184-200
loglikelihood function, 197-198
ML estimation, 196-200
nonlinear case, 201-204
OLS estimation, 186-187, 191-192, 233
stacked, 186187
SUR estimator, 188, 191-194
Survivor function, 172
Symmetric matrix

eigenvalues of, 230-231

t statistic
and cotangent, 160

Testing for serial correlation, 36-38
GNR-based tests, 36-38

Tests

based on GMM criterion function,
57-61, 71-72

of binary response models, 146-147
classical, 101-117

consistent, 115

Hansen-Sargan, 59, 71-72

for heteroskedasticity, 146-147

of linear restrictions, 59-61

Subject Index

of linear versus loglinear models,
124-125

of overidentifying restrictions, 57-59,
71-72, 194

for serial correlation, 3638
Three-stage least squares (3SLS)
and 2SLS, 214-215

compared with FIML, 218-219,
236237

continuously updated, 215, 218

and GMM, 214-215

nonlinear, 225
Threshold parameters

for ordered probit model, 148
Tobit model, 166-168

ML estimation, 166-167

tests of, 167-168
Transformation

Box-Cox, 122-123

and density function, 120-122

of dependent variable, 119-124

Jacobian of, 120-122, 197, 233-234
Transformation function, 134-135
Transpose of a matrix

determinant of, 195
Triangular matrix

determinant of, 195-196
Truncated normal distribution, 170, 183

Truncated regression model, 165-166,
182-183

ML estimation, 165
Truncated sample, 163, 165-166
Two-step method, 170-171
Type 1 MLE, 87
Type 2 MLE, 87-88
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Uniform distribution, 86-87, 126
Unordered responses, 148
Unrestricted reduced form (URF),

211-212

Variables

limited, 163-164

Variance of disturbances (o)

ML estimator, 85

variance of ML estimator, 99-100, 127

Wald statistic, 32

asymptotic theory, 113-114

for linear regression model, 104-105,
128

and ML estimation, 103-105
and NLS estimation, 32, 34
and quadratic approximation, 115

relation with LM and LR statistics,
111-117

and reparametrization, 104-105

Wald tests, 103-105

and drifting DGP, 115-117

Weak instruments, 214

Weibull distribution

and duration models, 173, 176, 183

Weighted NLS

and binary response models, 138, 142

Weighting matrix, 47-48

Z-estimator

asymptotic efficiency, 10-11
efficiency, 4

for nonlinear regression model, 4-11,
40

Zero function, elementary, 61-62
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