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Preface

This book is an updated and drastically shortened version of our 2004 text-
book Econometric Theory and Methods. A plan to create a full second edition
of that book never came to fruition, but the first several chapters of the book
have served both of us well, not only as a text for a first, one-term, graduate
course, but also for the Honours course in econometrics at McGill University.
But even in those early chapters, there have been more and more things, over
the years since the book was published, that we wish to update and change. It
seemed quite feasible to do so if we limited ourselves to the chapters actually
used in our one-term courses, and this book is the result.

How to Use This Book

This book is intended for a one-term course at either the Master’s or Ph.D.
level in a good graduate program, or even for serious final-year undergrad-
uates, as at McGill, provided that the students have sufficient background,
motivation, and ability.

Some of the exercises provided at the end of each chapter are really quite
challenging, as we discovered many years ago while preparing solutions to
them. These exercises are starred, as are a number of other exercises for which
we think that the solutions are particularly illuminating, even if they are not
especially difficult. In some cases, these starred exercises allow us to present
important results without proving them in the text. In other cases, they are
designed to allow instructors to cover advanced material that is not in the text
itself. Because the solutions to the starred exercises should be of considerable
value to students, they are available from the website for Econometric Theory
and Methods, (ETM). All the data needed for the exercises are also available
from the website, although these are necessarily not at all recent. Instructors
might prefer to ask students to go online themselves to find more recent data
that they can use instead of the older data on the website.

There are several types of exercises, intended for different purposes. Some of
the exercises are empirical, designed to give students the opportunity to be-
come familiar with a variety of practical econometric methods. Others involve
simulation, including some that ask students to conduct small Monte Carlo
experiments. Many are fairly straightforward theoretical exercises that good
students should find illuminating and, we hope, not too difficult. Although
most of the exercises have been taken over unchanged from ETM, some have
been modified, and a fair number of new exercises introduced.

An instructor’s manual was provided for ETM, with solutions to all the exer-
cises of that book. It can be found online by anyone willing to spend a little
time with Google. In a sense this is a shame, as it means that instructors
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can no longer safely use exercises given here for exams or assignments, since
some students may be tempted to copy the solutions from the manual. We
fear that this is likely to be a problem that university instructors will have to
face more and more frequently, at a time when a lot of instruction is being
given online. However, for our purposes here, the most important point is
that solutions for the starred exercises are readily available without access to
Google or any other search engine.

Background

Simulation-based methods greatly enhance the asymptotic theory that has
been at the heart of econometrics for many decades. Problems that are in-
tractable analytically are often simple to handle by simulation, and many new
techniques that exploit this fact have been proposed during the last three or
four decades. Of these techniques, the one that seems most general in its
application is the bootstrap, and for this short book we have written a new
chapter dedicated to this important topic.

Estimating functions and estimating equations are topics that are not terribly
familiar to most econometricians. We ourselves became aware of them only
in the mid-1990s, when the late V. P. Godambe, then of the University of
Waterloo in Ontario, prodded us to look more closely at a theme that he
had himself pioneered back in the 1960s. Estimating equations provide a
unified method for studying all of the estimation techniques discussed in this
book, and many more besides, including the widely-used generalized method
of moments (GMM).

We have tried hard to present material in a logical way, introducing new
ideas as they are needed and building on the material developed earlier. This
applies also to mathematical and statistical techniques that, in many cases,
students may already be somewhat familiar with. Instead of treating these in
appendices, we discuss them when they are first used, in the context of their
applications to econometrics. We have found that this approach generally
works very well in the real or virtual classroom. The sections on mathematics
or statistics are never too long, and we make every effort to motivate them by
indicating their relevance to econometrics. This probably means that the book
is not appropriate for students with a really weak mathematical or statistical
background.

While it is generally not hard to develop a consistent and appropriate notation
for an individual topic, we found it exceedingly hard to maintain notation
consistent across all the chapters of a book of the length of ETM. We do not
claim to have succeeded there or here, but we have made strenuous efforts in
that direction. We have been influenced by suggestions on many vexed points
of notation from Karim Abadir, of Imperial College London in England, and
Jan Magnus, of Tilburg University and the Free University of Amsterdam in
the Netherlands. Although we have not followed their counsel in all cases,
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we wholeheartedly support their efforts to develop a useful and consistent
notation for modern econometrics.

Organization

The book covers a number of fundamental concepts of estimation and sta-
tistical inference, beginning with ordinary least squares (OLS). Subsequently,
we introduce the extremely important instrumental variables (IV) estimator,
and the generalized least squares (GLS) estimator. For anything to do with
nonlinear estimation, including maximum likelihood or GMM, none of which
is treated here, the reader may have recourse to the full ETM book.

The first chapter is new. It contains a somewhat philosophical discussion, and
it may well be that some people will disagree with the point of view adopted
there. Textbooks and scientific papers normally do not broach philosophical
questions, and some scientists have been known to express the opinion that
philosophy is a waste of time for practicing scientists. Obviously we disagree,
but here we give fair warning that people with a different cast of mind may
omit this preliminary chapter, and lose nothing of conventional econometrics
by so doing.

Most of Chapter 2 is fairly elementary, and much of the material in it should
already be familiar to students who have a good background in statistics,
econometrics, and matrix algebra at the undergraduate level. The discussion
of how to simulate a regression model in Section 2.3 introduces some concepts
that are not often taught in undergraduate econometrics courses but are cru-
cial to understanding bootstrap methods. Section 2.5 is even more important,
because it treats linear regression using estimating equations, a topic that is
probably quite new to most students.

Chapter 3, a fundamental chapter, deals with the geometry of least squares
in some detail, and relates it to the algebraic account that is probably more
familiar to many students and instructors. Not all instructors find the geo-
metrical approach quite as intuitive as we do. However, our experience is that
many students do find it extremely helpful. The chapter introduces a number
of fundamental concepts that reappear many times in various places. These
include the application of Pythagoras’ Theorem to ordinary least squares,
the subspace spanned by the columns of a matrix of regressors and its or-
thogonal complement, orthogonal projection matrices, and the Frisch-Waugh-
Lovell (FWL) Theorem. Some applications of the theorem are introduced
here, including a section on the important topic of leverage and influential
observations.

Chapter 4 is also a fundamental chapter. It deals with the statistical properties
of the ordinary least squares (OLS) estimator and introduces such important
concepts as unbiasedness, probability limits, consistency, covariance matrices,
efficiency, the Gauss-Markov Theorem, the properties of residuals, and the
consequences of model misspecification. Students with a strong background
in statistics should be at least somewhat familiar with much of this material.
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Statistical inference is first dealt with in Chapter 5. The nature of hypothesis
testing is laid out, and the most commonly used tests are discussed. For
the special case of the classical normal linear model, there exist exact results
about the distribution of the test statistics, but, more generally, it is necessary
to have recourse to asymptotic theory. This chapter contains two sections
that are new in this book, one on performing tests of several hypotheses
simultaneously, and one on pretesting.

Chapter 6 continues the story of statistical inference. The first three sections
cover confidence intervals and confidence regions; the next three deal with co-
variance matrix estimation in some circumstances in which the disturbances
are not independent and identically distributed. The robust covariance ma-
trix estimators discussed are the HCCME (heteroskedasticity-consistent co-
variance estimator), HAC (heteroskedasticity and autocorrelation consistent)
estimators, and the CRVE (cluster-robust variance estimator). The next sec-
tion deals with the important difference-in differences technique of estimation,
and the final section of this chapter explains the delta method, as a way to
estimate the covariance matrix of a set of nonlinear functions of parameter
estimates.

Chapter 7, on the bootstrap, is not entirely new, since the bootstrap is men-
tioned in numerous places in ETM. Here, however, we have collected the ma-
terial on bootstrapping in ETM, and added a good deal more. The bootstrap
is mentioned again in the following two chapters, but it seemed important
not to postpone consideration of the bootstrap until after treating all the
other topics in the book. In this chapter, we start with bootstrap hypothesis
tests, along with bootstrap P values, and proceed to the study of bootstrap
confidence sets. Bootstrapping is also discussed in cases in which the robust
covariance matrix estimators of the previous chapter should be used.

Chapter 8 introduces estimation by instrumental variables (IV). When instru-
mental variables are used, techniques of inference are considerably different
from those previously presented for least squares. The special cases of tests
for over-identifying restrictions, and Durbin-Wu-Hausman (DWH) tests, each
receive a section, as does bootstrapping models estimated by IV.

The final chapter, Chapter 9, embarks on the study of generalized least squares
(GLS). Again, techniques of estimation and inference have to be adapted to
this context. There is discussion of heteroskedasticity, both testing for its
absence, and efficient estimation when the pattern of heteroskedasticity is
known. It is natural that this should be followed by discussion of autocor-
relation. Tests, both old and relatively new, with a null hypothesis of no
autocorrelation are presented, and then techniques of estimating models with
autocorrelated disturbances. A final section applies the ideas of GLS to an
introductory treatment of panel data models.
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Notation

We have tried our best to use a consistent set of notation throughout the
book. It has not always been possible to do so, but below we list most of the
notational conventions used in the book.

n sample size; number of observations
k number of regressors
l number of instrumental variables
A (upper-case bold letter) a matrix or row vector
a (lower-case bold letter) a column vector
y dependent variable; regressand
X matrix of explanatory variables; regressors
W matrix of instrumental variables
β vector of regression parameters
β̂ vector of estimated parameters
β̃ vector of parameters estimated under restrictions
u vector of disturbances
σ2 variance (usually of disturbances)
F cumulative distribution function (CDF)
f probability density function
Φ CDF of standard normal distribution N(0,1)
ϕ density of standard normal distribution
I identity matrix
0 column vector of zeros
O matrix of zeros
ι column vector of ones
S(X) linear span of the columns of X
S⊥(X) orthogonal complement of S(X)
PX orthogonal projection matrix on to S(X)
MX complementary orthogonal projection; MX = I− PX

µ a data-generating process (DGP)
M model, a set of DGPs
R the real line
Rn set of n--vectors
En n--dimensional Euclidean space
E expectation operator
Var a variance or a covariance matrix
Ω a covariance matrix
Γ (j) autocovariance matrix at lag j
L lag operator
a
= asymptotic equality
a∼ asymptotically distributed as
d−→ convergence in distribution
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Chapter 1

Models in Science

1.1 Introduction

A major contention in this chapter is that scientific models can be viewed as
virtual realities, implemented, or rendered, by mathematical equations or by
computer simulations. Their purpose is to explain, and help us understand
the external reality that they model.

In economics, particularly in econometrics, models make use of random ele-
ments, so as to provide quantitatively for phenomena that we cannot or do
not wish to model explicitly. By varying the realisations of the random ele-
ments in a simulation, it is possible to study counterfactual outcomes, which
are necessary for any discussion of causality.

1.2 Scientific Models as Virtual Reality

The capacities of modern computers have made virtual reality something that
we can experience in new ways, enabled by new technology. We hear of flight
simulators, and the younger generation seems to spend a lot of time in the
virtual reality of computer games. But people have been inventing virtual
realities for as long as there have been scientists.

In most scientific disciplines, models play an essential role. Scientific models
are often mathematical, but they need not be so. A mathematical model does,
however, make clear the sense in which a model is a sort of virtual reality.
Mathematics is nothing if not an abstract discipline; so much so that some
have claimed that mathematics, pure mathematics anyway, has no meaning or
substantive content. What is true, though, is that we can give mathematical
constructions interpretations that imply much substantive content. This is
just as true in economics as it is in the physical sciences.

Why is this? The aim of science is not only to acquire knowledge of the world,
although the etymology of the word “science” implies only knowledge, but to
understand the world. Science provides such understanding by explaining our
experiences. Science advances when it provides better explanations. What
constitutes an explanation? Well, a theory. That’s just terminology, and so
the question has merely been reformulated as: What constitutes a theory?
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2 Models in Science

A theory is embodied in a model, and the model constitutes a virtual reality.
But not all models count as theories, as we will explain later. However, we
can conclude at present that virtual realities can give us understanding of
the world, through the explanations that they may embody. Of course, some
models mimic external reality, as we observe it, better than others, and so
they provide better explanations. Scientific controversies are about which
explanations are better.

What is there about a theory that provides an explanation? Think, if you
will, of Keynes’s celebrated General Theory. The theory implies a model
of the macroeconomy, the macroeconomy in virtual reality, and within this
model, there are relationships among the macroeconomic variables – relations
that can be expressed mathematically, and are justified by the arguments
that Keynes makes, showing that these relations mimic what we observe of
the macroeconomy. When we observe that interest rates fall, the Keynesian
model explains the economic mechanisms that led to this fall.

Not every economist is convinced by Keynesian explanations! The opponents
of Keynes’s model, or his view of the world, if we are to pay any attention to
them, must construct rival virtual realities, and argue that the relations that
these entail describe external reality better than the Keynesian ones.

The point about virtual reality is made very clearly in the sentences below,
taken from Deutsch (1997).

The fact that virtual reality is possible is an important fact about the
fabric of reality. It is the basis not only of computation, but of human
imagination and external experience, science and mathematics, art and
fiction.

David Deutsch, The Fabric of Reality

The heart of a virtual-reality generator is its computer.

ibid.

Deutsch goes on to make a different point about virtual reality, namely the
possibility of rendering it physically, and this takes us too far from our con-
cerns as econometricians. However, mathematics can constitute virtual reality
as well as computers can. But, as our computers have become more powerful,
so our models depend more and more on computer implementations. There
are deep philosophical questions concerning whether we, as humans, can re-
ally understand something produced by computation rather than logical and
mathematical reasoning, especially if one looks forward to what quantum com-
puters may one day be able to do, and can do, in principle, according to the
physical theories we have today.

But one thing we can easily say about models implemented on the computer
is that everything must be digital , and so also discrete. That this is no real
problem for practical things is evident from the extent we use digital sound
recording, digital cameras and so on, and especially digital typography, one
of the greatest boons for anyone writing books or papers, like this one. We
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speak of presenting a “paper”, although it need never be printed on paper at
all. What exists in the real world is a representation in virtual reality of a
hardcopy paper. Similarly, we often speak of the “slides” for a presentation,
although they are just as virtual.

There is in fact no consensus at the present time among theoretical physicists
as to whether space-time is continuous, although this is assumed by most
current physical models, or rather discrete - quantized, like everything else in
quantum mechanics. It follows that there is no harm in letting our virtual
realities be discrete – whether or not they are digital – and there may be
considerable benefits from doing so.

Models in Economics

Just as in physics, many economic models assume that space and time are
continuous, although in econometrics, for obvious reasons, time, at least, is
usually treated as a discrete variable. Unlike many physical models however,
econometric models invariably incorporate random elements.

There is a considerable philosophical difficulty that arises when we wish to
impart any substantive meaning to the mathematics of probability and ran-
dom variables, if we also wish to adhere to a deterministic world view. This
is so because, in conventional interpretations of probability, events that have
occurred, are occurring, or will (certainly) occur have a probability of one, and
events that never occur have a probability of zero. If, as follows from a deter-
ministic view, any event at all either does occur or does not, the mathematics
of probability becomes trivial.

But we use probabilistic notions all the time, and not trivial ones either. What
in the external world is it that we want to mimic by using randomness? We can
all agree that many things in our lives appear to us to be random, but there are
many philosophers who, while granting this appearance of randomness, still
think that, at some fundamental level, the world is deterministic. This leads
to a somewhat deeper question. Why are there such seemingly random events?
To that question, a possible answer is that we model such events as realisations
of random variables because we do not and cannot know everything. Even
more to the point, we cannot explain everything. Whenever we cannot, or
do not wish to, explain events which have an impact on the main objects of
interest in our models, we model them as realizations of random variables.
That at least is our view of what we do as econometricians, although many
other econometricians may well either disagree or else express things quite
differently.

If we adopt this point of view about why there are random elements in econ-
omic models, then we see why it is of interest to perform simulations with
random numbers. Yes, the goal of our models is to understand through ex-
planation, and calling things random explains nothing, but, even so, models
with random elements can help us understand economic phenomena by giving
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4 Models in Science

partial explanations of economic mechanisms. Another conclusion from this
reasoning is that some virtual realities may be quite imperfect renderings of
the real world. Maybe flight simulators are pretty good these days, but they
weren’t always, and video games don’t even try to mimic the real world.

It is not enough to wave our hands and say that we use random elements in
our models. We need more than that if we want to consider a model as a
virtual reality, probably one to be rendered by the computer. The best way
to formulate this is to define a model as a set of data-generating processes, or
DGPs, each of which constitutes a unique virtual reality. We can go further,
and specify that a DGP is something that can be simulated on the computer,
or that provides a unique recipe for simulation. In this way, we tie the virtual
realities of economic models more closely to the computer, just as Deutsch
would have it.

What has been missing and now must be introduced is the distribution of the
random elements. Computers have random-number generators, or RNGs, and
what they generate are sequences of random numbers. Such a sequence has
most of the mathematical properties of a sequence of mutually independent
realizations from the uniform distribution on the interval [0, 1]. See Knuth
(1998), Chapter 3 for a very thorough discussion of this point. One property
not shared by a sequence generated by a computer and a sequence that satisfies
the mathematical requirements of realizations from the uniform distribution
is that the elements of a computer-generated sequence are rational numbers
that can be expressed with a finite number of bits, whereas a realisation of the
uniform distribution may be any real number in the [0, 1] interval. However,
this and all other differences between what the computer generates and the
mathematical ideal have no bad consequences for the simulations needed in
econometrics.

Random numbers can be transformed into realizations from distributions
other than the uniform. A valuable reference for many of these transfor-
mations is Devroye (1986). Thus we can incorporate any desired form of
randomness that we can specify into the DGPs of a model.

Another feature of most economic models is that they involve parameters. A
model normally does not specify the numerical values of these parameters;
indeed a purely parametric model is a set rather than a singleton because the
DGPs that it contains may differ in the values of their parameters. Models
that are not purely parametric allow the DGPs that they contain to differ
also in the stochastic specification, that is, the distribution of the random
elements.

1.3 Causal Explanations

Suppose that we have a model of an economic phenomenon that we wish to
study. Suppose, too, that it seems to correspond well to what we observe
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in external reality. Does that mean that we have explanations, complete or
partial, of what we are studying? Not necessarily. Some models are purely
descriptive. A statistical model, for instance, might specify the probabilistic
properties of a set of variables, and nothing more. But that may be enough for
us to do forecasting, even if our forecasts are not based on any profound under-
standing. Half a century ago, most physicists thought of quantum mechanics
that way, as a mathematical recipe that could be used to predict experimental
results. The “interpretations” of quantum mechanics that were then current
were very counter-intuitive, and today physicists still argue not only about
what interpretation is to be preferred, but about whether any interpretation
meaningful to the human brain is possible.

However, the positivist approach that has held sway in physics for so long
is finally giving way to a thirst for explanations. Perhaps theoretical physics
does give better agreement with experimental data than any other discipline,
but, some physicists are now asking, does it constitute a true theory? A theory
must explain, by proposing a mechanism, or in other words a causal chain.

What is a cause?

This subsection draws heavily on the insights in Chapter 3 of Dennett (2003).
Consider two events, A and B. An intuitive definition of the proposition that
A causes B is:

(i) A and B are real, or true;

(ii) If A is not real or true, then neither is B; and

(iii) A precedes B in time.

This definition raises a number of issues. What do we mean by an “event”?
There are several admissible answers: an action, a fact of nature, among
others. A fact is true or not, and action is performed (it is real) or not. Our
tentative definition is general enough to allow for various different possibilities.

In order to steer clear of some trivial cases, we want to suppose that the
events A and B are logically independent . Thus we don’t want to say that
the conclusion of a mathematical theorem is caused by the premisses of the
theorem.

It is important to distinguish between causal necessity and causal sufficiency.
Necessity means that:

not A (written as ¬A) implies ¬B.

In words, without A, there can be no B. Logically, the condition is equivalent
to the condition that B implies A; that is, A is a necessary condition for B.
This is our condition (ii).

Sufficiency means that:

A implies B, or ¬B implies ¬A.
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In words, every time that A holds, unavoidably B holds as well; that is, A is a
sufficient condition for B. Sufficiency is logically quite distinct from necessity.
Necessity leaves open the possibility that A holds without B. Sufficiency
leaves open the possibility that B holds without A.

It is easy enough to see how we might study these two types of causality
when the events A and B are repeated, as with coin tosses or the roulette
wheel, where we don’t a priori expect to find any causality at all, or when an
experiment is undertaken in which both A and ¬A can occur, and possibly
also B and ¬B.

But if A and B are unique, not repeated, events, what sense can we make of
the assertion that A caused B? I suppose here that condition (i) is satisfied,
so that A and B both occurred. In order to make any sense of the statement
about causality, we have to admit to our discussion imaginary worlds or even
universes . We call such worlds or universes counterfactual. Without consid-
ering them, it is impossible to know what might have occurred if A did not,
or if B did not occur.

But this remark gives rise to as many problems as answers. What is the set
of universes that these counterfactual universes inhabit? How can we delimit
this set? Let’s denote the set by X . Then we have a number of reasonable
choices:

(a) X is the set of logically possible universes, that is, all universes that are
not logically self-contradictory;

(b) X is the set of universes compatible with the laws of physics, as we know
them;

(c) X is the set of logically and physically admissible universes that are
sufficiently similar or close to the real world.

The last choice is no doubt the best, but, in order to implement it, what can
we mean by saying that a counterfactual universe is in a neighbourhood of the
real one?

Counterfactual econometrics

In biostatistics and medicine, emphasis is often put on randomized trials, in
which two groups of subjects are treated differently. One usually speaks of a
control group, the members of which are not treated, and a treatment group,
for which a particular treatment is prescribed. After some definite period, the
members of both groups are examined for some particular property, which is
thought of as the effect of being treated or not. Clearly, the idea is to be
able to see whether the treatment causes the effect, and, perhaps, to reject
the hypothesis that it does so. Here, if one can select the members of the
two groups quite randomly, in a way totally unrelated to the treatment or
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the effect, then the distribution of effects within each group serves as the
counterfactual distribution for the other.

Even in medicine, a truly randomized trial can be difficult to achieve, for
both practical and ethical reasons. In econometrics, it is even more diffi-
cult, although not completely impossible. However, “natural experiments”
can arise for which an econometrician may be able to identify two groups that
are “treated” differently, perhaps by being subject to some government pro-
gramme, and to measure some effect, such as wages, that might be affected
by the treatment. This can be fruitful, but, naturally enough, it requires the
use of sophisticated statistical and econometric techniques.

In a polemical essay, Heckman (2001) maintains that econometrics has suffered
as a result of too great an application of the methodology of mathematical
statistics. He says that

Statistics is strong in producing sampling theorems and in devising
ways to describe data. But the field is not rooted in science, or in
formal causal models of phenomena, and models of behavior of the
sort that are central to economics are not a part of that field and are
alien to most statisticians.

This is a strong statement of what we call the preference of econometricians
for structural models.

Whether or not they go along completely with Heckman on this point, econo-
metricians, even sometimes in company with statisticians, have developed
techniques for getting indirectly at information about counterfactual worlds.
Of these, the method called difference in differences is probably the best
known and the most used; see Section 6.7. Since counterfactual worlds are
never realized, some assumptions must always be made in order to invent a
virtual reality in which they can be rendered. Often, an assumption is made
implying constancy in time of some relations; other times the assumption
might be, as with randomized trials, that two or more groups are homoge-
neous. To say that we always need some assumption(s) is to say that there
must always be a model, rich enough in its explanatory power to render cred-
ible counterfactual, and so virtual, realities.

One development of this sort is found in Athey and Imbens (2006). They
extend the idea behind the difference-in-differences method to a method called
change-in-changes. The name does not make clear what we regard as the chief
virtue of their method, namely that, instead of limiting attention to average
treatment effects, it considers the entire distribution of these effects. Average
effects may be enough for biostatisticians; not for econometricians.

Statistical Models

Even if one is content with models that are purely descriptive rather than
structural, an important point is that any statistical model must have some
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structure, that is, it must make some assumptions whereby the DGPs in
the model are restricted, before any sort of statistically valid inference is
possible. Even proponents of structural models try to avoid making any more
assumptions than they must, because restrictions that do not correspond to
external reality lead to models that cannot hope to mimic it at all closely. But
in a celebrated paper, Bahadur and Savage (1956) show that even as simple
a task as estimating a population mean by use of a sample mean drawn as
an independent and identically distributed sample from the population, is
impossible without further structure on the set of probability distributions
allowed by the model to describe the distribution of the population. The
restrictive assumption that the population mean exists as a mathematical
expectation is not enough by itself.

In fact, those necessary restrictions are surprisingly strong. That is not to
say that they are hard to satisfy in empirical work, just that it is rather
counter-intuitive that they should be logically necessary for any valid statis-
tical inference. It is in fact rather easy to give a mathematical construction
of DGPs for which the usual statistical techniques of estimation and inference
fail completely. Fortunately, these DGPs are “pathological”, in the sense that,
while they are quite coherent mathematically (in the virtual reality of math-
ematics), they do not correspond in any way to our “common-sense” view of
how the world works.
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Chapter 2

Regression Models

2.1 Introduction

Regression models form the core of the discipline of econometrics. Although
econometricians routinely estimate a wide variety of statistical models, using
many different types of data, the vast majority of these are either regression
models or close relatives of them. In this chapter, we introduce the concept of
a regression model, discuss several varieties of them, and introduce the esti-
mation method that is most commonly used with regression models, namely,
ordinary least squares. We derive this method in two different ways, first, by
use of estimating functions, and then, in the traditional way, by least squares.
Both are very general principles of estimation, which have many applications
in econometrics.

The most elementary type of regression model is the simple linear regression
model, which can be expressed by the following equation:

yt = β1 + β2xt + ut. (2.01)

The subscript t is used to index the observations of a sample. The total num-
ber of observations, also called the sample size, will be denoted by n. Thus,
for a sample of size n, the subscript t runs from 1 to n. Each observation
comprises an observation on a dependent variable, written as yt for observa-
tion t, and an observation on a single explanatory variable, or independent
variable, written as xt.

The relation (2.01) links the observations on the dependent and the explana-
tory variables for each observation in terms of two unknown parameters, β1

and β2, and an unobserved disturbance, or error term, ut. Thus, of the five
quantities that appear in (2.01), two, yt and xt, are observed, and three, β1,
β2, and ut, are not. Three of them, yt, xt, and ut, are specific to observation t,
while the other two, the parameters, are common to all n observations.

Here is a simple example of how a regression model like (2.01) could arise in
economics. Suppose that the index t is a time index, as the notation suggests.
Each value of t could represent a year, for instance. Then yt could be house-
hold consumption as measured in year t, and xt could be measured disposable
income of households in the same year. In that case, (2.01) would represent
what in elementary macroeconomics is called a consumption function.

9
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If for the moment we ignore the presence of the disturbances, β2 is the
marginal propensity to consume out of disposable income, and β1 is what
is sometimes called autonomous consumption. As is true of a great many
econometric models, the parameters in this example can be seen to have a
direct interpretation in terms of economic theory. The variables, income and
consumption, do indeed vary in value from year to year, as the term “vari-
ables” suggests. In contrast, the parameters reflect aspects of the economy
that do not vary, but take on the same values each year.

The purpose of formulating the model (2.01) is to try to explain the observed
values of the dependent variable in terms of those of the explanatory variable.
According to equation (2.01), the value of yt is given for each t by a linear
function of xt and the unobserved disturbance ut. The linear (strictly speak-
ing, affine1) function, which in this case is β1 + β2xt, is called the regression
function. At this stage we should note that, as long as we say nothing about
the unobserved disturbance ut, equation (2.01) does not tell us anything. In
fact, we can allow the parameters β1 and β2 to be quite arbitrary, since, for
any given β1 and β2, the model (2.01) can always be made to be true by
defining ut suitably.

If we wish to make sense of the regression model (2.01), then, we must make
some assumptions about the properties of the disturbance ut. Precisely what
those assumptions are will vary from case to case. In all cases, though, it is
assumed that ut is a random variable. Most commonly, it is assumed that,
whatever the value of xt, the expectation of the random variable ut is zero.
This assumption usually serves to identify the unknown parameters β1 and β2,
in the sense that, under the assumption, equation (2.01) can be true only for
specific values of those parameters.

The presence of disturbances in regression models means that the explana-
tions these models provide are at best partial. This would not be so if the
disturbances could be directly observed as economic variables, for then ut

could be treated as a further explanatory variable. In that case, (2.01) would
be a relation linking yt to xt and ut in a completely unambiguous fashion.
Given xt and ut, yt would be completely explained without error.

Of course, disturbances are not observed in the real world. They are included
in regression models because we are not able to specify all of the real-world
factors that determine the value of yt. When we set up a model like (2.01) with
ut as a random variable, what we are really doing is using the mathematical
concept of randomness to model our ignorance of the details of economic
mechanisms. When we suppose that the expectation of a disturbance is zero,
we are implicitly assuming that the factors determining yt that we ignore
are just as likely to make yt bigger than it would have been if those factors
were absent as they are to make yt smaller. Thus we are assuming that, on

1 A function g(x) is said to be affine if it takes the form g(x) = a + bx for two
real numbers a and b.
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average, the effects of the neglected determining factors tend to cancel out.
This does not mean that those effects are necessarily small. The proportion
of the variation in yt that is accounted for by the disturbances will depend on
the nature of the data and the extent of our ignorance. Even if this proportion
is large, and it can be very large indeed in some cases, regression models like
(2.01) can be useful if they allow us to see how yt is related to the variables,
like xt, that we can actually observe.

Much of the literature in econometrics, and therefore much of this book, is
concerned with how to estimate, and test hypotheses about, the parameters
of regression models. In the case of (2.01), these parameters are the constant
term, or intercept, β1, and the slope coefficient, β2. Although we will begin
our discussion of estimation in this chapter, most of it will be postponed until
later chapters. In this chapter, we are primarily concerned with understanding
regression models as statistical models, rather than with estimating them or
testing hypotheses about them.

In the next section, we review some elementary concepts from probability
theory, including random variables and their expectations. Many readers will
already be familiar with these concepts. They will be useful in Section 2.3,
where we discuss the meaning of regression models and some of the forms
that such models can take. In Section 2.4, we review some topics from matrix
algebra and show how multiple regression models can be written using matrix
notation. Finally, in Section 2.5, we introduce the method of moments and
show how it leads to ordinary least squares as a way of estimating regression
models.

2.2 Distributions, Densities, and Moments

The variables that appear in an econometric model are treated as what math-
ematical probabilists call random variables. In order to characterize a random
variable, we must first specify the set of all the possible values that the ran-
dom variable can take on. The simplest case is a scalar random variable, or
scalar r.v. The set of possible values for a scalar r.v. may be the real line
or a subset of the real line, such as the set of nonnegative real numbers. It
may also be the set of integers or a subset of the set of integers, such as the
numbers 1, 2, and 3.

Since a random variable is a collection of possibilities, random variables cannot
be observed as such. What we do observe are realizations of random variables,
a realization being one value out of the set of possible values. For a scalar
random variable, each realization is therefore a single real value.

If X is any random variable, probabilities can be assigned to subsets of the
full set of possibilities of values for X, in some cases to each point in that
set. Such subsets are called events, and their probabilities are assigned by a
probability distribution, according to a few general rules.
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Discrete and Continuous Random Variables

The easiest sort of probability distribution to consider arises when X is a
discrete random variable, which can take on a finite, or perhaps a countably
infinite, number of values, which we may denote as x1, x2, . . . . The probability
distribution simply assigns probabilities, that is, numbers between 0 and 1,
to each of these values, in such a way that the probabilities sum to 1:

∞∑
i=1

p(xi) = 1,

where p(xi) is the probability assigned to xi. Any assignment of nonnega-
tive probabilities that sum to one automatically respects all the general rules
alluded to above.

In the context of econometrics, the most commonly encountered discrete ran-
dom variables occur in the context of binary data, which can take on the
values 0 and 1, and in the context of count data, which can take on the values
0, 1, 2, . . . .

Another possibility is that X may be a continuous random variable, which, for
the case of a scalar r.v., can take on any value in some continuous subset of the
real line, or possibly the whole real line. The dependent variable in a regression
model is normally a continuous r.v. For a continuous r.v., the probability
distribution can be represented by a cumulative distribution function, or CDF.
This function, which is often denoted F (x), is defined on the real line. Its
value is Pr(X ≤ x), the probability of the event that X is equal to or less
than some value x. In general, the notation Pr(A) signifies the probability
assigned to the event A, a subset of the full set of possibilities. Since X is
continuous, it does not really matter whether we define the CDF as Pr(X ≤ x)
or as Pr(X < x) here, but it is conventional to use the former definition.

Notice that, in the preceding paragraph, we used X to denote a random
variable and x to denote a realization of X, that is, a particular value that the
random variableX may take on. This distinction is important when discussing
the meaning of a probability distribution, but it will rarely be necessary in
most of this book.

Probability Distributions

We may now make explicit the general rules that must be obeyed by proba-
bility distributions in assigning probabilities to events. There are just three
of these rules:

(i) All probabilities lie between 0 and 1;

(ii) The null set is assigned probability 0, and the full set of possibilities is
assigned probability 1;
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(iii) The probability assigned to an event that is the union of two disjoint
events is the sum of the probabilities assigned to those disjoint events.

We will not often need to make explicit use of these rules, but we can use
them now in order to derive some properties of any well-defined CDF for a
scalar r.v. First, a CDF F (x) tends to 0 as x → −∞. This follows because
the event (X ≤ x) tends to the null set as x → −∞, and the null set has
probability 0. By similar reasoning, F (x) tends to 1 when x → +∞, because
then the event (X ≤ x) tends to the entire real line. Further, F (x) must be
a weakly increasing function of x. This is true because, if x1 < x2, we have

(X ≤ x2) = (X ≤ x1) ∪ (x1 < X ≤ x2), (2.02)

where ∪ is the symbol for set union. The two subsets on the right-hand side
of (2.02) are clearly disjoint, and so

Pr(X ≤ x2) = Pr(X ≤ x1) + Pr(x1 < X ≤ x2).

Since all probabilities are nonnegative, it follows that the probability that
(X ≤ x2) must be no smaller than the probability that (X ≤ x1).

For a continuous r.v., the CDF assigns probabilities to every interval on the
real line. However, if we try to assign a probability to a single point, the result
is always just zero. Suppose that X is a scalar r.v. with CDF F (x). For any
interval [a, b ] of the real line, the fact that F (x) is weakly increasing allows
us to compute the probability that X ∈ [a, b ]. If a < b,

Pr(X ≤ b) = Pr(X ≤ a) + Pr(a < X ≤ b),

whence it follows directly from the definition of a CDF that

Pr(a ≤ X ≤ b) = F (b)− F (a), (2.03)

since, for a continuous r.v., we make no distinction between Pr(a < X ≤ b)
and Pr(a ≤ X ≤ b). If we set b = a, in the hope of obtaining the probability
that X = a, then we get F (a)− F (a) = 0.

Probability Density Functions

For continuous random variables, the concept of the probability density func-
tion, or PDF, more frequently referred to as just the density, is very closely
related to that of a CDF. Whereas a distribution function exists for any well-
defined random variable, a density exists only when the random variable is
continuous, and when its CDF is differentiable. For a scalar r.v., the density
function, often denoted by f, is just the derivative of the CDF:

f(x) ≡ F ′(x).
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Because F (−∞) = 0 and F (∞) = 1, every density must be normalized to
integrate to unity. By the Fundamental Theorem of Calculus,∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
F ′(x) dx = F (∞)− F (−∞) = 1. (2.04)

It is obvious that a density is nonnegative, since it is the derivative of a weakly
increasing function.

Probabilities can be computed in terms of the density as well as the CDF.
Note that, by (2.03) and the Fundamental Theorem of Calculus once more,

Pr(a ≤ X ≤ b) = F (b)− F (a) =

∫ b

a

f(x) dx. (2.05)

Since (2.05) must hold for arbitrary a and b, it is clear why f(x) must always be
nonnegative. However, it is important to remember that f(x) is not bounded
above by unity, because the value of a density at a point x is not a probability.
Only when a density is integrated over some interval, as in (2.05), does it yield
a probability.

The most common example of a continuous distribution is provided by the
normal distribution. This is the distribution that generates the famous or
infamous “bell curve” sometimes thought to influence students’ grade distri-
butions. The fundamental member of the normal family of distributions is the
standard normal distribution. It is a continuous scalar distribution, defined
on the entire real line. The density of the standard normal distribution is
often denoted ϕ(·). Its explicit expression, which we will need later in the
book, is

ϕ(x) = (2π)−1/2 exp
(
− 1−

2
x2
)
. (2.06)

Unlike ϕ(·), the CDF, usually denoted Φ(·), has no elementary closed-form
expression. However, by (2.05) with a = −∞ and b = x, we have

Φ(x) =

∫ x

−∞
ϕ(y) dy.

The functions Φ(·) and ϕ(·) are graphed in Figure 2.1. Since the density is
the derivative of the CDF, it achieves a maximum at x = 0, where the CDF is
rising most steeply. As the CDF approaches both 0 and 1, and consequently,
becomes very flat, the density approaches 0.

Although it may not be obvious at once, discrete random variables can be
characterized by a CDF just as well as continuous ones can be. Consider a
binary r.v. X that can take on only two values, 0 and 1, and let the probability
that X = 0 be p. It follows that the probability that X = 1 is 1−p. Then the
CDF of X, according to the definition of F (x) as Pr(X ≤ x), is the following
discontinuous, “staircase” function:
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Figure 2.1 The CDF and PDF of the standard normal distribution

F (x) =

{
0 for x < 0
p for 0 ≤ x < 1
1 for x ≥ 1.

Such a CDF, for p = 0.7, is graphed in Figure 2.2. Obviously, we cannot graph
a corresponding density, for it does not exist. For general discrete random
variables, the discontinuities of the CDF occur at the discrete permitted values
of X, and the jump at each discontinuity is equal to the probability of the
corresponding value. Since the sum of the jumps must therefore equal 1, the
limiting value of F , to the right of all permitted values, is also 1.

Using a CDF is a reasonable way to deal with random variables that are
neither completely discrete nor completely continuous. Such hybrid variables
can be produced by the phenomenon of censoring. A random variable is said
to be censored if not all of its potential values can actually be observed. For
instance, in some data sets, a household’s measured income is set equal to 0 if
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Figure 2.2 The CDF of a binary random variable

it is actually negative. It might be negative if, for instance, the household lost
more on the stock market than it earned from other sources in a given year.
Even if the true income variable is continuously distributed over the positive
and negative real line, the observed, censored, variable has an atom, or bump,
at 0, since the single value of 0 now has a nonzero probability attached to it,
namely, the probability that an individual’s income is nonpositive. As with
a purely discrete random variable, the CDF has a discontinuity at 0, with a
jump equal to the probability of a negative or zero income.

Moments of Random Variables

A fundamental property of a random variable is its expectation. For a discrete
r.v. that can take on m possible finite values x1, x2, . . . , xm, the expectation
is simply

E(X) ≡
m∑
i=1

p(xi)xi. (2.07)

Thus each possible value xi is multiplied by the probability associated with
it. If m is infinite, the sum above has an infinite number of terms.

For a continuous r.v., the expectation is defined analogously using the density:

E(X) ≡
∫ ∞

−∞
xf(x) dx. (2.08)

Not every r.v. has an expectation, however. The integral of a density function
always exists and equals 1. But since X can range from −∞ to ∞, the integral
(2.08) may well diverge at either limit of integration, or both, if the density
f does not tend to zero fast enough. Similarly, if m in (2.07) is infinite, the
sum may diverge. The expectation of a random variable is sometimes called
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the mean or, to prevent confusion with the usual meaning of the word as the
mean of a sample, the population mean. A common notation for it is µ.

The expectation of a random variable is often referred to as its first moment.
The so-called higher moments, if they exist, are the expectations of the r.v.
raised to a power. Thus the second moment of a random variable X is the
expectation of X2, the third moment is the expectation of X3, and so on. In
general, the k th moment of a continuous random variable X is

mk(X) ≡
∫ ∞

−∞
xkf(x) dx.

Observe that the value of any moment depends only on the probability distri-
bution of the r.v. in question. For this reason, we often speak of the moments
of the distribution rather than the moments of a specific random variable. If
a distribution possesses a k th moment, it also possesses all moments of order
less than k.

The higher moments just defined are called the uncentered moments of a
distribution, because, in general, X does not have mean zero. It is often more
useful to work with the central moments, which are defined as the ordinary
moments of the difference between the random variable and its expectation.
Thus the k th central moment of the distribution of a continuous r.v. X is

µk ≡ E
(
X − E(X)

)k
=

∫ ∞

−∞
(x− µ)kf(x) dx,

where µ ≡ E(X). For a discrete X, the k th central moment is

µk ≡ E
(
X − E(X)

)k
=

m∑
i=1

p(xi)(xi − µ)k.

By far the most important central moment is the second. It is called the
variance of the random variable and is frequently written as Var(X). Another
common notation for a variance is σ2. This notation underlines the important
fact that a variance cannot be negative. The positive square root of the
variance, σ, is called the standard deviation of the distribution. Estimates of
standard deviations are often referred to as standard errors, especially when
the random variable in question is a parameter estimator.

Multivariate Distributions

A vector-valued random variable takes on values that are vectors. It can
be thought of as several scalar random variables that have a single, joint
distribution. For simplicity, we will focus on the case of bivariate random
variables, where the vector has two elements. A continuous, bivariate random
variable (X1, X2) has a distribution function

F (x1, x2) = Pr
(
(X1 ≤ x1) ∩ (X2 ≤ x2)

)
,
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where ∩ is the symbol for set intersection. Thus F (x1, x2) is the joint proba-
bility that both X1 ≤ x1 and X2 ≤ x2. For continuous variables, the density,
if it exists, is the joint density function2

f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2
. (2.09)

This function has exactly the same properties as an ordinary density. In
particular, as in (2.04),∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1dx2 = 1.

More generally, the probability that X1 and X2 jointly lie in any region is the
integral of f(x1, x2) over that region. A case of particular interest is

F (x1, x2) = Pr
(
(X1 ≤ x1) ∩ (X2 ≤ x2)

)
=

∫ x2

−∞

∫ x1

−∞
f(y1, y2) dy1dy2,

(2.10)

which shows how to compute the CDF given the density.

The concept of joint probability distributions leads naturally to the impor-
tant notion of statistical independence. Let (X1, X2) be a bivariate random
variable. Then X1 and X2 are said to be statistically independent, or often
just independent, if the joint CDF of (X1, X2) is the product of the CDFs of
X1 and X2. In straightforward notation, this means that

F (x1, x2) = F (x1,∞)F (∞, x2). (2.11)

The first factor here is the joint probability that X1 ≤ x1 and X2 ≤ ∞. Since
the second inequality imposes no constraint, this factor is just the probability
that X1 ≤ x1. The function F (x1,∞), which is called the marginal CDF of
X1, is thus just the CDF of X1 considered by itself. Similarly, the second
factor on the right-hand side of (2.11) is the marginal CDF of X2.

It is also possible to express statistical independence in terms of the marginal
density of X1 and the marginal density of X2. The marginal density of X1 is,
as one would expect, the derivative of the marginal CDF of X1,

f(x1) ≡ F1(x1,∞),

2 Here we are using what computer scientists would call “overloaded function”
notation. This means that F (·) and f(·) denote, respectively, the CDF and the
density of whatever their argument(s) happen to be. This practice is harmless
provided there is no ambiguity.
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where F1(·) denotes the partial derivative of F (·) with respect to its first
argument. It can be shown from (2.10) that the marginal density can also be
expressed in terms of the joint density, as follows:

f(x1) =

∫ ∞

−∞
f(x1, x2) dx2. (2.12)

Thus f(x1) is obtained by integrating X2 out of the joint density. Similarly,
the marginal density of X2 is obtained by integrating X1 out of the joint
density. From (2.09), it can be shown that, if X1 and X2 are independent, so
that (2.11) holds, then

f(x1, x2) = f(x1)f(x2). (2.13)

Thus, when densities exist, statistical independence means that the joint den-
sity factorizes as the product of the marginal densities, just as the joint CDF
factorizes as the product of the marginal CDFs.

Conditional Probabilities

Suppose that A and B are any two events. Then the probability of event A
conditional on B, or given B, is denoted as Pr(A |B) and is defined implicitly
by the equation

Pr(A ∩B) = Pr(B) Pr(A |B). (2.14)

For this equation to make sense as a definition of Pr(A |B), it is necessary that
Pr(B) ̸= 0. The idea underlying the definition is that, if we know somehow
that the event B has been realized, this knowledge can provide information
about whether event A has also been realized. For instance, if A and B are
disjoint, and B is realized, then it is certain that A has not been. As we
would wish, this does indeed follow from the definition (2.14), since A ∩B is
the null set, of zero probability, if A and B are disjoint. Similarly, if B is a
subset of A, knowing that B has been realized means that A must have been
realized as well. Since in this case Pr(A ∩ B) = Pr(B), (2.14) tells us that
Pr(A |B) = 1, as required.

To gain a better understanding of (2.14), consider Figure 2.3. The bounding
rectangle represents the full set of possibilities, and events A and B are sub-
sets of the rectangle that overlap as shown. Suppose that the figure has been
drawn in such a way that probabilities of subsets are proportional to their
areas. Thus the probabilities of A and B are the ratios of the areas of the cor-
responding circles to the area of the bounding rectangle, and the probability
of the intersection A ∩B is the ratio of its area to that of the rectangle.

Suppose now that it is known that B has been realized. This fact leads us to
redefine the probabilities so that everything outside B now has zero probabil-
ity, while, inside B, probabilities remain proportional to areas. Event B now
has probability 1, in order to keep the total probability equal to 1. Event A
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Figure 2.3 Conditional probability

can be realized only if the realized point is in the intersection A ∩ B, since
the set of all points of A outside this intersection has zero probability. The
probability of A, conditional on knowing that B has been realized, is thus the
ratio of the area of A ∩ B to that of B. This construction leads directly to
equation (2.14).

There are many ways to associate a random variable X with the rectangle
shown in Figure 2.3. Such a random variable could be any function of the
two coordinates that define a point in the rectangle. For example, it could be
the horizontal coordinate of the point measured from the origin at the lower
left-hand corner of the rectangle, or its vertical coordinate, or the Euclidean
distance of the point from the origin. The realization of X is the value of the
function it corresponds to at the realized point in the rectangle.

For concreteness, let us assume that the function is simply the horizontal
coordinate, and let the width of the rectangle be equal to 1. Then, since
all values of the horizontal coordinate between 0 and 1 are equally probable,
the random variable X has what is called the uniform distribution on the
interval [0, 1]. The CDF of this distribution is

F (x) =

{
0 for x < 0
x for 0 ≤ x ≤ 1
1 for x > 1.

Because F (x) is not differentiable at x = 0 and x = 1, the density of the
uniform distribution does not exist at those points. Elsewhere, the derivative
of F (x) is 0 outside [0, 1] and 1 inside. The CDF and density are illustrated
in Figure 2.4. This special case of the uniform distribution is often denoted
the U(0, 1) distribution.
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Figure 2.4 The CDF and PDF of the uniform distribution on [0, 1]
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Figure 2.5 The CDF and PDF conditional on event B

If the information were available that B had been realized, then the distri-
bution of X conditional on this information would be very different from the
U(0, 1) distribution. Now only values between the extreme horizontal limits
of the circle of B are allowed. If one computes the area of the part of the
circle to the left of a given vertical line, then for each event a ≡ (X ≤ x) the
probability of this event conditional on B can be worked out. The result is
just the CDF of X conditional on the event B. Its derivative is the density of
X conditional on B. These are shown in Figure 2.5.

The concept of conditional probability can be extended beyond probability
conditional on an event to probability conditional on a random variable. Sup-
pose thatX1 is a r.v. andX2 is a discrete r.v. with permitted values z1, . . . , zm.
For each i = 1, . . . ,m, the CDF of X1, and, if X1 is continuous, its density, can
be computed conditional on the event (X2 = zi). If X2 is also a continuous
r.v., then things are a little more complicated, because events like (X2 = x2)
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for some real x2 have zero probability, and so cannot be conditioned on in the
manner of (2.14).

On the other hand, it makes perfect intuitive sense to think of the distribution
of X1 conditional on some specific realized value of X2. This conditional
distribution gives us the probabilities of events concerning X1 when we know
that the realization of X2 was actually x2. We therefore make use of the
conditional density of X1 for a given value x2 of X2. This conditional density,
or conditional PDF, is defined as

f(x1 |x2) =
f(x1, x2)

f(x2)
. (2.15)

Thus, for a given value x2 of X2, the conditional density is proportional to the
joint density of X1 and X2. Of course, (2.15) is well defined only if f(x2) > 0.
In some cases, more sophisticated definitions can be found that would allow
f(x1 |x2) to be defined for all x2 even if f(x2) = 0, but we will not need these
in this book. See, among others, Billingsley (1995).

Conditional Expectations

Whenever we can describe the distribution of a random variable, X1, condi-
tional on another, X2, either by a conditional CDF or a conditional density,
we can consider the conditional expectation of X1. If it exists, this conditional
expectation is just the ordinary expectation computed using the conditional
distribution. If x2 is a possible value for X2, then this conditional expectation
is written as E(X1 |x2).

For a given value x2, the conditional expectation E(X1 |x2) is, like any other
ordinary expectation, a deterministic, that is, nonrandom, quantity. But we
can consider the expectation of X1 conditional on every possible realization
of X2. In this way, we can construct a new random variable, which we denote
by E(X1 |X2), the realization of which is E(X1 |x2) when the realization of
X2 is x2. We can call E(X1 |X2) a deterministic function of the random vari-
able X2, because the realization of E(X1 |X2) is unambiguously determined
by the realization of X2.

Conditional expectations defined as random variables in this way have a num-
ber of interesting and useful properties. The first, called the Law of Iterated
Expectations, can be expressed as follows:

E
(
E(X1 |X2)

)
= E(X1). (2.16)

If a conditional expectation of X1 can be treated as a random variable,
then the conditional expectation itself may have an expectation. According
to (2.16), this expectation is just the ordinary expectation of X1.

Another property of conditional expectations is that any deterministic func-
tion of a conditioning variable X2 is its own conditional expectation. Thus,
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for example, E(X2 |X2) = X2, and E(X2
2 |X2) = X2

2 . A result, sometimes
referred to as taking out what is known, says that, conditional on X2, the
expectation of a product of another random variable X1 and a deterministic
function of X2 is the product of that deterministic function and the expecta-
tion of X1 conditional on X2:

E
(
X1h(X2) |X2

)
= h(X2)E(X1 |X2), (2.17)

for any deterministic function h(·). An important special case of this, which
we will make use of in Section 2.5, arises when E(X1 |X2) = 0. In that case,
for any function h(·), E(X1h(X2)) = 0, because

E
(
X1h(X2)

)
= E

(
E(X1h(X2) |X2)

)
= E

(
h(X2)E(X1 |X2)

)
= E(0) = 0.

The first equality here follows from the Law of Iterated Expectations, (2.16).
The second follows from (2.17). Since E(X1 |X2) = 0, the third line then fol-
lows immediately. We will present other properties of conditional expectations
as the need arises.

2.3 The Specification of Regression Models

At this point, it is appropriate to formalize the idea of a model in the context of
econometrics. We begin by recalling the notion of a data-generating process,
or DGP. In Section 1.2, we proposed a definition of a DGP as something that
can be simulated on a computer, and that constitutes a unique recipe for
simulation. This definition is fine for virtual reality, but, despite some claims
to the contrary, we do not think that we are living in a simulation! What do
we mean, then, in speaking of a DGP in the real world?

The difficulty here is that the real world is messy. Statistical agencies wrestle
with this problem all the time, but succeed nonetheless in generating the
data sets used by econometricians. Our explanations of the economy, and
our understanding of economic mechanisms, are based on these data sets.
In medicine, our understanding of biological mechanisms is based on data
collected in hospitals, clinics, and labs. In the physical sciences, we base our
theories on experimental and observational data. In all these disciplines, we
can talk about data-generating processes, without entering into the details of
just how data are collected.

It wouldn’t make a lot of sense to say that a statistical agency, for instance, is
a real-world DGP, although such agencies certainly do generate much of the
data we use in empirical work. In the end, it is probably better to say as little
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as possible about a real-world DGP, and instead speak of external reality, or
simply of the real world.

We now return our attention to the regression model (2.01) and revert to the
notation of Section 2.1 in which yt and xt denote, respectively, the dependent
and independent variables. The model (2.01) can be interpreted as a model
for the expectation of yt conditional on xt. Let us assume that the disturbance
ut has expectation 0 conditional on xt. Then, taking conditional expectations
of both sides of (2.01), we see that

E(yt |xt) = β1 + β2xt + E(ut |xt) = β1 + β2xt.

Without the key assumption that E(ut |xt) = 0, the second equality here
would not hold. As we pointed out in Section 2.1, it is impossible to make
any sense of a regression model unless we make strong assumptions about
the disturbances. Of course, we could define ut as the difference between
yt and E(yt |xt), which would give E(ut |xt) = 0 by definition. But if we
require that E(ut |xt) = 0 and also specify (2.01), we must necessarily have
E(yt |xt) = β1 + β2xt.

As an example, suppose that we estimate the model (2.01) when in fact

yt = β1 + β2xt + β3x
2
t + vt (2.18)

with β3 ̸= 0 and a disturbance vt such that E(vt |xt) = 0. If the data were
generated by (2.18), the disturbance ut in (2.01) would be equal to β3x

2
t + vt.

By the results on conditional expectations in Section 2.2, we see that

E(ut |xt) = E
(
β3x

2
t + vt |xt

)
= β3x

2
t ,

which must be nonzero unless xt = 0. This example shows the force of the
assumption that the expectation of the disturbance is zero conditional on xt.
Unless the expectation of yt conditional on xt really is a linear function of xt,
the regression function in (2.01) is not correctly specified, in the precise sense
that (2.01) cannot hold with a disturbance that has expectation zero condi-
tional on xt. It will become clear in later chapters that estimating incorrectly
specified models usually leads to results that are meaningless or, at best,
seriously misleading.

Information Sets

In a more general setting, what we are interested in is usually not the expec-
tation of yt conditional on a single explanatory variable xt but its expectation
conditional on a set of potential explanatory variables. This set is often called
an information set, and it is denoted Ωt. Typically, the information set con-
tains more variables than would actually be used in a regression model. For
example, it might consist of all the variables observed by the economic agents
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whose actions determine yt at the time they make the decisions that cause
them to perform those actions. Such an information set could be very large.
As a consequence, much of the art of constructing, or specifying, a regression
model is deciding which of the variables that belong to Ωt should be included
in the model and which of the variables should be excluded.

In some cases, economic theory makes it fairly clear what the information set
Ωt should consist of, and sometimes also which variables in Ωt should make
their way into a regression model. In many others, however, it may not be
at all clear how to specify Ωt. In general, we want to condition on exogenous
variables but not on endogenous ones. These terms refer to the origin or
genesis of the variables: An exogenous variable has its origins outside the
model under consideration, while the mechanism generating an endogenous
variable is inside the model. When we write a single equation like (2.01), the
only endogenous variable allowed is the dependent variable, yt.

Recall the example of the consumption function that we looked at in Sec-
tion 2.1. That model seeks to explain household consumption in terms of
disposable income, but it makes no claim to explain disposable income, which
is simply taken as given. The consumption function model can be correctly
specified only if two conditions hold:

(i) The expectation of consumption conditional on disposable income is an
affine function of the latter.

(ii) Consumption is not a variable that contributes to the determination of
disposable income.

The second condition means that the origin of disposable income, that is, the
mechanism by which disposable income is generated, lies outside the model for
consumption. In other words, disposable income is exogenous in that model.
If the simple consumption model we have presented is correctly specified, the
two conditions above must be satisfied. Needless to say, we do not claim that
this model is in fact correctly specified.

It is not always easy to decide just what information set to condition on.
As the above example shows, it is often not clear whether or not a variable
is exogenous. Moreover, even if a variable clearly is exogenous, we may not
want to include it in Ωt. For example, if the ultimate purpose of estimating
a regression model is to use it for forecasting, there may be no point in con-
ditioning on information that will not be available at the time the forecast is
to be made.

Disturbances

Whenever we specify a regression model, it is essential to make assumptions
about the properties of the disturbances. The simplest set of assumptions is
that all of them have expectation 0, come from the same distribution, and are
independent of each other. Although this is a rather strong set of assumptions,
it is very commonly adopted in practice.
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Mutual independence of the disturbances, when coupled with the assump-
tion that E(ut) = 0, implies that the expectation of ut is 0 conditional on
all of the other disturbances us, s ̸= t. However, the implication does not
work in the other direction, because the assumption of mutual independence
is stronger than the assumption about the conditional expectations. A very
strong assumption which is often made is that the disturbances are indepen-
dently and identically distributed, or IID. According to this assumption, the
disturbances are mutually independent, and they are in addition realizations
from the same, identical, probability distribution.

When the successive observations are ordered by time, it often seems plausible
that a disturbance is correlated with neighboring disturbances. Thus ut might
well be correlated with us when the value of |t− s| is small. This could occur,
for example, if there is correlation across time periods of random factors that
influence the dependent variable but are not explicitly accounted for in the
regression function. This phenomenon is called serial correlation, and it often
appears to be observed in practice. When there is serial correlation, the
disturbances cannot be IID because they are not independent.

Another possibility is that the variance of the disturbances may be system-
atically larger for some observations than for others. This happens if the
conditional variance of yt depends on some of the same variables as the con-
ditional expectation. This phenomenon is called heteroskedasticity, and it
also often appears to be observed in practice. For example, in the case of the
consumption function, the variance of consumption may well be higher for
households with high incomes than for households with low incomes. When
there is heteroskedasticity, the disturbances cannot be IID, because they are
not identically distributed. It is perfectly possible to take explicit account
of both serial correlation and heteroskedasticity, but doing so would take us
outside the context of regression models like (2.01).

It may sometimes be desirable to write a regression model like the one we
have been studying as

E(yt |Ωt) = β1 + β2xt, (2.19)

in order to stress the fact that this is a model for the expectation of yt con-
ditional on a certain information set. However, by itself, (2.19) is just as
incomplete a specification as (2.01). In order to see this point, we must now
state what we mean by a complete specification of a regression model. Prob-
ably the best way to do this is to say that a complete specification of any
econometric model is one that provides an unambiguous recipe for simulat-
ing the model on a computer. After all, if we can use the model to generate
simulated data, it must be completely specified.

Simulating Econometric Models

Consider equation (2.01). When we say that we simulate this model, we
mean that we generate numbers for the dependent variable, yt, according
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to equation (2.01). Obviously, one of the first things we must fix for the
simulation is the sample size, n. That done, we can generate each of the yt,
for t = 1, . . . , n, by evaluating the right-hand side of the equation n times.
For this to be possible, we need to know the value of each variable and each
parameter that appears on the right-hand side.

If we suppose that the explanatory variable xt is exogenous, then we simply
take it as given. In the context of the consumption function example, if we
had data on the disposable income of households in some country every year
for a period of n years, we could just use those data. Our simulation would
then be specific to the country in question and to the time period of the
data. Alternatively, it could be that we or some other econometricians had
previously specified another model, for the explanatory variable this time, and
we could then use simulated data provided by that model.

Besides the explanatory variable, the other elements of the right-hand side of
(2.01) are the parameters, β1 and β2, and the disturbance ut. A key feature
of the parameters is that we do not know their true values. However, for
purposes of simulation, we could use either values suggested by economic
theory or values obtained by estimating the model. Evidently, the simulation
results will depend on precisely what values we use.

Unlike the parameters, the disturbances cannot be taken as given; instead,
we wish to treat them as random. Luckily, it is easy to use a computer to
generate “random” numbers by using a program called a random number
generator; we mentioned these already in Section 1.2, and will discuss them
again in more detail in Chapter 7. The “random” numbers generated by
computers are not random according to some meanings of the word. For
instance, a computer can be made to spit out exactly the same sequence of
supposedly random numbers more than once. In addition, a digital computer
is a perfectly deterministic device. Therefore, if random means the opposite
of deterministic, only computers that are not functioning properly would be
capable of generating truly random numbers. Because of this, some people
prefer to speak of computer-generated random numbers as pseudo-random.
However, for the purposes of simulations, the numbers computers provide have
all the properties of random numbers that we need, and so we will call them
simply random rather than pseudo-random.

Computer-generated random numbers are mutually independent drawings,
or realizations, from specific probability distributions, usually the uniform
U(0, 1) distribution or the standard normal distribution, both of which were
defined in Section 2.2. Of course, techniques exist for generating drawings
from many other distributions as well, as do techniques for generating draw-
ings that are not independent. For the moment, the essential point is that we
must always specify the probability distribution of the random numbers we
use in a simulation. It is important to note that specifying the expectation of
a distribution, or even the expectation conditional on some other variables, is
not enough to specify the distribution in full.
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Let us now summarize the various steps in performing a simulation by giv-
ing a sort of generic algorithm for simulations of regression models. In the
model specification, it is convenient to distinguish between the deterministic
specification and the stochastic specification. In model (2.01), the determin-
istic specification consists of the regression function, of which the ingredients
are the explanatory variable and the parameters. The stochastic specifica-
tion (“stochastic” is another word for “random”) consists of the probability
distribution of the disturbances, and the requirement that the disturbances
should be IID drawings from this distribution. Then, in order to simulate the
dependent variable yt in (2.01), we do as follows:

• Fix the sample size, n;

• Choose the parameters (here β1 and β2) of the deterministic specification;

• Obtain the n successive values xt, t = 1, . . . , n, of the explanatory vari-
able. As explained above, these values may be real-world data or the
output of another simulation;

• Evaluate the n successive values of the regression function β1 + β2xt, for
t = 1, . . . , n;

• Choose the probability distribution of the disturbances, if necessary spec-
ifying parameters such as its expectation and variance;

• Use a random-number generator to generate the n successive and mutu-
ally independent values ut of the disturbances;

• Form the n successive values yt of the dependent variable by adding the
disturbances to the values of the regression function.

The n values yt, t = 1, . . . , n, thus generated are the output of the simulation;
they are the simulated values of the dependent variable.

The chief interest of such a simulation is that, if the model we simulate is
correctly specified and thus reflects the real-world generating process for the
dependent variable, our simulation mimics the real world accurately, because
it makes use of the same data-generating mechanism as that in operation in
the real world.

A complete specification, then, is anything that leads unambiguously to a
recipe like the one given above. We will define a fully specified parametric
model as a model for which it is possible to simulate the dependent variable
once the values of the parameters are known. A partially specified parametric
model is one for which more information, over and above the parameter values,
must be supplied before simulation is possible. Both sorts of models are
frequently encountered in econometrics.

To conclude this discussion of simulations, let us return to the specifications
(2.01) and (2.19). Both are obviously incomplete as they stand. In order to
complete either one, it is necessary to specify the information set Ωt and the
distribution of ut conditional on Ωt. In particular, it is necessary to know
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whether the disturbances us with s ̸= t belong to Ωt. In (2.19), one aspect
of the conditional distribution is given, namely, the conditional expectation.
Unfortunately, because (2.19) contains no explicit disturbance, it is easy to
forget that it is there. Perhaps as a result, it is more common to write
regression models in the form of (2.01) than in the form of (2.19). However,
writing a model in the form of (2.01) does have the disadvantage that it
obscures both the dependence of the model on the choice of an information
set and the fact that the distribution of the disturbances must be specified
conditional on that information set.

Linear and Nonlinear Regression Models

The simple linear regression model (2.01) is by no means the only reasonable
model for the expectation of yt conditional on xt. Consider, for example, the
models

yt = β1 + β2xt + β3x
2
t + ut (2.20)

yt = γ1 + γ2 log xt + ut, and (2.21)

yt = δ1 + δ2
1

xt
+ ut. (2.22)

These are all models that might be plausible in some circumstances.3 In
equation (2.20), there is an extra parameter, β3, which allows E(yt |xt) to vary
quadratically with xt whenever β3 is nonzero. In effect, xt and x2

t are being
treated as separate explanatory variables. Thus (2.20) is the first example
we have seen of a multiple linear regression model. It reduces to the simple
linear regression model (2.01) when β3 = 0.

In the models (2.21) and (2.22), on the other hand, there are no extra para-
meters. Instead, a nonlinear transformation of xt is used in place of xt itself.
As a consequence, the relationship between xt and E(yt |xt) in these two
models is necessarily nonlinear. Nevertheless, (2.20), (2.21), and (2.22) are all
said to be linear regression models, because, even though the expectation of
yt may depend nonlinearly on xt, it always depends linearly on the unknown
parameters of the regression function. As we will see in Section 2.5, it is quite
easy to estimate a linear regression model. In contrast, genuinely nonlinear
models, in which the regression function depends nonlinearly on the para-
meters, are somewhat harder to estimate, and are not treated in this book.

Because it is very easy to estimate linear regression models, a great deal
of applied work in econometrics makes use of them. It may seem that the

3 In this book, all logarithms are natural logarithms. Thus a = log x implies
that x = ea. Some authors use “ln” to denote natural logarithms and “log” to
denote base 10 logarithms. Since econometricians should never have any use
for base 10 logarithms, we avoid this aesthetically displeasing notation.
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linearity assumption is very restrictive. However, as the examples (2.20),
(2.21), and (2.22) illustrate, this assumption need not be unduly restrictive
in practice, at least not if the econometrician is at all creative. If we are
willing to transform the dependent variable as well as the independent ones,
the linearity assumption can be made even less restrictive. As an example,
consider the nonlinear regression model

yt = eβ1xβ2

t2 x
β3

t3 + ut, (2.23)

in which there are two explanatory variables, xt2 and xt3, and the regression
function is multiplicative. If the notation seems odd, suppose that there is
implicitly a third explanatory variable, xt1, which is constant and always
equal to e. Notice that the regression function in (2.23) can be evaluated only
when xt2 and xt3 are positive for all t.4 It is a genuinely nonlinear regression
function, because it is clearly linear neither in parameters nor in variables.
For reasons that will shortly become apparent, a nonlinear model like (2.23)
is very rarely estimated in practice.

A model like (2.23) is not as outlandish as may appear at first glance. It
could arise, for instance, if we wanted to estimate a Cobb-Douglas production
function. In that case, yt would be output for observation t, and xt2 and xt3

would be inputs, say labor and capital. Since eβ1 is just a positive constant,
it plays the role of the scale factor that is present in every Cobb-Douglas
production function.

As equation (2.23) is written, everything enters multiplicatively except the
disturbance. But it is easy to modify (2.23) so that the disturbance also
enters multiplicatively. One way to do this is to write

yt = eβ1xβ2

t2 x
β3

t3 + ut ≡
(
eβ1xβ2

t2 x
β3

t3

)
(1 + vt), (2.24)

where the disturbance factor 1 + vt multiplies the regression function. If we
now assume that the underlying disturbances vt are IID, it follows that the
additive disturbances ut are proportional to the regression function. This may
well be a more plausible specification than that in which the ut are supposed
to be IID, as was implicitly assumed in (2.23). To see this, notice first that
the additive disturbance ut has the same units of measurement as yt. If
(2.23) is interpreted as a production function, then ut is measured in units
of output. However, the multiplicative disturbance vt is dimensionless. In
other words, it is a pure number, like 0.02, which could be expressed as 2 per
cent. If the ut are assumed to be IID, then we are assuming that the random
component of output is of the same order of magnitude regardless of the scale
of production. If, on the other hand, the vt are assumed to be IID, then the

4 If x and a are real numbers, xa is not usually a real number unless x > 0.
Think of the square root of −1.
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random component is proportional to total output. This second assumption
is almost always more reasonable than the first.

If the model (2.24) is a good one, then the vt should be quite small, usu-
ally less than about 0.05. For small values of the argument w, a standard
approximation to the exponential function gives us that ew ∼= 1 + w. As a
consequence, (2.24) is very similar to the model

yt = eβ1xβ2

t2 x
β3

t3 e
vt (2.25)

whenever the disturbances are reasonably small.

Now suppose we take logarithms of both sides of (2.25). The result is

log yt = β1 + β2 log xt2 + β3 log xt3 + vt, (2.26)

which is a loglinear regression model. This model is linear in the parameters
and in the logarithms of all the variables, and so it is very much easier to
estimate than the nonlinear model (2.23). Since (2.25) is at least as plausible
as (2.23), it is not surprising that loglinear regression models, like (2.26),
are estimated very frequently in practice, while multiplicative models with
additive disturbances, like (2.23), are very rarely estimated. Of course, it is
important to remember that (2.26) is not a model for the expectation of yt
conditional on xt2 and xt3. Instead, it is a model for the expectation of log yt
conditional on those variables. If it is really the conditional expectation of yt
that we are interested in, then we will not want to estimate a loglinear model
like (2.26).

2.4 Matrix Algebra

It is impossible to study econometrics beyond the most elementary level with-
out using matrix algebra. Most readers are probably already quite familiar
with matrix algebra. This section reviews some basic results that will be used
throughout the book. It also shows how regression models can be written very
compactly using matrix notation. More advanced material will be discussed
in later chapters, as it is needed.

An n × m matrix A is a rectangular array that consists of nm elements
arranged in n rows and m columns. The name of the matrix is conventionally
shown in boldface. A typical element of A might be denoted by either Aij or
aij , where i = 1, . . . , n and j = 1, . . . ,m. The first subscript always indicates
the row, and the second always indicates the column. It is sometimes necessary
to show the elements of a matrix explicitly, in which case they are arrayed in
rows and columns and surrounded by large brackets, as in

B =

[
2 3 6

4 5 8

]
.
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Here B is a 2× 3 matrix.

If a matrix has only one column or only one row, it is called a vector. There are
two types of vectors, column vectors and row vectors. Since column vectors
are more common than row vectors, a vector that is not specified to be a
row vector is normally treated as a column vector. If a column vector has
n elements, it may be referred to as an n--vector. Boldface is used to denote
vectors as well as matrices. It is conventional to use uppercase letters for
matrices and lowercase letters for column vectors. However, it is sometimes
necessary to ignore this convention.

If a matrix has the same number of columns and rows, it is said to be square.
A square matrix A is symmetric if Aij = Aji for all i and j. Symmetric
matrices occur very frequently in econometrics. A square matrix is said to
be diagonal if Aij = 0 for all i ̸= j; in this case, the only nonzero entries are
those on what is called the principal diagonal. Sometimes a square matrix
has all zeros above or below the principal diagonal. Such a matrix is said to
be triangular. If the nonzero elements are all above the diagonal, it is said to
be upper-triangular; if the nonzero elements are all below the diagonal, it is
said to be lower-triangular. Here are some examples:

A =

 1 2 4
2 3 6
4 6 5

 B =

 1 0 0
0 4 0
0 0 2

 C =

 1 0 0
3 2 0
5 2 6

.
In this case, A is symmetric, B is diagonal, and C is lower-triangular.

The transpose of a matrix is obtained by interchanging its row and column
subscripts. Thus the ij th element of A becomes the jith element of its trans-
pose, which is denoted A⊤. Note that many authors use A′ rather than A⊤ to
denote the transpose of A. The transpose of a symmetric matrix is equal to
the matrix itself. The transpose of a column vector is a row vector, and vice
versa. Here are some examples:

A =

[
2 5 7

3 8 4

]
A⊤=

 2 3
5 8
7 4

 b =

 2
4
6

 b⊤= [ 2 4 6 ] .

Note that a matrix A is symmetric if and only if A = A⊤.

Arithmetic Operations on Matrices

Addition and subtraction of matrices works exactly the way it does for scalars,
with the proviso that matrices can be added or subtracted only if they are
conformable. In the case of addition and subtraction, this just means that
they must have the same dimensions, that is, the same number of rows and
the same number of columns. If A and B are conformable, then a typical
element of A + B is simply Aij + Bij , and a typical element of A − B is
Aij −Bij .
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Matrix multiplication actually involves both additions and multiplications. It
is based on what is called the inner product, or scalar product, or sometimes
dot product of two vectors. Suppose that a and b are n--vectors. Then their
inner product is

a⊤b = b⊤a =
n∑

i=1

aibi.

As the name suggests, this is just a scalar.

When two matrices are multiplied together, the ij th element of the result is
equal to the inner product of the ith row of the first matrix with the j th

column of the second matrix. Thus, if C = AB,

Cij =
m∑

k=1

AikBkj . (2.27)

For (2.27) to make sense, we must assume that A has m columns and that
B has m rows. In general, if two matrices are to be conformable for multipli-
cation, the first matrix must have as many columns as the second has rows.
Further, as is clear from (2.27), the result has as many rows as the first matrix
and as many columns as the second. One way to make this explicit is to write
something like

A
n×m

B
m×l

= C
n×l

.

One rarely sees this type of notation in a book or journal article. However, it
is often useful to employ it when doing calculations, in order to verify that the
matrices being multiplied are indeed conformable and to derive the dimensions
of their product.

The rules for multiplying matrices and vectors together are the same as the
rules for multiplying matrices with each other; vectors are simply treated as
matrices that have only one column or only one row. For instance, if we
multiply an n--vector a by the transpose of an n--vector b, we obtain what is
called the outer product of the two vectors. The result, written as ab⊤, is an
n× n matrix with typical element aibj .

Matrix multiplication is, in general, not commutative. The fact that it is pos-
sible to premultiply B by A does not imply that it is possible to postmultiply
B by A. In fact, it is easy to see that both operations are possible if and
only if one of the matrix products is square, in which case the other matrix
product is square also, although generally with different dimensions. Even
when both operations are possible, AB ̸= BA except in special cases.

A special matrix that econometricians frequently make use of is I, which
denotes the identity matrix. It is a diagonal matrix with every diagonal
element equal to 1. A subscript is sometimes used to indicate the number of
rows and columns. Thus

I3 =

 1 0 0
0 1 0
0 0 1

.
Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



34 Regression Models

The identity matrix is so called because when it is either premultiplied or
postmultiplied by any matrix, it leaves the latter unchanged. Thus, for any
matrix A, AI = IA = A, provided, of course, that the matrices are con-
formable for multiplication. It is easy to see why the identity matrix has this
property. Recall that the only nonzero elements of I are equal to 1 and are
on the principal diagonal. This fact can be expressed simply with the help of
the symbol known as the Kronecker delta, written as δij . The definition is

δij =

{
1 if i = j,

0 if i ̸= j.
(2.28)

The ij th element of I is just δij . By (2.27), the ij th element of AI is

m∑
k=1

Aik Ikj =
m∑

k=1

Aikδkj = Aij ,

since all the terms in the sum over k vanish except that for which k = j.

A special vector that we frequently use in this book is ι. It denotes a col-
umn vector every element of which is 1. This special vector comes in handy
whenever one wishes to sum the elements of another vector, because, for any
n--vector b,

ι⊤b =
n∑

i=1

bi. (2.29)

Matrix multiplication and matrix addition interact in an intuitive way. It
is easy to check from the definitions of the respective operations that the
distributive properties hold. That is, assuming that the dimensions of the
matrices are conformable for the various operations,

A(B +C) = AB +AC, and

(B +C)A = BA+CA.

In addition, both operations are associative, which means that

(A+B) +C = A+ (B +C), and

(AB)C = A(BC).

The transpose of the product of two matrices is the product of the transposes
of the matrices with the order reversed. Thus

(AB)⊤= B⊤A⊤. (2.30)

The reversal of the order is necessary if the transposed matrices are to be

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

2.4 Matrix Algebra 35

conformable for multiplication. The result (2.30) can be proved immediately
by writing out the typical entries of both sides and checking that

(AB)ij
⊤ = (AB)ji =

m∑
k=1

AjkBki =
m∑

k=1

(B⊤)ik(A
⊤)kj = (B⊤A⊤)ij ,

where m is the number of columns of A and the number of rows of B. It is
always possible to multiply a matrix by its own transpose: If A is n×m, then
A⊤ is m×n, A⊤A is m×m, and AA⊤ is n×n. It follows directly from (2.30)
that both of these matrix products are symmetric:

A⊤A = (A⊤A)⊤ and AA⊤= (AA⊤)⊤.

It is frequently necessary to multiply a matrix, say B, by a scalar, say α.
Multiplication by a scalar works exactly the way one would expect: Every
element of B is multiplied by α. Since multiplication by a scalar is commuta-
tive, we can write this either as αB or as Bα, but αB is the more common
notation.

Occasionally, it is necessary to multiply two matrices together element by
element. The result is called the direct product, the Hadamard product, or
the Schur product of the two matrices. The direct product of A and B is
denoted A∗B, and a typical element of it is equal to AijBij .

A square matrix may or may not be invertible. If A is invertible, then it has
an inverse matrix A−1 with the property that

AA−1 = A−1A = I.

If A is symmetric, then so is A−1. If A is triangular, then so is A−1. Except
in certain special cases, it is not easy to calculate the inverse of a matrix by
hand. One such special case is that of a diagonal matrix, say D, with typical
diagonal element Dii. It is easy to verify that D−1 is also a diagonal matrix,
with typical diagonal element D−1

ii .

If an n× n square matrix A is invertible, then its rank is n. Such a matrix is
said to have full rank. If a square matrix does not have full rank, and therefore
is not invertible, it is said to be singular. If a square matrix is singular, its
rank must be less than its dimension. If, by omitting j rows and j columns
of A, we can obtain a matrix A′ that is invertible, and if j is the smallest
number for which this is true, then the rank of A is n − j. More generally,
for matrices that are not necessarily square, the rank is the largest number
m for which an m × m nonsingular matrix can be constructed by omitting
some rows and some columns from the original matrix. The rank of a matrix
is closely related to the geometry of vector spaces, which will be discussed in
Section 3.2.
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Regression Models and Matrix Notation

The simple linear regression model (2.01) can easily be written in matrix
notation. If we stack the model for all the observations, we obtain

y1 = β1 + β2x1 + u1

y2 = β1 + β2x2 + u2

...
...

...
...

yn = β1 + β2xn + un .

(2.31)

Let y denote an n--vector with typical element yt, u an n--vector with typical
element ut, X an n× 2 matrix that consists of a column of 1s and a column
with typical element xt, and β a 2--vector with typical element βi, i = 1, 2.
Thus we have

y =


y1
y2
...
yn

, u =


u1

u2
...
un

, X =


1 x1

1 x2
...

...
1 xn

, and β =

[
β1

β2

]
.

Equations (2.31) can now be rewritten as

y = Xβ + u. (2.32)

It is easy to verify from the rules of matrix multiplication that a typical row
of (2.32) is a typical row of (2.31). When we postmultiply the matrix X by
the vector β, we obtain a vector Xβ with typical element β1 + β2xt.

When a regression model is written in the form (2.32), the separate columns
of the matrix X are called regressors, and the column vector y is called
the regressand. In (2.31), there are just two regressors, corresponding to
the constant and one explanatory variable. One advantage of writing the
regression model in the form (2.32) is that we are not restricted to just one
or two regressors. Suppose that we have k regressors, one of which may or
may not correspond to a constant, and the others to a number of explanatory
variables. Then the matrix X becomes

X =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
...

xn1 xn2 · · · xnk

, (2.33)

where xti denotes the tth observation on the ith regressor, and the vector β
now has k elements, β1 through βk. Equation (2.32) remains perfectly valid
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when X and β are redefined in this way. A typical row of this equation is

yt = Xtβ + ut =
k∑

i=1

βixti + ut, (2.34)

where we have used Xt to denote row t of X.

In equation (2.32), we used the rules of matrix multiplication to write the
regression function, for the entire sample, in a very simple form. These rules
make it possible to find equally convenient expressions for other aspects of
regression models. The key fact is that every element of the product of two
matrices is a summation. Thus it is often very convenient to use matrix
algebra when dealing with summations. Consider, for example, the matrix of
sums of squares and cross-products of the X matrix. This is a k×k symmetric
matrix, of which a typical element is either

n∑
t=1

x2
ti or

n∑
t=1

xtixtj ,

the former being a typical diagonal element and the latter a typical off-
diagonal one. This entire matrix can be written very compactly as X⊤X.
Similarly, the vector with typical element

n∑
t=1

xtiyt

can be written as X⊤y. As we will see in the next section, the least-squares
estimates of β depend only on the matrix X⊤X and the vector X⊤y.

Partitioned Matrices

There are many ways of writing an n × k matrix X that are intermediate
between the straightforward notation X and the full element-by-element de-
composition of X given in (2.33). We might wish to separate the columns
while grouping the rows, as

X =
[
x1 x2 · · · xk

]
,

n× k n× 1 n× 1 . . . n× 1

or we might wish to separate the rows but not the columns, as

X =


X1

X2
...

Xn


1× k

1× k

1× k

n× k

.
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To save space, we can also write this as X =
[
X1

.... X2
.... . . .

.... Xn

]
. There is no

restriction on how a matrix can be partitioned, so long as all the submatrices
or blocks fit together correctly. Thus we might have

X =

[
X11 X12 n1

X21 X22 n2

k1 k2

]

or, equivalently, X = [X11
.... X21 X12

.... X22]. Here the submatrix X11

has dimensions n1 × k1, X12 has dimensions n1 × k2, X21 has dimensions
n2 × k1, and X22 has dimensions n2 × k2, with n1 + n2 = n and k1 + k2 = k.
Thus X11 and X12 have the same number of rows, and also X21 and X22, as
required for the submatrices to fit together horizontally. Similarly, X11 and
X21 have the same number of columns, and also X12 and X22, as required
for the submatrices to fit together vertically as well.

If two matrices A and B of the same dimensions are partitioned in exactly
the same way, they can be added or subtracted block by block. A simple
example is

A+B = [A1 A2 ] + [B1 B2 ] = [A1 +B1 A2 +B2 ] ,

where A1 and B1 have the same dimensions, as do A2 and B2.

More interestingly, as we now explain, matrix multiplication can sometimes
be performed block by block on partitioned matrices. If the product AB
exists, then A has as many columns as B has rows. Now suppose that the
columns of A are partitioned in the same way as the rows of B. Then

AB = [A1 A2 · · · Ap ]


B1

B2
...

Bp

.
Here each Ai, i = 1, . . . , p, has as many columns as the corresponding Bi

has rows. The product can be computed following the usual rules for matrix
multiplication just as though the blocks were scalars, yielding the result

AB =

p∑
i=1

AiBi. (2.35)

To see this, it is enough to compute the typical element of each side of equation
(2.35) directly and observe that they are the same. Matrix multiplication
can also be performed block by block on matrices that are partitioned both
horizontally and vertically, provided all the submatrices are conformable; see
Exercise 2.19.
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These results on multiplying partitioned matrices lead to a useful corollary.
Suppose that we are interested only in the first m rows of a product AB,
where A has more than m rows. Then we can partition the rows of A into
two blocks, the first with m rows, the second with all the rest. We need not
partition B at all. Then

AB =

[
A1

A2

]
B =

[
A1B

A2B

]
. (2.36)

This works because A1 and A2 both have the full number of columns of A,
which must be the same as the number of rows of B, since AB exists. It
is clear from the rightmost expression in (2.36) that the first m rows of AB
are given by A1B. In order to obtain any subset of the rows of a matrix
product of arbitrarily many factors, the rule is that we take the submatrix of
the leftmost factor that contains just the rows we want, and then multiply it
by all the other factors unchanged. Similarly, if we want to select a subset
of columns of a matrix product, we can just select them from the rightmost
factor, leaving all the factors to the left unchanged.

2.5 Techniques of Estimation

Almost all econometric models contain unknown parameters. For most of the
uses to which such models can be put, it is necessary to have estimates of these
parameters. To compute parameter estimates, we need both a model contain-
ing the parameters and a sample made up of observed data. If the model is
correctly specified, it describes the real-world mechanism which generated the
data in our sample.

It is common in statistics to speak of the “population” from which a sample
is drawn. Recall the use of the term “population mean” as a synonym for
the mathematical term “expectation”; see Section 2.2. The expression is a
holdover from the time when statistics was biostatistics, and the object of
study was the human population, usually that of a specific town or country,
from which random samples were drawn by statisticians for study. The av-
erage weight of all members of the population, for instance, would then be
estimated by the mean of the weights of the individuals in the sample, that
is, by the sample mean of individuals’ weights. The sample mean was thus an
estimate of the population mean. The underlying idea is just that the sample
represents the population from which it has been drawn.

In econometrics, the use of the term population is simply a metaphor. A better
concept is that of a data-generating process, or DGP. By this term, we mean
whatever mechanism is at work in the real world of economic activity giving
rise to the numbers in our samples, that is, precisely the mechanism that our
econometric model is supposed to describe. A data-generating process is thus
the analog in econometrics of a population in biostatistics. Samples may be
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drawn from a DGP just as they may be drawn from a population. In both
cases, the samples are assumed to be representative of the DGP or population
from which they are drawn.

A very natural way to estimate parameters is to replace population means
by sample means. This technique is called the method of moments, and it is
one of the most widely-used estimation methods in statistics. As the name
implies, it can be used with moments other than the expectation. In general,
the method of moments estimates population moments by the corresponding
sample moments. However, we cannot apply the method of moments directly
to regression models, because, except in one trivial case that we discuss first,
the parameters we wish to estimate are not population means.

The simplest possible linear regression has only one regressor, namely the
constant. For each observation in the sample, the model gives just yt = β+ut,
from which we see that E(yt) = β for all t. The method of moments applies
directly, and we define the estimator of β by the sample mean of the yt:

β̂ = 1−
n

n∑
t=1

yt. (2.37)

Econometricians generally make a distinction between an estimate, which
is simply a number used to estimate some parameter, normally based on a
particular data set, and an estimator, which is a rule, such as (2.45), for
obtaining estimates from any set of data. More formally, an estimator is a
random variable, and an estimate is a realization of the random variable.

Here is a slightly less direct way of arriving at the estimator (2.37). The
disturbance for observation t is ut = yt − β, and, according to our model, the
expectation of this disturbance is zero. Since we have n disturbances for a
sample of size n, we can consider their sample mean:

1−
n

n∑
t=1

ut =
1−
n

n∑
t=1

(yt − β)

It seems natural to seek a parameter estimator which ensures that this sample
mean is equal to zero, the population mean. The equation that defines this
estimator is therefore

1−
n

n∑
t=1

(yt − β) = 0. (2.38)

Since β is common to all the observations and thus does not depend on the
index t, equation (2.38) can be written as

1−
n

n∑
t=1

yt − β = 0.
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It is clear that the solution for β to this equation is (2.37).

Now consider the simple model (2.01). It is not obvious how to use the method
of moments when we have two parameters, β1 and β2. Equation (2.38) would
become

1−
n

n∑
t=1

(yt − β1 − β2xt) = 0, (2.39)

but this is just one equation, and there are two unknowns. In order to obtain
another equation, we can use the fact that our model specifies that the expec-
tation of ut is 0 conditional on the explanatory variable xt. Actually, it may
well specify that the expectation of ut is 0 conditional on many other things
as well, depending on our choice of the information set Ωt, but we will ignore
this for now. The conditional expectation assumption implies not only that
E(ut) = 0, but also that E(xtut) = 0, since, by (2.16) and (2.17),

E(xtut) = E
(
E(xtut |xt)

)
= E

(
xtE(ut |xt)

)
= 0. (2.40)

Thus we can supplement (2.39) by the following equation, which replaces the
population mean in (2.40) by the corresponding sample mean,

1−
n

n∑
t=1

xt(yt − β1 − β2xt) = 0. (2.41)

The equations (2.39) and (2.41) are two linear equations in two unknowns, β1

and β2. Except in rare conditions, which can easily be ruled out, they have
a unique solution that is not difficult to calculate. Solving these equations
yields an estimator.

We could just solve (2.39) and (2.41) directly, but it is far more illuminating
to rewrite them in matrix form. Since β1 and β2 do not depend on t, these
two equations can be written as

β1 +

(
1−
n

n∑
t=1

xt

)
β2 = 1−

n

n∑
t=1

yt(
1−
n

n∑
t=1

xt

)
β1 +

(
1−
n

n∑
t=1

x2
t

)
β2 = 1−

n

n∑
t=1

xtyt.

Multiplying both equations by n and using the rules of matrix multiplication
that were discussed in Section 3.4, we can also write them as[

n
∑n

t=1 xt∑n
t=1 xt

∑n
t=1 x

2
t

] [
β1

β2

]
=

[ ∑n
t=1 yt∑n

t=1 xtyt

]
. (2.42)
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Equations (2.42) can be rewritten much more compactly. As we saw in Sec-
tion 2.3, the model (2.01) is simply a special case of the multiple linear re-
gression model

y = Xβ + u, (2.43)

where the n--vector y has typical element yt, the k --vector β has typical
element βi, and, in general, the matrix X is n× k. In this case, X is n× 2; it
can be written as X = [ι x], where ι denotes a column of 1s, and x denotes
a column with typical element xt. Thus, recalling (2.29), we see that

X⊤y =

[ ∑n
t=1 yt∑n

t=1 xtyt

]
and

X⊤X =

[
n

∑n
t=1 xt∑n

t=1 xt

∑n
t=1 x

2
t

]
.

These are the principal quantities that appear in the equations (2.42). Thus
it is clear that we can rewrite those equations as

X⊤Xβ = X⊤y. (2.44)

The estimator β̂ that solves these equations can be written as

β̂ = (X⊤X)−1X⊤y. (2.45)

It is generally called the ordinary least squares, or OLS, estimator for the
linear regression model, for a reason explained shortly. It is clear that β̂ is
well defined only if X⊤X can be inverted.

The formula (2.45) gives us the OLS estimator for the simple linear regression
model (2.01), but in fact it does far more than that. As we now show, it also
gives us an estimator for the multiple linear regression model (2.43). Since
each of the explanatory variables is required to be in the information set Ωt,
we have, for i = 1, . . . , k,

E(xtiut) = 0.

In the corresponding sample mean form, this yields

1−
n

n∑
t=1

xti(yt −Xtβ) = 0; (2.46)

recall from equation (2.34) that Xt denotes the t
th row of X. As i varies from

1 to k, equation (2.46) yields k equations for the k unknown components of β.
In most cases, there is a constant, which we may take to be the first regressor.
If so, xt1 = 1, and the first of these equations simply says that the sample
mean of the disturbances is 0.
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In matrix form, after multiplying them by n, the k equations of (2.46) can be
written as

X⊤(y −Xβ) = 0. (2.47)

The notation 0 in bold-face type is used to signify a zero vector, here a
k --vector, each element of which is zero. Equations (2.47) are clearly equiva-
lent to equations (2.44). Thus solving them yields the estimator (2.45), which
applies no matter what the number of regressors.

It is easy to see that the OLS estimator (2.45) depends on y and X exclu-
sively through a number of scalar products. Each column xi of the matrix X
corresponds to one of the regressors, as does each row xi

⊤ of the transposed
matrix X⊤. Thus we can write X⊤y as

X⊤y =


x1

⊤

x2
⊤

...
xk

⊤

y =


x1

⊤y
x2

⊤y
...

xk
⊤y

.
The elements of the rightmost expression here are just the scalar products of
the regressors xi with the regressand y. Similarly, we can write X⊤X as

X⊤X =


x1

⊤

x2
⊤

...
xk

⊤

[x1 x2 · · · xk ] =


x1

⊤x1 x1
⊤x2 · · · x1

⊤xk

x2
⊤x1 x2

⊤x2 · · · x2
⊤xk

...
...

. . .
...

xk
⊤x1 xk

⊤x2 · · · xk
⊤xk

.
Once more, all the elements of the rightmost expression are scalar products of
pairs of regressors. Since X⊤X can be expressed exclusively in terms of scalar
products of the variables of the regression, the same is true of its inverse,
the elements of which are in general complicated functions of those scalar
products. Thus β̂ is a function solely of scalar products of pairs of variables.

Estimating Functions

The technique we used to derive an estimator for the model (2.43) can be
generalized. Consider a model the DGPs of which are characterised, either
completely or partially, by a vector β of parameters. Suppose that, in or-
der to estimate β, there are data available. For instance, for the multiple
linear regression model, there would be an n-vector y with observations on
the dependent variable, and an n× k matrix X with the regressors. A func-
tion f(y,X,β) of the data and the model parameters is called a zero function
(for the given model) if, for each DGP contained in the model, µ say, charac-
terised by parameters βµ, the expectation Eµ

(
f(y,X,βµ)

)
= 0 when y and

also possibly X, are generated by the DGP µ, as indicated by the notation Eµ.

Often, one can define a separate zero function for each observation in the
sample. The example of this we looked at is the residual for that observation.
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For the multiple linear regression model, the residual for observation t is
ut(yt,Xt,β) = yt − Xtβ, and, if for a given DGP µ the true parameter
vector is βµ, this means that yt = Xtβµ + ut, where ut is the disturbance
associated with observation t. Since ut has expectation zero, it follows that
Eµ

(
ut(yt,Xt,βµ)

)
= E(ut) = 0. In such a case, the residual ut(yt,Xt,β) is

called an elementary zero function, the word elementary signifying that it is
specific to the single observation t.

A powerful estimation method makes use of zero functions, usually linear com-
binations of the elementary zero functions of the model. The OLS estimator
uses the linear combinations of the residuals defined with the regressors as
coefficients, that is, the k components of the vector

X⊤(y −Xβ) =
n∑

t=1

Xt
⊤(yt −Xtβ) =

n∑
t=1

Xtut(yt,Xt,β).

Such linear combinations of the elementary zero functions are called estimat-
ing functions, and of course they too are zero functions. We get an estimating
equation by setting an estimating function equal to zero. An estimator is
thereby defined when there are as many estimating equations as there are
parameters to estimate. The equations implicit in (2.47) are the OLS esti-
mating equations.

Least-Squares Estimation

We have derived the OLS estimator (2.45) by using the method of estimating
functions. Deriving it in this way has at least two major advantages. Firstly,
this method is a very general and very powerful principle of estimation, one
that we will encounter again and again throughout this book. Secondly, by
using estimating functions, we were able to obtain (2.45) without making any
use of calculus. However, as we have already remarked, (2.45) is generally
referred to as the ordinary least-squares estimator. It is interesting to see
why this is so.

For the multiple linear regression model (2.43), the expression yt − Xtβ is
equal to the disturbance for the tth observation, but only if the correct value
of the parameter vector β is used. If the same expression is thought of as a
function of β, with β allowed to vary arbitrarily, then above we called it the
residual associated with the tth observation. Similarly, the n--vector y −Xβ
is called the residual vector. The sum of the squares of the components of
that vector is called the sum of squared residuals, or SSR. Since this sum
is a scalar, the sum of squared residuals is a scalar-valued function of the
k --vector β:

SSR(β) =
n∑

t=1

(yt −Xtβ)
2. (2.48)
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The notation here emphasizes the fact that this function can be computed for
arbitrary values of the argument β purely in terms of the observed data y
and X.

The idea of least-squares estimation is to minimize the sum of squared resid-
uals associated with a regression model. At this point, it may not be at all
clear why we would wish to do such a thing. However, it can be shown that
the parameter vector β̂ which minimizes (2.48) is the same as the estima-
tor (2.45). This being so, we will regularly use the traditional terminology
associated with linear regressions, based on least squares. Thus, the parameter
estimates which are the components of the vector β̂ that minimizes the SSR
(2.48) are called the least-squares estimates, and the corresponding vector of
residuals is called the vector of least-squares residuals. When least squares
is used to estimate a linear regression model like (2.01), it is called ordinary
least-squares, or OLS, to distinguish it from other varieties of least squares
that we will encounter later, such as generalized least squares (Chapter 8).

Consider briefly the simplest case of (2.01), in which β2 = 0 and the model
contains only a constant term. Expression (2.48) becomes

SSR(β1) =
n∑

t=1

(yt − β1)
2 =

n∑
t=1

y2t + nβ2
1 − 2β1

n∑
t=1

yt. (2.49)

Differentiating the rightmost expression in equations (2.49) with respect to β1

and setting the derivative equal to zero gives the following first-order condition
for a minimum of the sum of squared residuals:

∂SSR

∂β1
= 2β1n− 2

n∑
t=1

yt = 0. (2.50)

For this simple model, the matrix X consists solely of the constant vector, ι.
Therefore, by (2.29), X⊤X = ι⊤ι = n, and X⊤y = ι⊤y =

∑n
t=1 yt. Thus, if

the first-order condition (2.50) is multiplied by one-half, it can be rewritten
as ι⊤ιβ1 = ι⊤y, which is clearly just a special case of (2.44). Solving (2.50)
for β1 yields the sample mean of the yt,

β̂1 = 1−
n

n∑
t=1

yt = (ι⊤ι)−1ι⊤y. (2.51)

We already saw, in equation (2.37), that this is the MM estimator for the
model with β2 = 0. The rightmost expression in (2.51) makes it clear that
the sample mean is just a special case of the famous formula (2.45).

Not surprisingly, the OLS estimator is equivalent to the estimating-function
estimator (2.45) for the multiple linear regression model as well. For this
model,

SSR(β) = (y −Xβ)⊤(y −Xβ). (2.52)
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If this inner product is written out in terms of the scalar components of y, X,
and β, then the first-order conditions for minimizing the SSR (2.52) can be
written as (2.44); see Exercise 2.22. Thus (2.45) provides a general formula
for the OLS estimator β̂ in the multiple linear regression model.

Estimators like that obtained by minimizing a sum of squared residuals are
called the M-estimators, which are defined as the parameter values that max-
imize or minimize (hence the ‘M’) a criterion function. The OLS estimator
has traditionally been defined as an M-estimator with as criterion function
the sum of squared residuals. But, as we have seen, it can also be defined us-
ing estimation equations, in which estimating functions are set equal to zero.
Such estimators are called Z-estimators, with ‘Z’ for zero.

Final Remarks

We have seen that it is perfectly easy to obtain an algebraic expression, (2.45),
for the OLS estimator β̂. With modern computers and appropriate software,
it is also easy to obtain OLS estimates numerically, even for regressions with
millions of observations and dozens of explanatory variables; the time-honored
term for doing so is “running a regression.” What is not so easy, and will
occupy us for most of the next four chapters, is to understand the properties
of these estimates.

We will be concerned with two types of properties. The first type, numerical
properties, arise as a consequence of the way that OLS estimates are obtained.
These properties hold for every set of OLS estimates, no matter how the data
were generated. That they hold for any data set can easily be verified by direct
calculation. The numerical properties of OLS will be discussed in Chapter 3.
The second type, statistical properties, depend on the way in which the data
were generated. They can be verified theoretically, under certain assumptions,
and they can be illustrated by simulation, but we can never prove that they
are true for any given data set. The statistical properties of OLS will be
discussed in detail in Chapters 4, 5, and 6.

Readers who seek a deeper treatment of the topics dealt with in the first two
sections may wish to consult a text on mathematical statistics, such as Mit-
telhammer (2013), Hogg, McKean, and Craig (2007), Shao (2007), Schervish
(1996), or Gallant (1997).

2.6 Notes on the Exercises

Each chapter of this book is followed by a set of exercises. These exercises are
of various sorts, and they have various intended functions. Some are, quite
simply, just for practice. Others have a tidying-up function. Details left out
of the discussions in the main text are taken up, and conscientious readers
can check that unproved claims made in the text are in fact justified. Some of
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these exercises are particularly challenging. They are starred, and solutions
to them are available on the book’s website.

A number of exercises serve chiefly to extend the material presented in the
chapter. In many cases, the new material in such exercises recurs later in the
book, and it is hoped that readers who have worked through them will follow
later discussions more easily. A case in point concerns the bootstrap. Some
of the exercises in this chapter and the next two are designed to familiarize
readers with the tools that are used to implement the bootstrap, so that, when
it is introduced formally in Chapter 7, the bootstrap will appear as a natural
development.

Many of the exercises require the reader to make use of a computer, sometimes
to compute estimates and test statistics using real or simulated data, and
sometimes for the purpose of doing simulations. There are a great many
computer packages that are capable of doing the things we ask for in the
exercises, and it seems unnecessary to make any specific recommendations as
to what software would be best. Besides, we expect that many readers will
already have developed their own personal preferences for software packages,
and we know better than to try to upset such preferences.

Some exercises require, not only a computer, but also actual (or simulated)
economic data. It cannot be stressed enough that econometrics is an empirical
discipline, and that the analysis of economic data is its raison d’être. All of
the data files needed for the exercises are available from the website for this
book. The address is

http://qed.econ.queensu.ca/ETM/

This website will ultimately contain corrections and updates to the book as
well as the data and the solutions to the starred exercises.

2.7 Exercises

2.1 Consider a sample of n observations, y1, y2, . . . , yn, on some random vari-
able Y. The empirical distribution function, or EDF, of this sample is a dis-
crete distribution with n possible points. These points are just the n observed
points, y1, y2, . . . , yn. Each point is assigned the same probability, which is
just 1/n, in order to ensure that all the probabilities sum to 1.

Compute the expectation of the discrete distribution characterized by the
EDF, and show that it is equal to the sample mean, that is, the unweighted
average of the n sample points, y1, y2, . . . , yn.

2.2 A random variable computed as the ratio of two independent standard normal
variables follows what is called the Cauchy distribution. It can be shown that
the density of this distribution is

f(x) =
1

π(1 + x2)
.
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Show that the Cauchy distribution has no first moment, which means that its
expectation does not exist.

Use your favorite random number generator to generate samples of 10, 100,
1,000, and 10,000 drawings from the Cauchy distribution, and as many in-
termediate values of n as you have patience or computer time for. For each
sample, compute the sample mean. Do these sample means seem to converge
to zero as the sample size increases? Repeat the exercise with drawings from
the standard normal density. Do these sample means tend to converge to zero
as the sample size increases?

2.3 Consider two events A and B such that A ⊂ B. Compute Pr(A |B) in terms
of Pr(A) and Pr(B). Interpret the result.

2.4 Prove Bayes’ Theorem. This famous theorem states that, for any two events
A and B with nonzero probabilities,

Pr(A |B) =
Pr(B |A) Pr(A)

Pr(B)
.

Another form of the theorem deals with two continuous random variables X1

and X2, which have a joint density f(x1, x2). Show that, for any values x1
and x2 that are permissible for X1 and X2, respectively,

f(x1 |x2) =
f(x2 |x1)f(x1)

f(x2)
.

2.5 Suppose that X and Y are two binary random variables. Their joint distri-
bution is given in the following table.

Y = 0 Y = 1

X = 0 .16 .37

X = 1 .29 .18

What is the marginal distribution of Y ? What is the distribution of Y con-
ditional on X = 0? What is the distribution of Y conditional on X = 1?

Demonstrate the Law of Iterated Expectations explicitly by showing that
E(E(X |Y )) = E(X). Let h(Y ) = Y 3. Show explicitly that E(Xh(Y ) |Y ) =
h(Y )E(X |Y ) in this case.

2.6 Using expression (2.06) for the density ϕ(x) of the standard normal distribu-
tion, show that the derivative of ϕ(x) is the function −xϕ(x), and that the
second derivative is (x2−1)ϕ(x). Use these facts to show that the expectation
of a standard normal random variable is 0, and that its variance is 1. These
two properties account for the use of the term “standard.”

2.7 A normally distributed random variable can have any expectation µ and any
positive variance σ2. Such a random variable is said to follow the N(µ, σ2)
distribution. A standard normal variable therefore has the N(0, 1) distribu-
tion. Suppose that X has the standard normal distribution. Show that the
random variable Z ≡ µ+ σX has expectation µ and variance σ2.

2.8 Find the CDF of the N(µ, σ2) distribution in terms of Φ(·), the CDF of the
standard normal distribution. Differentiate your answer so as to obtain the
density of N(µ, σ2).
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2.9 If two random variables X1 and X2 are statistically independent, show that
E(X1 |X2) = E(X1).

2.10 The covariance of two random variables X1 and X2, which is often written as
Cov(X1, X2), is defined as the expectation of the product of X1 −E(X1) and
X2 − E(X2). Consider a random variable X1 with expectation zero. Show
that the covariance of X1 and any other random variable X2, whether it has
expectation zero or not, is just the expectation of the product of X1 and X2.

⋆2.11 Show that the covariance of the random variable E(X1 |X2) and the random
variable X1 − E(X1 |X2) is zero. It is easiest to show this result by first
showing that it is true when the covariance is computed conditional on X2.

⋆2.12 Show that the variance of the random variable X1 − E(X1 |X2) cannot be
greater than the variance of X1, and that the two variances are equal if X1

and X2 are independent. This result shows how one random variable can be
informative about another: Conditioning on it reduces variance unless the
two variables are independent.

2.13 Prove that, if X1 and X2 are statistically independent, Cov(X1, X2) = 0.

⋆2.14 Let a random variable X1 be distributed as N(0, 1). Now suppose that a
second random variable, X2, is constructed as the product of X1 and an
independent random variable Z, which equals 1 with probability 1/2 and −1
with probability 1/2.

What is the (marginal) distribution of X2? What is the covariance between
X1 and X2? What is the distribution of X1 conditional on X2?

2.15 Consider the linear regression models

H1 : yt = β1 + β2xt + ut and

H2 : log yt = γ1 + γ2 log xt + ut.

Suppose that the data are actually generated by H2, with γ1 = 1.5 and
γ2 = 0.5, and that the value of xt varies from 10 to 110 with an average
value of 60. Ignore the disturbances and consider the deterministic relations
between yt and xt implied by the two models. Find the values of β1 and β2
that make the relation given by H1 have the same level and the same value of
dyt/dxt as the level and value of dyt/dxt implied by the relation given by H2

when it is evaluated at the average value of the regressor.

Using the deterministic relations, plot yt as a function of xt for both models
for 10 ≤ xt ≤ 110. Also plot log yt as a function of log xt for both models for
the same range of xt. How well do the two models approximate each other in
each of the plots?

2.16 Consider two matrices A and B of dimensions such that the product AB
exists. Show that the ith row of AB is the matrix product of the ith row of
A with the entire matrix B. Show that this result implies that the ith row of
a product ABC . . . , with arbitrarily many factors, is the product of the ith

row of A with BC . . . .

What is the corresponding result for the columns of AB? What is the corre-
sponding result for the columns of ABC . . .?

2.17 Consider two invertible square matrices A and B, of the same dimensions.
Show that the inverse of the product AB exists and is given by the formula

(AB)−1 = B−1A−1.
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This shows that there is a reversal rule for inverses as well as for transposes;
see (2.30).

2.18 Show that the transpose of the product of an arbitrary number of factors is
the product of the transposes of the individual factors in completely reversed
order:

(ABC · · ·)⊤= · · ·C⊤B⊤A⊤.

Show also that an analogous result holds for the inverse of the product of an
arbitrary number of factors.

2.19 Consider the following example of multiplying partitioned matrices:[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=
[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

Check all the expressions on the right-hand side, verifying that all products
are well defined and that all sums are of matrices of the same dimensions.

2.20 Suppose that X = [ι X1 X2], where X is n × k, ι is an n--vector of 1s,
X1 is n × k1, and X2 is n × k2. What is the matrix X⊤X in terms of
the components of X ? What are the dimensions of its component matrices?
What is the element in the upper left-hand corner of X⊤X equal to?

2.21 Fix a sample size of n = 100, and simulate the very simplest regression model,
namely, yt = β+ut. Set β = 1, and let the disturbances ut be drawings from
the standard normal distribution. Compute the sample mean of the yt,

ȳ ≡ 1−
n

n∑
t=1

yt.

Use your favorite econometrics software package to run a regression with y,
the 100 × 1 vector with typical element yt, as the dependent variable, and a
constant as the sole explanatory variable. Show that the OLS estimate of the
constant is equal to the sample mean. Why is this a necessary consequence
of the formula (2.45)?

2.22 For the multiple linear regression model (2.43), the sum of squared residuals
can be written as

SSR(β) =

n∑
t=1

(yt −Xtβ)
2 = (y −Xβ)⊤(y −Xβ).

Show that, if we minimize SSR(β) with respect to β, the minimizing value of
β is β̂, the OLS estimator given by (2.45). The easiest way is to show that
the first-order conditions for a minimum are exactly the equations (2.46), or
(2.47), that arise from estimation using estimating functions. This can be
done without using matrix calculus.

2.23 The file house-price-data.txt contains data on the sale prices and various char-
acteristics of 546 houses sold in Windsor, Ontario, Canada in 1987, taken from
Anglin and Gençay (1996). Regress the house price on a constant and the 11
explanatory variables.5 By how much, on average, does the price of a house
increase when the number of full bathrooms increases by one?

5 This type of regression model is often called a hedonic regression, because it
attempts to estimate the values that consumers place on various characteristics
of a good, in this case a house.
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2.24 Plot the residuals from the regression of exercise 1.23 against the fitted values.
Also, plot the squared residuals against the fitted values. These two plots
should suggest that the regression is not well specified. Explain why, and
estimate another hedonic regression that performs better. Hint: Perhaps it
would make sense to transform one or more of the variables.

2.25 The file consumption-data.txt contains data on personal disposable income
and consumption expenditures in the United States, seasonally adjusted in
2009 dollars, from the first quarter of 1947 until the last quarter of 2014.
Regress the logarithm of consumption (ct) on a constant, the logarithm of
disposable income (yt), and the logarithm of consumption lagged one quarter
(ct−1) for the period 1948:1 to 2014:4. This regression can be written as

ct = β1 + β2yt + β3ct−1 + ut. (2.53)

Plot a graph of the OLS residuals for regression (2.53) against time. Does
the appearance of the residuals suggest that this model of the consumption
function is well specified?

2.26 Simulate the consumption function model (2.53) for the same sample period,
using the actual data on disposable income. For the parameters, use the
OLS estimates obtained in exercise 1.25. For the disturbances, use drawings
from the N(0, s2) distribution, where s is the standard error of the regression
reported by the regression package. Use the actual value of ct in 1947:4 for
the initial value of ct−1, but use simulated values after that.

Next, run regression (2.53) using the simulated consumption data and the
actual disposable income data. How do the parameter estimates differ from
the ones obtained using the real data?

Plot the residuals from the regression with the simulated data. Explain why
the plot looks substantially different from the one obtained using the real data
in exercise 1.25.
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Chapter 3

The Geometry

of Linear Regression

3.1 Introduction

In Chapter 2, we introduced regression models, both linear and nonlinear,
and discussed how to estimate linear regression models by using estimating
equations. We saw that all n observations of a linear regression model with
k regressors can be written as

y = Xβ + u, (3.01)

where y and u are n--vectors, X is an n × k matrix, one column of which
may be a constant term, and β is a k --vector. We also saw that the estimates
of the vector β, which are usually called the ordinary least-squares or OLS
estimates, are

β̂ = (X⊤X)−1X⊤y. (3.02)

In this chapter, we will be concerned with the numerical properties of these
OLS estimates. We refer to certain properties of estimates as “numerical” if
they have nothing to do with how the data were actually generated. Such
properties hold for every set of data by virtue of the way in which β̂ is com-
puted, and the fact that they hold can always be verified by direct calculation.
In contrast, the statistical properties of OLS estimates, which will be discussed
in Chapter 4, necessarily depend on unverifiable assumptions about how the
data were generated, and they can never be verified for any actual data set.

In order to understand the numerical properties of OLS estimates, it is useful
to look at them from the perspective of Euclidean geometry. This geometrical
interpretation is remarkably simple. Essentially, it involves using Pythagoras’
Theorem and a small amount of high-school trigonometry in the context of
finite-dimensional vector spaces. Although this approach is simple, it is very
powerful. Once one has a thorough grasp of the geometry involved in ordinary
least squares, one can often save oneself many tedious lines of algebra by
a simple geometrical argument. We will encounter many examples of this
throughout the book.

In the next section, we review some relatively elementary material on the
geometry of vector spaces and Pythagoras’ Theorem. In Section 3.3, we then
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discuss the most important numerical properties of OLS estimation from a
geometrical perspective. In Section 3.4, we introduce an extremely useful
result called the FWL Theorem, and in Section 3.5 we present a number of
applications of this theorem. Finally, in Section 3.6, we discuss how and to
what extent individual observations influence parameter estimates.

3.2 The Geometry of Vector Spaces

In Section 2.4, an n--vector was defined as a column vector with n elements,
that is, an n × 1 matrix. The elements of such a vector are real numbers.
The usual notation for the real line is R, and it is therefore natural to denote
the set of n--vectors as Rn. However, in order to use the insights of Euclidean
geometry to enhance our understanding of the algebra of vectors and matrices,
it is desirable to introduce the notion of a Euclidean space in n dimensions,
which we will denote as En. The difference between Rn and En is not that they
consist of different sorts of vectors, but rather that a wider set of operations
is defined on En. A shorthand way of saying that a vector x belongs to an
n--dimensional Euclidean space is to write x ∈ En.

Addition and subtraction of vectors in En is no different from the addition
and subtraction of n × 1 matrices discussed in Section 2.4. The same thing
is true of multiplication by a scalar in En. The final operation essential to
En is that of the scalar product, inner product, or dot product. For any two
vectors x,y ∈ En, their scalar product is

⟨x,y⟩ ≡ x⊤y.

The notation on the left is generally used in the context of the geometry of
vectors, while the notation on the right is generally used in the context of
matrix algebra. Note that ⟨x,y⟩ = ⟨y,x⟩, since x⊤y = y⊤x. Thus the scalar
product is commutative.

The scalar product is what allows us to make a close connection between
n--vectors considered as matrices and considered as geometrical objects. It
allows us to define the length of any vector in En. The length, or norm, of a
vector x is simply

∥x∥ ≡ (x⊤x)1/2.

This is just the square root of the inner product of x with itself. In scalar
terms, it is

∥x∥ ≡
( n∑

i=1

x2
i

)1/2
. (3.03)
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Figure 3.1 Pythagoras’ Theorem

Pythagoras’ Theorem

The definition (3.03) is inspired by the celebrated theorem of Pythagoras,
which says that the square on the longest side of a right-angled triangle is
equal to the sum of the squares on the other two sides. This longest side is
called the hypotenuse. Pythagoras’ Theorem is illustrated in Figure 3.1. The
figure shows a right-angled triangle, ABC, with hypotenuse AC and two other
sides, AB and BC, of lengths x1 and x2, respectively. The squares on each
of the three sides of the triangle are drawn, and the area of the square on the
hypotenuse is shown as x2

1 + x2
2, in accordance with the theorem.

A beautiful proof of Pythagoras’ Theorem, not often found in geometry texts,
is shown in Figure 3.2. Two squares of equal area are drawn. Each square
contains four copies of the same right-angled triangle. The square on the
left also contains the squares on the two shorter sides of the triangle, while
the square on the right contains the square on the hypotenuse. The theorem
follows at once.

Any vector x ∈ E2 has two components, usually denoted as x1 and x2. These
two components can be interpreted as the Cartesian coordinates of the vec-
tor in the plane. The situation is illustrated in Figure 3.3. With O as the
origin of the coordinates, a right-angled triangle is formed by the lines OA,
AB, and OB. The length of the horizontal side of the triangle, OA, is the
horizontal coordinate x1. The length of the vertical side, AB, is the vertical
coordinate x2. Thus the point B has Cartesian coordinates (x1, x2). The vec-
tor x itself is usually represented as the hypotenuse of the triangle, OB, that
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Figure 3.2 Proof of Pythagoras’ Theorem
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Figure 3.3 A vector x in E2

is, the directed line (depicted as an arrow) joining the origin to the point B,
with coordinates (x1, x2). Pythagoras’ Theorem tells us that the length of the
vector x, which is the hypotenuse of the triangle, is (x2

1+x2
2)

1/2. By equation
(3.03), this is what ∥x∥ is equal to when n = 2.

Vector Geometry in Two Dimensions

Let x and y be two vectors in E2, with components (x1, x2) and (y1, y2),
respectively. Then, by the rules of matrix addition, the components of x+ y
are (x1 + y1, x2 + y2). Figure 3.4 shows how the addition of x and y can
be performed geometrically in two different ways. The vector x is drawn as
the directed line segment, or arrow, from the origin O to the point A with
coordinates (x1, x2). The vector y can be drawn similarly and represented
by the arrow OB. However, we could also draw y starting, not at O, but at
the point reached after drawing x, namely A. The arrow AC has the same
length and direction as OB, and we will see in general that arrows with the
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Figure 3.4 Addition of vectors

same length and direction can be taken to represent the same vector. It is
clear by construction that the coordinates of C are (x1 + y1, x2 + y2), that is,
the coordinates of x+y. Thus the sum x+y is represented geometrically by
the arrow OC.

The classical way of adding vectors geometrically is to form a parallelogram
using the line segments OA and OB that represent the two vectors as adjacent
sides of the parallelogram. The sum of the two vectors is then the diagonal
through O of the resulting parallelogram. It is easy to see that this classical
method also gives the result that the sum of the two vectors is represented
by the arrow OC, since the figure OACB is just the parallelogram required
by the construction, and OC is its diagonal through O. The parallelogram
construction also shows clearly that vector addition is commutative, since
y + x is represented by OB, for y, followed by BC, for x. The end result is
once more OC.

Multiplying a vector by a scalar is also very easy to represent geometrically.
If a vector x with components (x1, x2) is multiplied by a scalar α, then αx
has components (αx1, αx2). This is depicted in Figure 3.5, where α = 2. The
line segments OA and OB represent x and αx, respectively. It is clear that
even if we move αx so that it starts somewhere other than O, as with CD
in the figure, the vectors x and αx are always parallel. If α were negative,
then αx would simply point in the opposite direction. Thus, for α = −2, αx
would be represented by DC, rather than CD.
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Figure 3.5 Multiplication by a scalar

Another property of multiplication by a scalar is clear from Figure 3.5. By
direct calculation,

∥αx∥ = ⟨αx, αx⟩1/2 = |α|(x⊤x)1/2 = |α|∥x∥. (3.04)

Since α = 2, OB and CD in the figure are twice as long as OA.

The Geometry of Scalar Products

The scalar product of two vectors x and y, whether in E2 or En, can be
expressed geometrically in terms of the lengths of the two vectors and the
angle between them, and this result will turn out to be very useful. In the
case of E2, it is natural to think of the angle between two vectors as the angle
between the two line segments that represent them. As we will now show, it
is also quite easy to define the angle between two vectors in En.

If the angle between two vectors is 0, they must be parallel. The vector y is
parallel to the vector x if y = αx for some suitable α. In that event,

⟨x,y⟩ = ⟨x, αx⟩ = αx⊤x = α∥x∥2.

From (3.04), we know that ∥y∥ = |α|∥x∥, and so, if α > 0, it follows that

⟨x,y⟩ = ∥x∥ ∥y∥. (3.05)

Of course, this result is true only if x and y are parallel and point in the same
direction (rather than in opposite directions).

For simplicity, consider initially two vectors, w and z, both of length 1, and
let θ denote the angle between them. This is illustrated in Figure 3.6. Suppose
that the first vector, w, has coordinates (1, 0). It is therefore represented by
a horizontal line of length 1 in the figure. Suppose that the second vector, z,
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Figure 3.6 The angle between two vectors

is also of length 1, that is, ∥z∥ = 1. Then, by elementary trigonometry, the
coordinates of z must be (cos θ, sin θ). To show this, note first that, if so,

∥z∥2 = cos2 θ + sin2 θ = 1, (3.06)

as required. Next, consider the right-angled triangle OAB, in which the hy-
potenuse OB represents z and is of length 1, by (3.06). The length of the
side AB opposite O is sin θ, the vertical coordinate of z. Then the sine of
the angle BOA is given, by the usual trigonometric rule, by the ratio of the
length of the opposite side AB to that of the hypotenuse OB. This ratio is
sin θ/1 = sin θ, and so the angle BOA is indeed equal to θ.

Now let us compute the scalar product of w and z. It is

⟨w, z⟩ = w⊤z = w1z1 + w2z2 = z1 = cos θ,

because w1 = 1 and w2 = 0. This result holds for vectors w and z of length 1.
More generally, let x = αw and y = γz, for positive scalars α and γ. Then
∥x∥ = α and ∥y∥ = γ. Thus we have

⟨x,y⟩ = x⊤y = αγw⊤z = αγ⟨w, z⟩.

Because x is parallel to w, and y is parallel to z, the angle between x and y
is the same as that between w and z, namely θ. Therefore,

⟨x,y⟩ = ∥x∥ ∥y∥ cos θ. (3.07)

This is the general expression, in geometrical terms, for the scalar product of
two vectors. It is true in En just as it is in E2, although we have not proved
this. In fact, we have not quite proved (3.07) even for the two-dimensional
case, because we made the simplifying assumption that the direction of x
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and w is horizontal. In Exercise 3.1, we ask the reader to provide a more
complete proof.

The cosine of the angle between two vectors provides a natural way to measure
how close two vectors are in terms of their directions. Recall that cos θ varies
between −1 and 1; if we measure angles in radians, cos 0 = 1, cos π/2 = 0,
and cosπ = −1. Thus cos θ is 1 for vectors that are parallel, 0 for vectors that
are at right angles to each other, and −1 for vectors that point in directly
opposite directions. If the angle θ between the vectors x and y is a right angle,
its cosine is 0, and so, from (3.07), the scalar product ⟨x,y⟩ is 0. Conversely,
if ⟨x,y⟩ = 0, then cos θ = 0 unless x or y is a zero vector. If cos θ = 0, it
follows that θ = π/2. Thus, if two nonzero vectors have a zero scalar product,
they are at right angles. Such vectors are often said to be orthogonal, or,
less commonly, perpendicular. This definition implies that the zero vector is
orthogonal to everything.

Since the cosine function can take on values only between −1 and 1, a conse-
quence of (3.07) is that

|x⊤y| ≤ ∥x∥ ∥y∥ . (3.08)

This result, which is called the Cauchy-Schwartz inequality, says that the
absolute value of the inner product of x and y can never be greater than the
length of the vector x times the length of the vector y. Only if x and y are
parallel does the inequality in (3.08) become the equality (3.05). Readers are
asked to prove this result in Exercise 3.2.

Subspaces of Euclidean Space

For arbitrary positive integers n, the elements of an n--vector can be thought
of as the coordinates of a point in En. In particular, in the regression model
(3.01), the regressand y and each column of the matrix of regressors X can be
thought of as vectors in En. This makes it possible to represent a relationship
like (3.01) geometrically.

It is obviously impossible to represent all n dimensions of En physically
when n > 3. For the pages of a book, even three dimensions can be too many,
although a proper use of perspective drawings can allow three dimensions to
be shown. Fortunately, we can represent (3.01) without needing to draw in
n dimensions. The key to this is that there are only three vectors in (3.01):
y, Xβ, and u. Since only two vectors, Xβ and u, appear on the right-hand
side of (3.01), only two dimensions are needed to represent it. Because y is
equal to Xβ + u, these two dimensions suffice for y as well.

To see how this works, we need the concept of a subspace of a Euclidean
space En. Normally, such a subspace has a dimension lower than n. The
easiest way to define a subspace of En is in terms of a set of basis vectors. A
subspace that is of particular interest to us is the one for which the columns
of X provide the basis vectors. We may denote the k columns of X as x1,
x2, . . .xk. Then the subspace associated with these k basis vectors is denoted
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Figure 3.7 The spaces S(X) and S⊥(X)

by S(X) or S(x1, . . . ,xk). The basis vectors are said to span this subspace,
which in general is a k --dimensional subspace.

The subspace S(x1, . . . ,xk) consists of every vector that can be formed as a
linear combination of the xi, i = 1, . . . , k. Formally, it is defined as

S(x1, . . . ,xk) ≡
{
z ∈ En : z =

k∑
i=1

bixi, bi ∈ R
}
. (3.09)

The subspace defined in (3.09) is called the subspace spanned by the xi,
i = 1, . . . , k, or the column space of X; less formally, it may simply be referred
to as the span of X, or the span of the xi.

The orthogonal complement of S(X) in En, which is denoted S⊥(X), is the
set of all vectors w in En that are orthogonal to everything in S(X). This
means that, for every z in S(X), ⟨w, z⟩ = w⊤z = 0. Formally,

S⊥(X) ≡
{
w ∈ En : w⊤z = 0 for all z ∈ S(X)

}
.

If the dimension of S(X) is k, then the dimension of S⊥(X) is n− k.

Figure 3.7 illustrates the concepts of a subspace and its orthogonal comple-
ment for the simplest case, in which n = 2 and k = 1. The matrix X has
only one column in this case, and it is therefore represented in the figure by a
single vector, denoted x. As a consequence, S(X) is 1--dimensional, and, since
n = 2, S⊥(X) is also 1--dimensional. Notice that S(X) and S⊥(X) would be
the same if x were any vector, except for the origin, parallel to the straight
line that represents S(X).

Now let us return to En. Suppose, to begin with, that k = 2. We have two
vectors, x1 and x2, which span a subspace of, at most, two dimensions. It
is always possible to represent vectors in a 2--dimensional space on a piece of
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Figure 3.8 A 2-dimensional subspace

paper, whether that space is E2 itself or, as in this case, the 2--dimensional
subspace of En spanned by the vectors x1 and x2. To represent the first
vector, x1, we choose an origin and a direction, both of which are entirely
arbitrary, and draw an arrow of length ∥x1∥ in that direction. Suppose that
the origin is the point O in Figure 3.8, and that the direction is the horizontal
direction in the plane of the page. Then an arrow to represent x1 can be
drawn as shown in the figure. For x2, we compute its length, ∥x2∥, and the
angle, θ, that it makes with x1. Suppose for now that θ ̸= 0. Then we choose
as our second dimension the vertical direction in the plane of the page, with
the result that we can draw an arrow for x2, as shown.

Any vector in S(x1,x2) can be drawn in the plane of Figure 3.8. Consider,
for instance, the linear combination of x1 and x2 given by the expression
z ≡ b1x1 + b2x2. We could draw the vector z by computing its length and
the angle that it makes with x1. Alternatively, we could apply the rules for
adding vectors geometrically that were illustrated in Figure 3.4 to the vectors
b1x1 and b2x2. This is illustrated in the figure for the case in which b1 = 2/3
and b2 = 1/2 .

In precisely the same way, we can represent any three vectors by arrows in
3--dimensional space, but we leave this task to the reader. It will be easier to
appreciate the renderings of vectors in three dimensions in perspective that
appear later on if one has already tried to draw 3--dimensional pictures, or
even to model relationships in three dimensions with the help of a computer.

We can finally represent the regression model (3.01) geometrically. This is
done in Figure 3.9. The horizontal direction is chosen for the vector Xβ, and
then the other two vectors y and u are shown in the plane of the page. It
is clear that, by construction, y = Xβ + u. Notice that u, the vector of
disturbances, is not orthogonal to Xβ. The figure contains no reference to
any system of axes, because there would be n of them, and we would not be
able to avoid needing n dimensions to treat them all.
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Figure 3.9 The geometry of the linear regression model

Linear Independence

In order to define the OLS estimator by the formula (2.45), it is necessary
to assume that the k × k square matrix X⊤X is invertible, or nonsingular.
Equivalently, as we saw in Section 2.4, we may say that X⊤X has full rank.
This condition is equivalent to the condition that the columns of X should be
linearly independent. This is a very important concept for econometrics. Note
that the meaning of linear independence is quite different from the meaning
of statistical independence, which we discussed in Section 2.2. It is important
not to confuse these two concepts.

The vectors x1 through xk are said to be linearly dependent if we can write
one of them as a linear combination of the others. In other words, there is a
vector xj , 1 ≤ j ≤ k, and coefficients ci such that

xj =
∑
i ̸=j

cixi. (3.10)

Another, equivalent, definition is that there exist coefficients bi, at least one
of which is nonzero, such that

k∑
i=1

bixi = 0. (3.11)

Recall that 0 denotes the zero vector, every component of which is 0. It is
clear from the definition (3.11) that, if any of the xi is itself equal to the
zero vector, then the xi are linearly dependent. If xj = 0, for example, then
equation (3.11) is satisfied if we make bj nonzero and set bi = 0 for all i ̸= j.

If the vectors xi, i = 1, . . . , k, are the columns of an n × k matrix X, then
another way of writing (3.11) is

Xb = 0, (3.12)
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where b is a k --vector with typical element bi. In order to see that (3.11)
and (3.12) are equivalent, it is enough to check that the typical elements of
the two left-hand sides are the same; see Exercise 3.5. The set of vectors
xi, i = 1, . . . , k, is linearly independent if it is not linearly dependent, that
is, if there are no coefficients ci such that (3.10) is true, or (equivalently) no
coefficients bi such that (3.11) is true, or (equivalently, once more) no vector b
such that (3.12) is true.

It is easy to show that, if the columns of X are linearly dependent, the matrix
X⊤X is not invertible. As we have seen, if they are linearly dependent, there
must exist a nonzero vector b such thatXb = 0. Premultiplying this equation,
which is (3.12), by X⊤ yields

X⊤Xb = 0. (3.13)

Now suppose that the matrix X⊤X is invertible. If so, there exists a matrix
(X⊤X)−1 such that (X⊤X)−1(X⊤X) = I. Thus equation (3.13) implies that

b = Ib = (X⊤X)−1X⊤Xb = 0.

But this is a contradiction, since we have assumed that b ̸= 0. Therefore, we
conclude that the matrix (X⊤X)−1 cannot exist when the columns of X are
linearly dependent. Thus a necessary condition for the existence of (X⊤X)−1

is that the columns of X should be linearly independent. With a little more
work, it can be shown that this condition is also sufficient, and so, if the
regressors x1, . . . ,xk are linearly independent, X⊤X is invertible.

If the k columns of X are not linearly independent, then they span a subspace
of dimension less than k, say k′, where k′ is the largest number of columns
of X that are linearly independent of each other. The number k′ is called the
rank of X. Look again at Figure 3.8, and imagine that the angle θ between
x1 and x2 tends to zero. If θ = 0, then x1 and x2 are parallel, and we can
write x1 = αx2, for some scalar α. But this means that x1 − αx2 = 0, and
so a relation of the form (3.11) holds between x1 and x2, which are therefore
linearly dependent. In the figure, if x1 and x2 are parallel, then only one
dimension is used, and there is no need for the second dimension in the plane
of the page. Thus, in this case, k = 2 and k′ = 1.

When the dimension of S(X) is k′ < k, S(X) must be identical to S(X ′),
where X ′ is an n×k′ matrix consisting of any k′ linearly independent columns
of X. For example, consider the following X matrix, which is 5× 3:


1 0 1
1 4 0
1 0 1
1 4 0
1 0 1

. (3.14)
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The columns of this matrix are not linearly independent, since

x1 = 1−
4
x2 + x3.

However, any two of the columns are linearly independent, and so

S(X) = S(x1,x2) = S(x1,x3) = S(x2,x3);

see Exercise 3.8. For the remainder of this chapter, unless the contrary is

explicitly assumed, we will assume that the columns of any regressor matrix
X are linearly independent.

3.3 The Geometry of OLS Estimation

We studied the geometry of vector spaces in the preceding section because
the numerical properties of OLS estimates are easily understood in terms of
that geometry. The geometrical interpretation of OLS estimation of linear
regression models is simple and intuitive. In many cases, it entirely does away
with the need for algebraic proofs.

As we saw in Section 3.2, any point in a subspace S(X), where X is an n× k
matrix, can be represented as a linear combination of the columns of X. We
can partition X in terms of its columns explicitly, as follows:

X = [x1 x2 · · · xk ] .

In order to compute the matrix product Xβ in terms of this partitioning, we
need to partition the vector β by its rows. Since β has only one column, the
elements of the partitioned vector are just the individual elements of β. Thus
we find that

Xβ = [x1 x2 · · · xk ]


β1

β2
...
βk

= x1β1 + x2β2 + . . .+ xkβk =
k∑

i=1

βixi,

which is just a linear combination of the columns of X. In fact, it is clear
from the definition (3.09) that any linear combination of the columns of X,
and thus any element of the subspace S(X) = S(x1, . . . ,xk), can be written
as Xβ for some β. The specific linear combination (3.09) is constructed by
using β = [b1

.... . . .
.... bk]. Thus every n--vector Xβ belongs to S(X), which

is, in general, a k --dimensional subspace of En. In particular, the vector Xβ̂
constructed using the OLS estimator β̂ belongs to this subspace.

The estimator β̂ satisfies equations (2.47), and so we have

X⊤(y −Xβ̂) = 0. (3.15)
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Figure 3.10 Residuals and fitted values

These equations have a simple geometrical interpretation. Note first that each
element of the left-hand side of (3.15) is a scalar product. By the rule for
selecting a single row of a matrix product (see Section 2.4), the ith element is

xi
⊤(y −Xβ̂) = ⟨xi,y −Xβ̂⟩, (3.16)

since xi, the i
th column of X, is the transpose of the ith row of X⊤. By (3.15),

the scalar product in (3.16) is zero, and so the vector y −Xβ̂ is orthogonal to
all of the regressors, that is, all of the vectors xi that represent the explanatory
variables in the regression. For this reason, equations like (3.15) are often
referred to as orthogonality conditions.

Recall from Section 2.5 that the vector y − Xβ, treated as a function of β,
is called the vector of residuals. This vector may be written as u(β). We
are interested in u(β̂), the vector of residuals evaluated at β̂, which is often
called the vector of least-squares residuals and is usually written simply as û.
We have just seen, in (3.16), that û is orthogonal to all the regressors. This
implies that û is in fact orthogonal to every vector in S(X), the span of the
regressors. To see this, remember that any element of S(X) can be written
as Xβ for some β, with the result that, by (3.15),

⟨Xβ, û⟩ = (Xβ)⊤û = β⊤X⊤û = 0.

The vector Xβ̂ is referred to as the vector of fitted values. Clearly, it lies
in S(X), and, consequently, it must be orthogonal to û. Figure 3.10 is similar
to Figure 3.9, but it shows the vector of least-squares residuals û and the
vector of fitted values Xβ̂ instead of u and Xβ. The key feature of this
figure, which is a consequence of the orthogonality conditions (3.15), is that
the vector û makes a right angle with the vector Xβ̂.

Some things about the orthogonality conditions (3.15) are clearer if we add
a third dimension to the picture. Accordingly, in panel (a) of Figure 3.11,
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Figure 3.11 Linear regression in three dimensions

we consider the case of two regressors, x1 and x2, which together span the
horizontal plane labelled S(x1,x2), seen in perspective from slightly above
the plane. Although the perspective rendering of the figure does not make it
clear, both the lengths of x1 and x2 and the angle between them are totally
arbitrary, since they do not affect S(x1,x2) at all. The vector y is intended
to be viewed as rising up out of the plane spanned by x1 and x2.

In the 3--dimensional setup, it is clear that, if û is to be orthogonal to the hori-
zontal plane, it must itself be vertical. Thus it is obtained by “dropping a per-
pendicular” from y to the horizontal plane. The least-squares interpretation
of the estimator β̂ can now be seen to be a consequence of simple geometry.
The shortest distance from y to the horizontal plane is obtained by descend-
ing vertically on to it, and the point in the horizontal plane vertically below
y, labeled A in the figure, is the closest point in the plane to y. Thus ∥û∥
minimizes ∥u(β)∥, the norm of u(β), with respect to β. The squared norm,
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∥u(β)∥2, is just the sum of squared residuals, SSR(β); see (2.48). Since min-
imizing the norm of u(β) is the same thing as minimizing the squared norm,
it follows that β̂ is the OLS estimator.

Panel (b) of the figure shows the horizontal plane S(x1,x2) as a straightfor-
ward 2--dimensional picture, seen from directly above. The point A is the
point directly underneath y, and so, since y = Xβ̂ + û by definition, the
vector represented by the line segment OA is the vector of fitted values, Xβ̂.
Geometrically, it is much simpler to represent Xβ̂ than to represent just the
vector β̂, because the latter lies in Rk, a different space from the space En

that contains the variables and all linear combinations of them. However,
it is easy to see that the information in panel (b) does indeed determine β̂.
Plainly, Xβ̂ can be decomposed in just one way as a linear combination of x1

and x2, as shown. The numerical value of β̂1 can be computed as the ratio of
the length of the vector β̂1x1 to that of x1, and similarly for β̂2.

In panel (c) of Figure 3.11, we show the right-angled triangle that corresponds
to dropping a perpendicular from y, labelled in the same way as in panel (a).
This triangle lies in the vertical plane that contains the vector y. We can see
that y is the hypotenuse of the triangle, the other two sides being Xβ̂ and û.
Thus this panel corresponds to what we saw already in Figure 3.10. Since we
have a right-angled triangle, we can apply Pythagoras’ Theorem. It gives

∥y∥2 = ∥Xβ̂∥2 + ∥û∥2. (3.17)

If we write out the squared norms as scalar products, this becomes

y⊤y = β̂⊤X⊤Xβ̂ + (y −Xβ̂)⊤(y −Xβ̂). (3.18)

In words, the total sum of squares, or TSS, is equal to the explained sum
of squares, or ESS, plus the sum of squared residuals, or SSR. This is a
fundamental property of OLS estimates, and it will prove to be very useful in
many contexts. Intuitively, it lets us break down the total variation (TSS) of
the dependent variable into the explained variation (ESS) and the unexplained
variation (SSR), unexplained because the residuals represent the aspects of y
about which we remain in ignorance.

Orthogonal Projections

When we estimate a linear regression model, we implicitly map the regressand
y into a vector of fitted values Xβ̂ and a vector of residuals û = y − Xβ̂.
Geometrically, these mappings are examples of orthogonal projections. A
projection is a mapping that takes each point of En into a point in a subspace
of En, while leaving all points in that subspace unchanged. Because of this,
the subspace is called the invariant subspace of the projection. An orthogonal
projection maps any point into the point of the subspace that is closest to it.
If a point is already in the invariant subspace, it is mapped into itself.
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The concept of an orthogonal projection formalizes the notion of “dropping
a perpendicular” that we used in the last subsection when discussing least
squares. Algebraically, an orthogonal projection on to a given subspace can
be performed by premultiplying the vector to be projected by a suitable pro-
jection matrix. In the case of OLS, the two projection matrices that yield the
vector of fitted values and the vector of residuals, respectively, are

PX = X(X⊤X)−1X⊤, and

MX = I− PX = I−X(X⊤X)−1X⊤,
(3.19)

where I is the n × n identity matrix. To see this, recall (3.02), the formula
for the OLS estimates of β:

β̂ = (X⊤X)−1X⊤y.

From this, we see that

Xβ̂ = X(X⊤X)−1X⊤y = PXy. (3.20)

Therefore, the first projection matrix in (3.19), PX, projects on to S(X). For
any n--vector y, PXy always lies in S(X), because

PXy = X
(
(X⊤X)−1X⊤y

)
.

Since this takes the form Xb for b = β̂, it is a linear combination of the
columns of X, and hence it belongs to S(X).

From (3.19), it is easy to show that PXX = X. Since any vector in S(X)
can be written as Xb for some b ∈ Rk, we see that

PXXb = Xb. (3.21)

We saw from (3.20) that the result of acting on any vector y ∈ En with PX is
a vector in S(X). Thus the invariant subspace of the projection PX must be
contained in S(X). But, by (3.21), every vector in S(X) is mapped into itself
by PX. Therefore, the image of PX , which is a shorter name for its invariant
subspace, is precisely S(X).

It is clear from (3.20) that, when PX is applied to y, it yields the vector of
fitted values. Similarly, when MX, the second of the two projection matrices
in (3.19), is applied to y, it yields the vector of residuals:

MXy =
(
I−X(X⊤X)−1X⊤)y = y − PXy = y −Xβ̂ = û.

The image of MX is S⊥(X), the orthogonal complement of the image of PX.
To see this, consider any vectorw ∈ S⊥(X). It must satisfy the defining condi-
tion X⊤w = 0. From the definition (3.19) of PX, this implies that PXw = 0,
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the zero vector. Since MX = I−PX, we find that MXw = w. Thus S⊥(X)
must be contained in the image of MX. Next, consider any vector in the
image of MX. It must take the form MXy, where y is some vector in En.
From this, it follows that MXy belongs to S⊥(X). Observe that

(MXy)⊤X = y⊤MXX, (3.22)

an equality that relies on the symmetry of MX. Then, from (3.19), we have

MXX = (I− PX)X = X −X = O, (3.23)

where O denotes a zero matrix, which in this case is n× k. The result (3.22)
says that any vector MXy in the image of MX is orthogonal to X, and thus
belongs to S⊥(X). We saw above that S⊥(X) was contained in the image
of MX, and so this image must coincide with S⊥(X). For obvious reasons,
the projection MX is sometimes called the projection off S(X).

For any matrix to represent a projection, it must be idempotent. An idem-
potent matrix is one that, when multiplied by itself, yields itself again. Thus,

PXPX = PX and MXMX = MX.

These results are easily proved by a little algebra directly from (3.19), but the
geometry of the situation makes them obvious. If we take any point, project
it on to S(X), and then project it on to S(X) again, the second projection
can have no effect at all, because the point is already in S(X), and so it is
left unchanged. Since this implies that PXPXy = PXy for any vector y, it
must be the case that PXPX = PX, and similarly for MX.

Since, from (3.19),
PX +MX = I, (3.24)

any vector y ∈ En is equal to PXy+MXy. The pair of projections PX and
MX are said to be complementary projections, since the sum of PXy and
MXy restores the original vector y.

The fact that S(X) and S⊥(X) are orthogonal subspaces leads us to say that
the two projection matrices PX and MX define what is called an orthogonal
decomposition of En, because the two vectors MXy and PXy lie in the two
orthogonal subspaces. Algebraically, the orthogonality depends on the fact
that PX and MX are symmetric matrices. To see this, we start from a
further important property of PX and MX, which is that

PXMX = O. (3.25)

This equation is true for any complementary pair of projections satisfy-
ing (3.24), whether or not they are symmetric; see Exercise 3.9. We may say
that PX and MX annihilate each other. Now consider any vector z ∈ S(X)
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and any other vector w ∈ S⊥(X). We have z = PXz and w = MXw. Thus
the scalar product of the two vectors is

⟨PXz,MXw⟩ = z⊤P⊤
XMXw.

Since PX is symmetric, P⊤
X = PX, and so the above scalar product is zero

by (3.25). In general, however, if two complementary projection matrices
are not symmetric, the spaces they project on to are not orthogonal; see
Exercise 3.10.

The projection matrix MX annihilates all points that lie in S(X), and PX

likewise annihilates all points that lie in S⊥(X). These properties can be
proved by straightforward algebra (see Exercise 3.12), but the geometry of
the situation is very simple. Consider Figure 3.7. It is evident that, if we
project any point in S⊥(X) orthogonally on to S(X), we end up at the origin,
as we do if we project any point in S(X) orthogonally on to S⊥(X).

Provided thatX has full rank, the subspace S(X) is k --dimensional, and so the
first term in the decomposition y = PXy+MXy belongs to a k --dimensional
space. Since y itself belongs to En, which has n dimensions, it follows that
the complementary space S⊥(X) must have n − k dimensions. The number
n− k is called the codimension of X in En.

Geometrically, an orthogonal decomposition y = PXy + MXy can be rep-
resented by a right-angled triangle, with y as the hypotenuse and PXy and
MXy as the other two sides. In terms of projections, equation (3.17), which
is really just Pythagoras’ Theorem, can be rewritten as

∥y∥2 = ∥PXy∥2 + ∥MXy∥2. (3.26)

In Exercise 3.11, readers are asked to provide an algebraic proof of this equa-
tion. Since every term in (3.26) is nonnegative, we obtain the useful result
that, for any orthogonal projection matrix PX and any vector y ∈ En,

∥PXy∥ ≤ ∥y∥. (3.27)

In effect, this just says that the hypotenuse is longer than either of the other
sides of a right-angled triangle.

In general, we will use P and M subscripted by matrix expressions to denote
the matrices that, respectively, project on to and off the subspaces spanned by
the columns of those matrix expressions. Thus PZ would be the matrix that
projects on to S(Z),MX,W would be the matrix that projects off S(X,W ), or,
equivalently, on to S⊥(X,W ), and so on. It is frequently very convenient to
express the quantities that arise in econometrics using these matrices, partly
because the resulting expressions are relatively compact, and partly because
the properties of projection matrices often make it easy to understand what
those expressions mean. However, projection matrices are of little use for
computation because they are of dimension n × n. It is never efficient to
calculate residuals or fitted values by explicitly using projection matrices,
and it can be extremely inefficient if n is large.
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Linear Transformations of Regressors

The span S(X) of the regressors of a linear regression can be defined in many
equivalent ways. All that is needed is a set of k vectors that encompass
all the k directions of the k --dimensional subspace. Consider what happens
when we postmultiply X by any nonsingular k × k matrix A. This is called
a nonsingular linear transformation. Let A be partitioned by its columns,
which may be denoted ai, i = 1, . . . , k :

XA = X [a1 a2 · · · ak ] = [Xa1 Xa2 · · · Xak ] .

Each block in the product takes the form Xai, which is an n--vector that is
a linear combination of the columns of X. Thus any element of S(XA) must
also be an element of S(X). But any element of S(X) is also an element
of S(XA). To see this, note that any element of S(X) can be written as Xβ
for some β ∈ Rk. Since A is nonsingular, and thus invertible,

Xβ = XAA−1β = (XA)(A−1β).

Because A−1β is just a k --vector, this expression is a linear combination of
the columns of XA, that is, an element of S(XA). Since every element of
S(XA) belongs to S(X), and every element of S(X) belongs to S(XA), these
two subspaces must be identical.

Given the identity of S(X) and S(XA), it seems intuitively compelling to
suppose that the orthogonal projections PX and PXA should be the same.
This is in fact the case, as can be verified directly:

PXA = XA(A⊤X⊤XA)−1A⊤X⊤

= XAA−1(X⊤X)−1(A⊤)−1A⊤X⊤

= X(X⊤X)−1X⊤= PX.

When expanding the inverse of the matrix A⊤X⊤XA, we used the reversal
rule for inverses; see Exercise 2.17.

We have already seen that the vectors of fitted values and residuals depend
on X only through PX and MX. Therefore, they too must be invariant to
any nonsingular linear transformation of the columns of X. Thus if, in the
regression y = Xβ+u, we replace X by XA for some nonsingular matrix A,
the residuals and fitted values do not change, even though β̂ changes. We will
discuss an example of this important result shortly.

When the set of regressors contains a constant, it is necessary to express it as
a vector, just like any other regressor. The coefficient of this constant vector
is then the parameter that we usually call the constant term. The constant
vector is just ι, the vector of which each element equals 1. Consider the
n--vector β1ι+ β2x, where x is any nonconstant regressor, and β1 and β2 are
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scalar parameters. The tth element of this vector is β1 + β2xt. Thus adding
the vector β1ι to β2x simply adds the scalar β1 to each component of β2x.
For any regression which includes a constant term, then, the fact that we
can perform arbitrary nonsingular transformations of the regressors without
affecting residuals or fitted values implies that these vectors are unchanged if
we add any constant amount to any one or more of the regressors.

Another implication of the invariance of residuals and fitted values under
nonsingular transformations of the regressors is that these vectors are un-
changed if we change the units of measurement of the regressors. Suppose,
for instance, that the temperature is one of the explanatory variables in a re-
gression with a constant term. A practical example in which the temperature
could have good explanatory power is the modeling of electricity demand:
More electrical power is consumed if the weather is very cold, or, in societies
where air conditioners are common, very hot. In a few countries, notably the
United States, temperatures are still measured in Fahrenheit degrees, while
in most countries they are measured in Celsius (centigrade) degrees. It would
be disturbing if our conclusions about the effect of temperature on electricity
demand depended on whether we measured it using the Fahrenheit scale or
the Celsius scale.

Let the n--vector of observations on the temperature variable be denoted as T
in Celsius and as F in Fahrenheit, the constant vector being denoted, as usual,
by ι. Then we have the relation

F = 32ι+ 9−
5
T .

If the constant is included in the transformation,

[ ι F ] = [ ι T ]

[
1 32

0 9/5

]
. (3.28)

Thus the constant and the two different temperature measures are related by
a linear transformation that is easily seen to be nonsingular, since Fahrenheit
degrees can be converted back into Celsius. This implies that the residuals
and fitted values are unaffected by our choice of temperature scale.

Let us denote the constant term and the slope coefficient as β1 and β2 if we
use the Celsius scale, and as α1 and α2 if we use the Fahrenheit scale. Then
it is easy to see that these parameters are related by the equations

β1 = α1 + 32α2 and β2 = 9/5α2. (3.29)

To see that this makes sense, suppose that the temperature is at freezing
point, which is 0◦ Celsius and 32◦ Fahrenheit. Then the combined effect of
the constant and the temperature on electricity demand is β1 + 0β2 = β1

using the Celsius scale, and α1 + 32α2 using the Fahrenheit scale. These
should be the same, and, according to (3.29), they are. Similarly, the effect of
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a 1-degree increase in the Celsius temperature is given by β2. Now 1 Celsius
degree equals 9/5 Fahrenheit degrees, and the effect of a temperature increase
of 9/5 Fahrenheit degrees is given by 9/5α2. We are assured by (3.29) that the
two effects are the same.

3.4 The Frisch-Waugh-Lovell Theorem

In this section, we discuss an extremely useful property of least-squares esti-
mates, which we will refer to as the Frisch-Waugh-Lovell Theorem, or FWL
Theorem for short. It was introduced to econometricians by Frisch and Waugh
(1933), and then reintroduced by Lovell (1963).

Deviations from the Mean

We begin by considering a particular nonsingular transformation of variables
in a regression with a constant term. We saw at the end of the last section
that residuals and fitted values are invariant under such transformations of
the regressors. For simplicity, consider a model with a constant and just one
explanatory variable:

y = β1ι+ β2x+ u. (3.30)

In general, x is not orthogonal to ι, but there is a very simple transformation
which makes it so. This transformation replaces the observations in x by
deviations from the mean. In order to perform the transformation, one first
calculates the mean of the n observations of the vector x,

x̄ ≡ 1−
n

n∑
t=1

xt,

and then subtracts the constant x̄ from each element of x. This yields the
vector of deviations from the mean, z ≡ x − x̄ι. The vector z is easily seen
to be orthogonal to ι, because

ι⊤z = ι⊤(x− x̄ι) = nx̄− x̄ι⊤ι = nx̄− nx̄ = 0.

The operation of expressing a variable in terms of the deviations from its
mean is called centering the variable. In this case, the vector z is the centered
version of the vector x.

Since centering leads to a variable that is orthogonal to ι, it can be performed
algebraically by the orthogonal projection matrix Mι. This can be verified
by observing that

Mιx = (I− Pι)x = x− ι(ι⊤ι)−1ι⊤x = x− x̄ι = z, (3.31)

as claimed. Here, we once again used the facts that ι⊤ι = n and ι⊤x = nx̄.
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Figure 3.12 Adding a constant does not affect the slope coefficient

The idea behind the use of deviations from the mean is that it makes sense
to separate the overall level of a dependent variable from its dependence on
explanatory variables. Specifically, if we rewrite equation (3.30) in terms of z,
it becomes

y = (β1 + β2 x̄)ι+ β2z + u = α1ι+ α2z + u,

from which it is evident that

α1 = β1 + β2 x̄, and α2 = β2.

If, for some observation t, the value of xt were exactly equal to the mean
value, x̄, then zt = 0. Thus we find that yt = α1 + ut. We interpret this as
saying that the expected value of yt, when the explanatory variable takes on
its average value, is the constant α1.

The effect on yt of a change of one unit in xt is measured by the slope coeffi-
cient β2. If we hold x̄ at its value before xt is changed, then the unit change
in xt induces a unit change in zt. Thus a unit change in zt, which is measured
by the slope coefficient α2, should have the same effect as a unit change in xt.
Accordingly, α2 = β2, just as we found above.

The slope coefficients α2 and β2 would be the same with any constant in the
place of x̄. The reason for this can be seen geometrically, as illustrated in
Figure 3.12. This figure, which is constructed in the same way as panel (b)
of Figure 3.11, depicts the span of ι and x, with ι in the horizontal direction.
As before, the vector y is not shown, because a third dimension would be
required; the vector would extend from the origin to a point off the plane of
the page and directly above (or below) the point labelled ŷ.

The figure shows the vector of fitted values ŷ as the vector sum β̂1ι + β̂2x.
The slope coefficient β̂2 is the ratio of the length of the vector β̂2x to that
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Figure 3.13 Orthogonal regressors may be omitted

of x; geometrically, it is given by the ratio OA/OB. Then a new regressor z
is defined by adding the constant value c, which is negative in the figure, to
each component of x, giving z = x + cι. In terms of this new regressor, the
vector ŷ is given by α̂1ι + α̂2z, and α̂2 is given by the ratio OC/OD. Since
the ratios OA/OB and OC/OD are clearly the same, we see that α̂2 = β̂2. A
formal argument would use the fact that OAC and OBD are similar triangles.

When the constant c is chosen as x̄, the vector z is said to be centered, and,
as we saw above, it is orthogonal to ι. In this case, the estimate α̂2 is the
same whether it is obtained by regressing y on both ι and z, or just on z
alone. This is illustrated in Figure 3.13, which shows what Figure 3.12 would
look like when z is orthogonal to ι. Once again, the vector of fitted values ŷ
is decomposed as α̂1ι+ α̂2z, with z now at right angles to ι.

Now suppose that y is regressed on z alone. This means that y is projected
orthogonally on to S(z), which in the figure is the vertical line through z. By
definition,

y = α̂1ι+ α̂2z + û, (3.32)

where û is orthogonal to both ι and z. But ι is also orthogonal to z, and
so the only term on the right-hand side of (3.32) not to be annihilated by
the projection on to S(z) is the middle term, which is left unchanged by it.
Thus the fitted value vector from regressing y on z alone is just α̂2z, and so
the OLS estimate is the same α̂2 as given by the regression on both ι and z.
Geometrically, we obtain this result because the projection of y on to S(z) is
the same as the projection of ŷ on to S(z).

Incidentally, the fact that OLS residuals are orthogonal to all the regressors,
including ι, leads to the important result that the residuals in any regression

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



76 The Geometry of Linear Regression

with a constant term sum to zero. In fact,

ι⊤û =
n∑

t=1

ût = 0;

recall equation (2.29). The residuals also sum to zero in any regression for
which ι ∈ S(X), even if ι does not explicitly appear in the list of regressors.
This can happen if the regressors include certain sets of dummy variables, as
we will see in Section 3.5.

Two Groups of Regressors

The results proved in the previous subsection are actually special cases of
more general results that apply to any regression in which the regressors can
logically be broken up into two groups. Such a regression can be written as

y = X1β1 +X2β2 + u, (3.33)

where X1 is n × k1, X2 is n × k2, and X may be written as the partitioned
matrix [X1 X2], with k = k1 + k2. In the case dealt with in the previous
subsection, X1 is the constant vector ι and X2 is either x or z. Several other
examples of partitioning X in this way will be considered in Section 3.5.

We begin by assuming that all the regressors in X1 are orthogonal to all the
regressors in X2, so that X2

⊤X1 = O. Under this assumption, the vector of
least-squares estimates β̂1 from (3.33) is the same as the one obtained from
the regression

y = X1β1 + u1, (3.34)

and β̂2 from (3.33) is likewise the same as the vector of estimates obtained
from the regression y = X2β2 + u2. In other words, when X1 and X2 are
orthogonal, we can drop either set of regressors from (3.33) without affecting
the coefficients of the other set.

The vector of fitted values from (3.33) is PXy, while that from (3.34) is P1y,
where we have used the abbreviated notation

P1 ≡ PX1 = X1(X1
⊤X1)

−1X1
⊤.

As we will show directly,

P1PX = PXP1 = P1; (3.35)

this is true whether or not X1 and X2 are orthogonal. Thus

P1y = P1PXy = P1(X1β̂1 +X2β̂2) = P1X1β̂1 = X1β̂1. (3.36)

The first equality above, which follows from (3.35), says that the projection
of y on to S(X1) is the same as the projection of ŷ ≡ PXy on to S(X1).
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The second equality follows from the definition of the fitted value vector from
(3.33) as PXy; the third from the orthogonality of X1 and X2, which implies
that P1X2 = O; and the last from the fact that X1 is invariant under the
action of P1. Since P1y is equal to X1 postmultiplied by the OLS estimates
from (3.34), the equality of the leftmost and rightmost expressions in (3.36)
gives us the result that the same β̂1 can be obtained either from (3.33) or
from (3.34). The analogous result for β̂2 is proved in just the same way.

We now drop the assumption that X1 andX2 are orthogonal and prove (3.35),
a very useful result that is true in general. In order to show that PXP1 = P1,
we proceed as follows:

PXP1 = PXX1(X1
⊤X1)

−1X1
⊤= X1(X1

⊤X1)
−1X1

⊤= P1.

The middle equality follows by noting that PXX1 = X1, because all the
columns of X1 are in S(X), and so are left unchanged by PX. The other
equality in (3.35), namely P1PX = P1, is obtained directly by transposing
PXP1 = P1 and using the symmetry of PX and P1. The two results in (3.35)
tell us that the product of two orthogonal projections, where one projects on
to a subspace of the image of the other, is the projection on to that subspace.
See also Exercise 3.15, for the application of this result to the complementary
projections MX and M1.

The general result corresponding to the one shown in Figure 3.12 can be
stated as follows. If we transform the regressor matrix in (3.33) by adding
X1A to X2, where A is a k1 × k2 matrix, and leaving X1 as it is, we have
the regression

y = X1α1 + (X2 +X1A)α2 + u. (3.37)

Then α̂2 from (3.37) is the same as β̂2 from (3.33). This can be seen imme-
diately by expressing the right-hand side of (3.37) as a linear combination of
the columns of X1 and of X2.

In the present general context, there is an operation analogous to that of
centering. The result of centering a variable x is a variable z that is orthogonal
to ι, the constant. We can create from X2 a set of variables orthogonal to X1

by acting on X2 with the orthogonal projection M1 ≡ I−P1, so as to obtain
M1X2. This allows us to run the regression

y = X1α1 +M1X2α2 + u

= X1α1 +
(
X2 −X1(X1

⊤X1)
−1X1

⊤X2

)
α2 + u.

The first line above is a regression model with two groups of regressors, X1

and M1X2, which are mutually orthogonal. Therefore, α̂2 is unchanged if we
omit X1. The second line makes it clear that this regression is a special case
of (3.37), which implies that α̂2 is equal to β̂2 from (3.33). Consequently, we
see that the two regressions

y = X1α1 +M1X2β2 + u and (3.38)

y = M1X2β2 + v (3.39)
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yield the same estimates of β2.

Although regressions (3.33) and (3.39) give the same estimates of β2, they
do not give the same residuals, as we have indicated by writing u for one
regression and v for the other. We can see why the residuals are not the same
by looking again at Figure 3.13, in which the constant ι plays the role of X1,
and the centered variable z plays the role of M1X2. The point corresponding
to y can be thought of as lying somewhere on a line through the point ŷ
and sticking perpendicularly out from the page. The residual vector from
regressing y on both ι and z is thus represented by the line segment from ŷ,
in the page, to y, vertically above the page. However, if y is regressed on
z alone, the residual vector is the sum of this line segment and the segment
from α̂2z and ŷ, that is, the top side of the rectangle in the figure. If we want
the same residuals in regression (3.33) and a regression like (3.39), we need to
purge the dependent variable of the second segment, which can be seen from
the figure to be equal to α̂1ι.

This suggests replacing y by what we get by projecting y off ι. This projec-
tion would be the line segment perpendicular to the page, translated in the
horizontal direction so that it intersected the page at the point α̂2z rather
than ŷ. In the general context, the analogous operation replaces y by M1y,
the projection off X1 rather than off ι. When we perform this projection,
(3.39) is replaced by the regression

M1y = M1X2β2 + residuals, (3.40)

which yields the same vector of OLS estimates β̂2 as regression (3.33), and
also the same vector of residuals. This regression is sometimes called the FWL
regression. We used the notation “+ residuals” instead of “+ u” in (3.40)
because, in general, the difference between M1y and M1X2β2 is not the same
thing as the vector u in (3.33). If u is interpreted as a vector of disturbances,
then (3.40) would not be true if “residuals” were replaced by u.

We can now formally state the FWL Theorem. Although the conclusions of
the theorem have been established gradually in this section, we also provide
a short formal proof.

Theorem 3.1. (Frisch-Waugh-Lovell Theorem)

1. The OLS estimates of β2 from regressions (3.33) and (3.40) are
numerically identical.

2. The OLS residuals from regressions (3.33) and (3.40) are nu-
merically identical.

Proof: By the standard formula (2.45), the estimate of β2 from (3.40) is

(X2
⊤M1X2)

−1X2
⊤M1y. (3.41)

Let β̂1 and β̂2 denote the two vectors of OLS estimates from (3.33). Then

y = PXy +MXy = X1β̂1 +X2β̂2 +MXy. (3.42)
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Premultiplying the leftmost and rightmost expressions in (3.42) by X2
⊤M1,

we obtain
X2

⊤M1y = X2
⊤M1X2β̂2. (3.43)

The first term on the right-hand side of (3.42) has dropped out because M1

annihilates X1. To see that the last term also drops out, observe that

MXM1X2 = MXX2 = O. (3.44)

The first equality follows from (3.35) (see also Exercise 3.15), and the second
from (3.23), which shows that MX annihilates all the columns of X, in par-
ticular those of X2. Premultiplying y by the transpose of (3.44) shows that
X2

⊤M1MXy = 0. We can now solve (3.43) for β̂2 to obtain

β̂2 = (X2
⊤M1X2)

−1X2
⊤M1y,

which is expression (3.41). This proves the first part of the theorem.

If we had premultiplied (3.42) by M1 instead of by X2
⊤M1, we would have

obtained
M1y = M1X2β̂2 +MXy, (3.45)

where the last term is unchanged from (3.42) because M1MX = MX. The
regressand in (3.45) is the regressand from regression (3.40). Because β̂2 is the
estimate of β2 from (3.40), by the first part of the theorem, the first term on
the right-hand side of (3.45) is the vector of fitted values from that regression.
Thus the second term must be the vector of residuals from regression (3.40).
But MXy is also the vector of residuals from regression (3.33), and this
therefore proves the second part of the theorem.

3.5 Applications of the FWL Theorem

A regression like (3.33), in which the regressors are broken up into two groups,
can arise in many situations. In this section, we will study three of these,
namely, seasonal dummy variables, time trends, and fixed effects. In all cases,
the FWL Theorem allows us to obtain explicit expressions based on (3.41) for
subsets of the parameter estimates of a linear regression.

Seasonal Dummy Variables

For a variety of reasons, it is sometimes desirable for the explanatory variables
of a regression model to include variables that can take on only two possible
values, which are usually 0 and 1. Such variables are called indicator variables,
because they indicate a subset of the observations, namely, those for which
the value of the variable is 1. Indicator variables are a special case of dummy
variables, which can take on more than two possible values.
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Seasonal variation provides a good reason to employ dummy variables. It
is common for economic data that are indexed by time to take the form of
quarterly data, where each year in the sample period is represented by four
observations, one for each quarter, or season, of the year. Many economic
activities are strongly affected by the season, for obvious reasons like Christ-
mas shopping, or summer holidays, or the difficulty of doing outdoor work
during very cold weather. This seasonal variation, or seasonality, in economic
activity is likely to be reflected in the economic time series that are used in
regression models. The term “time series” is used to refer to any variable the
observations of which are indexed by time. Of course, time-series data are
sometimes annual, in which case there is no seasonal variation to worry about,
and sometimes monthly, in which case there are twelve “seasons” instead of
four. For simplicity, we consider only the case of quarterly data.

Since there are four seasons, there may be four seasonal dummy variables,
each taking the value 1 for just one of the four seasons. Let us denote these
variables as s1, s2, s3, and s4. If we consider a sample the first observation of
which corresponds to the first quarter of some year, these variables look like

s1 =



1
0
0
0
1
0
0
0
...


, s2 =



0
1
0
0
0
1
0
0
...


, s3 =



0
0
1
0
0
0
1
0
...


, s4 =



0
0
0
1
0
0
0
1
...


. (3.46)

An important property of these variables is that, since every observation must
correspond to some season, the sum of the seasonal dummies must indicate
every season. This means that this sum is a vector every component of which
equals 1. Algebraically,

s1 + s2 + s3 + s4 = ι, (3.47)

as is clear from (3.46). Since ι represents the constant in a regression, (3.47)
means that the five-variable set consisting of all four seasonal dummies plus
the constant is linearly dependent. Consequently, one of the five variables
must be dropped if all the regressors are to be linearly independent.

Just which one of the five variables is dropped makes no difference to the
fitted values and residuals of a regression, because it is easy to check that

S(s1, s2, s3, s4) = S(ι, s2, s3, s4) = S(ι, s1, s3, s4),

and so on. However the parameter estimates associated with the set of four
variables that we choose to keep have different interpretations depending on
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that choice. Suppose first that we drop the constant and run the regression

y = α1s1 + α2s2 + α3s3 + α4s4 +Xβ + u, (3.48)

where the matrix X contains other explanatory variables. If observation t
corresponds to the first season, the values of s2, s3, and s4 are all 0, and that
of s1 is 1. Thus, if we write out the tth observation of (3.48), we get

yt = α1 +Xtβ + ut.

For all t belonging to the first season, the constant term in the regression is
evidently α1. If we repeat this exercise for t in each of the other seasons, we
see at once that αi is the constant for season i. Thus the introduction of the
seasonal dummies gives us a different constant for every season.

An alternative is to retain the constant and drop s1. This yields

y = α0ι+ γ2s2 + γ3s3 + γ4s4 +Xβ + u.

It is clear that, in this specification, the overall constant α0 is really the
constant for season 1. For an observation belonging to season 2, the constant
is α0 + γ2, for an observation belonging to season 3, it is α0 + γ3, and so
on. The easiest way to interpret this is to think of season 1 as the reference
season. The coefficients γi, i = 2, 3, 4, measure the difference between α0,
the constant for the reference season, and the constant for season i. Since
we could have dropped any of the seasonal dummies, the choice of reference
season is, of course, entirely arbitrary.

Another alternative is to retain the constant and use the three dummy vari-
ables defined by

s′1 = s1 − s4, s′2 = s2 − s4, s′3 = s3 − s4. (3.49)

These new dummy variables are not actually indicator variables, because their
components for season 4 are equal to −1, but they have the advantage that,
for each complete year, the sum of their components for that year is 0. Thus,
for any sample whose size is a multiple of 4, each of the s′i, i = 1, 2, 3, is
orthogonal to the constant. We can write the regression as

y = δ0ι+ δ1s
′
1 + δ2s

′
2 + δ3s

′
3 +Xβ + u. (3.50)

For t in season i, i = 1, 2, 3, the constant term is δ0 + δi. For t belonging
to season 4, it is δ0 − δ1 − δ2 − δ3. Thus the average of the constants for all
four seasons is just δ0, the coefficient of the constant, ι. Accordingly, the δi,
i = 1, 2, 3, measure the difference between the average constant δ0 and the
constant specific to season i. Season 4 is more complicated, because of the
arithmetic needed to ensure that the average does indeed work out to δ0.
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Let S denote whatever n × 4 matrix we choose to use in order to span the
constant and the four seasonal variables si. Then any of the regressions we
have considered so far can be written as

y = Sδ +Xβ + u. (3.51)

This regression has two groups of regressors, as required for the application
of the FWL Theorem. That theorem implies that the estimates β̂ and the
residuals û can also be obtained by running the FWL regression

MSy = MSXβ + residuals, (3.52)

where, as the notation suggests, MS ≡ I− S(S⊤S)−1S⊤.

The effect of the projection MS on y and on the explanatory variables in the
matrix X can be considered as a form of seasonal adjustment. By making
MSy orthogonal to all the seasonal variables, we are, in effect, purging it of its
seasonal variation. Consequently, MSy can be called a seasonally adjusted,
or deseasonalized, version of y, and similarly for the explanatory variables. In
practice, such seasonally adjusted variables can be conveniently obtained as
the residuals from regressing y and each of the columns of X on the variables
in S. The FWL Theorem tells us that we get the same results in terms of
estimates of β and residuals whether we run (3.51), in which the variables are
unadjusted and seasonality is explicitly accounted for, or run (3.52), in which
all the variables are seasonally adjusted by regression. This was, in fact, the
subject of the famous paper by Lovell (1963).

The equivalence of (3.51) and (3.52) is sometimes used to claim that, in esti-
mating a regression model with time-series data, it does not matter whether
one uses “raw” data, along with seasonal dummies, or seasonally adjusted
data. Such a conclusion is completely unwarranted. Official seasonal adjust-
ment procedures are almost never based on regression; using official seasonally
adjusted data is therefore not equivalent to using residuals from regression on
a set of seasonal variables. Moreover, if (3.51) is not a sensible model (and it
would not be if, for example, the seasonal pattern were more complicated than
that given by Sδ), then (3.52) is not a sensible specification either. Seasonal-
ity is actually an important practical problem in applied work with time-series
data. For more detailed treatments, see Hylleberg (1986, 1992) and Ghysels
and Osborn (2001).

The deseasonalization performed by the projection MS makes all variables
orthogonal to the constant as well as to the seasonal dummies. Thus the
effect of MS is not only to deseasonalize, but also to center, the variables
on which it acts. Sometimes this is undesirable; if so, we may use the three
variables s′i given in (3.49). Since they are themselves orthogonal to the
constant, no centering takes place if only these three variables are used for
seasonal adjustment. An explicit constant should normally be included in any
regression that uses variables seasonally adjusted in this way.
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Time Trends

Another sort of constructed, or artificial, variable that is often encountered
in models of time-series data is a time trend. The simplest sort of time trend
is the linear time trend, represented by the vector T , with typical element
Tt ≡ t. Thus T = [1

.... 2
.... 3

.... 4
.... . . .]. Imagine that we have a regression with

a constant and a linear time trend:

y = γ1ι+ γ2T +Xβ + u.

For observation t, yt is equal to γ1 + γ2t +Xtβ + ut. Thus the overall level
of yt increases or decreases steadily as t increases. Instead of just a constant,
we now have the affine function of time, γ1 + γ2t. An increasing time trend
might be appropriate, for instance, in a model of a production function where
technical progress is taking place. An explicit model of technical progress
might well be difficult to construct, in which case a linear time trend could
serve as a simple way to take account of the phenomenon.

It is often desirable to make the time trend orthogonal to the constant by
centering it, that is, operating on it with Mι. If we do this with a sample
with an odd number of elements, the result is a variable that looks like

[ · · · .... −3
.... −2

.... −1
.... 0

.... 1
.... 2

.... 3
.... · · · ].

If the sample size is even, the variable is made up of the half integers ±1/2,
±3/2, ±5/2, . . . . In both cases, the coefficient of ι is the average value of the
linear function of time over the whole sample.

Sometimes it is appropriate to use constructed variables that are more compli-
cated than a linear time trend. A simple case would be a quadratic time trend,
with typical element t2. Typically, if a quadratic time trend were included, a
linear time trend would be as well. In fact, any deterministic function of the
time index t can be used, including the trigonometric functions sin t and cos t,
which could be used to account for oscillatory behavior. With such variables,
it is again usually preferable to make them orthogonal to the constant by
centering them.

The FWL Theorem applies just as well with time trends of various sorts as
it does with seasonal dummy variables. It is possible to project all the other
variables in a regression model off the time trend variables, thereby obtaining
detrended variables. The parameter estimates and residuals are the same as
if the trend variables were explicitly included in the regression. This was in
fact the type of situation dealt with by Frisch and Waugh (1933).

Fixed Effects

When the observations in a sample fall naturally into a number of distinct
groups, often based on location or time period, it can be convenient to use
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two (or perhaps more) subscripts to identify each observation instead of the
single “t” subscript that we have been using so far. For example, we might let
xgi denote the ith observation on a variable x that belongs to group g. Then,
if there are G groups and the g th group has ng observations, the regression
model (3.01) could be written as

ygi = Xgiβ + ugi, g = 1, . . . , G, i = 1, . . . , ng, (3.53)

where ygi and ugi are scalars, and Xgi is a row vector of length k. The
total number of observations n is

∑G
g=1 ng. There is always a mapping from

the values of g and i to the value of t, which will depend on just how the
observations are ordered. The simplest way to order them is first by g and
then by i. This implies that

t =

g−1∑
j=1

nj + i, i = 1, . . . , ng. (3.54)

In the remainder of this section, we will assume that this is indeed how the
observations are ordered, because doing so simplifies a number of things.

There are two situations in which it may be useful to rewrite the regression
(3.01) in the form of (3.53). The first is when the properties of the distur-
bances depend on them having two subscripts. The second is when some
of the regressors are dummy variables that explicitly depend on the g and i
subscripts. Of course, these two situations are not mutually exclusive. The
former case will be discussed in Section 6.4, and the latter will be discussed
here.

In many cases, it is plausible that the constant term should differ across each
of the G groups. This is exactly what is implicitly assumed when seasonal
dummy variables are used; the groups being the seasons. With different con-
stant terms for each group, the model (3.53) is called the fixed-effects model.
It can be written as

ygi = Xgiβ + ηg + ugi, g = 1, . . . , G, i = 1, . . . , ng, (3.55)

where the ηg are scalars that are called fixed effects. The ηg have to be
estimated.

In a way entirely analogous to (3.51), the fixed-effects regression (3.55) can
be written in matrix notation as

y = Xβ +Dη + u, (3.56)

where the n--vectors y and u have typical elements ygi and ugi, respectively,
the n× k matrix X has typical row Xgi, and the n×G matrix D contains G
dummy variables. Each column of D corresponds to one of the fixed effects.
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For example, the third column has 1 in the n3 positions for which g = 3 and 0
everywhere else. As the notation suggests, the G--vector of coefficients η has
typical element ηg.

As in the case of seasonal dummies, the constant vector ι is a linear combi-
nation of the columns of D. Consequently, in order to ensure that the matrix
of regressors [X D] has full rank, the matrix X must not contain either
a constant or any group of variables that collectively add up to a constant
vector.

The fixed-effects regression model (3.56) can, of course, be estimated using
any routine for OLS estimation. However, when both n and G are large,
OLS estimation can be computationally demanding. In such a case, the FWL
Theorem can be used to make computing the OLS estimator β̂ very much
faster. Let MD denote the projection matrix I − D(D⊤D)−1D⊤. Then, by
the FWL Theorem, we see that

β̂ = (X⊤MDX)−1X⊤MDy. (3.57)

Expression (3.57) is valuable for computation because calculating the vector
of residuals MDx for any vector x is extremely easy. The matrix D⊤D is a
G×G diagonal matrix with typical diagonal element ng, and the vector D⊤x
is a G--vector with

∑n1

i=1 x1i in position 1,
∑n1

i=1 x2i in position 2, and so on.
Therefore,

(D⊤D)−1D⊤x =


x̄1

x̄2
...
x̄G

, and MDx = x−


ιn1 x̄1

ιn2 x̄2

...
ιnG

x̄G

, (3.58)

where x̄g denotes the sample mean of the elements of x that correspond to
group g, and ιng denotes an ng--vector of 1s, for g = 1, . . . , G. Thus each
element of the vector MDx is simply the deviation of xgi from its group
mean x̄g.

Even when both n and G are extremely large, it is inexpensive to compute
MDy and MDX, because the former, and every column of the latter, is
just a vector of deviations from group means. Computing β̂ then simply
requires regressing MDy on MDX. This FWL regression has k regressors.
In contrast, computing β̂ and η̂ jointly would require least-squares estimation
of regression (3.56), which has k +G regressors.

Since the FWL regression does not directly calculate η̂, we need to perform
a few additional computations if the estimated fixed effects are of interest.
Replacing β and u in regression (3.56) by their estimates from the FWL
regression and rearranging yields the equation

Dη̂ = y −Xβ̂ − û.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



86 The Geometry of Linear Regression

Premultiplying both sides of this equation by D⊤, we obtain

D⊤Dη̂ = D⊤y −D⊤Xβ̂ −D⊤û = D⊤y −D⊤Xβ̂. (3.59)

The second equality here holds because the residual vector û is orthogonal to
each of the regressors in D. This fact implies that the residuals sum to zero
over each of the G groups. Solving equations (3.59) yields the result that

η̂ = (D⊤D)−1D⊤(y −Xβ̂). (3.60)

This is just the vector of OLS estimates from a regression of y −Xβ̂ on D.
However, we do not actually have to run this regression in order to compute η̂
using expression (3.60). By the same arguments that led to the first equality
in (3.58), we see that

η̂ =


ȳ1 − X̄1β̂
ȳ2 − X̄2β̂

...
ȳG − X̄Gβ̂

.
Thus, for all G, the estimated fixed effect η̂g is simply the sample mean of
ygi −Xgiβ̂ over the observations that belong to group g.

3.6 Influential Observations and Leverage

One important feature of OLS estimation, which we have not stressed up to
this point, is that each element of the vector of parameter estimates β̂ is
simply a weighted average of the elements of the vector y. To see this, define
ci as the i

th row of the matrix (X⊤X)−1X⊤, and observe from equation (3.02)
that β̂i = ciy. This fact will prove to be of great importance when we discuss
the statistical properties of least-squares estimation in the next chapter.

Because each element of β̂ is a weighted average, some observations may
affect the value of β̂ much more than others do. Consider Figure 3.14. This
figure is an example of a scatter diagram, a long-established way of graphing
the relation between two variables. Each point in the figure has Cartesian
coordinates (xt, yt), where xt and yt are typical elements of a vector x and a
vector y, respectively. In the figure, there are 99 small dots and two larger
ones. Suppose that we run the regression

y = β1ι+ β2x+ u

using only the 99 observations represented by small dots. The fitted values
from this regression all lie on the so-called regression line, which is the straight
line with equation

ŷ = β̂1 + β̂2x.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

3.6 Influential Observations and Leverage 87

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
..................................
................

......................
......................

......................
......................

......................
...........................................................

Regression line with point 2 included

Regression line with point 1 included ........................................................................................................................................................................................................... ...............
....

x

y

...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
................

.
.

.

.

.
.

.

.

.
.
..

.

.

.

.

.

.

.

. .

.

. .
.

.

.

.
. .
..

.

..

..

.

.

.

.

..

.

.

..

.

.
.

.
.

.

.

..

.

.

.

.

.
.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.
..

.

.

.

.

.
.

.
.

.

.
.

.

.

.
.

..

.

.
•

•

High leverage point 1

High leverage point 2

Figure 3.14 An observation with high leverage

The slope of this line is just β̂2, which is why β2 is sometimes called the slope
coefficient; see Section 2.1. Similarly, because β̂1 is the intercept that the
regression line makes with the y axis, the constant term β1 is sometimes called
the intercept. The regression line is entirely determined by the estimated
coefficients, β̂1 and β̂2.

Figure 3.14 actually shows three regression lines. Two of these are obtained
by adding just one more observation to the sample. When the observation
labeled “High leverage point 1” is added, the line becomes flatter. When
the observation labeled “High leverage point 2” is added, the line becomes
steeper. Both these points are well to the right of the other observations.
They therefore exert a good deal of leverage on the regression line, pulling it
towards themselves.

The two high-leverage points in Figure 3.14 have the same x coordinate. We
could imagine locating the high-leverage point anywhere between the two of
them. If the point were quite close to the original regression line, then the line
would not move much when the high-leverage point was added to the sample.
The further away from the line it is, the more the line will move when the point
is added. Thus the influence of the high-leverage point becomes greater as its
y coordinate becomes further away from the point on the original regression
line associated with it x coordinate.

The extra points in Figure 3.14 have high leverage because their x coordinate
is much larger than that of any other point in the sample. If the x coor-
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dinate were smaller, moving them closer to the main cloud of points, then
they would have much smaller influence. Thus it is the x coordinate that
potentially gives an observation high leverage, but it is the y coordinate that
determines whether the high leverage is actually exploited, resulting in sub-
stantial influence on the regression line. In a moment, we will generalize these
conclusions to regressions with any number of regressors.

If one or a few observations in a regression are highly influential, in the sense
that deleting them from the sample would change some elements of β̂ sub-
stantially, the prudent econometrician will normally want to scrutinize the
data carefully. It may be that these influential observations are erroneous,
or at least untypical of the rest of the sample. Because a single erroneous
observation can have an enormous effect on β̂, it is important to ensure that
any influential observations are not in error. Even if the data are all correct,
the interpretation of the regression results may change if it is known that a
few observations are primarily responsible for those results, especially if those
observations differ systematically in some way from the rest of the data.

Leverage

The effect of a single observation on β̂ can be seen by comparing β̂ with β̂(t),
the estimate of β that would be obtained if the tth observation were omitted
from the sample. To see the effect of omitting the tth observation, we can
“remove” it by using a dummy variable. The appropriate dummy variable
is et, an n--vector which has tth element 1 and all other elements 0. The
vector et is called a unit basis vector, unit because its norm is 1, and basis
because the set of all the et, for t = 1, . . . , n, span, or constitute a basis for,
the full space En; see Exercise 3.22. Considered as an indicator variable, et
indexes the singleton subsample that contains only observation t.

Including et as a regressor leads to a regression of the form

y = Xβ + αet + u, (3.61)

and, by the FWL Theorem, this gives the same parameter estimates and
residuals as the FWL regression

Mty = MtXβ + residuals, (3.62)

where Mt ≡ Met = I − et(et
⊤et)

−1et
⊤ is the orthogonal projection off the

vector et. It is easy to see that Mty is just y with its tth component replaced
by 0. Since et

⊤et = 1, and because et
⊤y is just the tth component of y,

Mty = y − etet
⊤y = y − ytet.

Thus yt is subtracted from y for the tth observation only. Similarly, MtX is
just X with its tth row replaced by 0s. Running regression (3.62) gives the
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same parameter estimates as those that would be obtained if observation t
were deleted from the sample. Since the vector β̂ is defined exclusively in
terms of scalar products of the variables, replacing the tth elements of these
variables by 0 is tantamount to leaving observation t out when computing
those scalar products.

Let us denote by PZ and MZ , respectively, the orthogonal projections on to
and off S(X, et). The fitted values and residuals from regression (3.61) are
then given by

y = PZy +MZy = Xβ̂(t) + α̂et +MZy. (3.63)

Now premultiply (3.63) by PX to obtain

PXy = Xβ̂(t) + α̂PXet, (3.64)

where we have used the fact that MZPX = O, because MZ annihilates both
X and et. But PXy = Xβ̂, and so (3.64) gives

X(β̂(t) − β̂) = −α̂PXet. (3.65)

We can compute the difference between β̂(t) and β̂ using this equation if we
can compute the value of α̂.

In order to calculate α̂, we once again use the FWL Theorem, which tells us
that the estimate of α from (3.61) is the same as the estimate from the FWL
regression

MXy = α̂MXet + residuals.

Therefore, using (3.02) and the idempotency of MX,

α̂ =
et
⊤MXy

et⊤MXet
. (3.66)

Now et
⊤MXy is the tth element of MXy, the vector of residuals from the

regression including all observations. We may denote this element as ût. In
like manner, et

⊤MXet, which is just a scalar, is the tth diagonal element
of MX. Substituting these into (3.66), we obtain

α̂ =
ût

1− ht
, (3.67)

where ht denotes the tth diagonal element of PX, which is equal to 1 minus
the tth diagonal element of MX. The rather odd notation ht comes from the
fact that PX is sometimes referred to as the hat matrix, because the vector
of fitted values Xβ̂ = PXy is sometimes written as ŷ, and PX is therefore
said to “put a hat on” y.
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Finally, if we premultiply (3.65) by (X⊤X)−1X⊤ and use (3.67), we find that

β̂(t) − β̂ = −α̂(X⊤X)−1X⊤PXet =
−1

1− ht
(X⊤X)−1Xt

⊤ût. (3.68)

The second equality uses the facts that X⊤PX = X⊤ and that the final factor
of et selects the tth column of X⊤, which is the transpose of the tth row, Xt.
Expression (3.68) makes it clear that, when either ût is large or ht is large, or
both, the effect of the tth observation on at least some elements of β̂ is likely
to be substantial. Such an observation is said to be influential.

From the rightmost expression in (3.68), it is evident that the influence of an
observation depends on both ût and ht. It is greater if the observation has a
large residual, which, as we saw in Figure 3.14, is related to its y coordinate.
On the other hand, ht is related to the x coordinate of a point, which, as
we also saw in the figure, determines the leverage, or potential influence, of
the corresponding observation. We say that observations for which ht is large
have high leverage or are leverage points. A leverage point is not necessarily
influential, but it has the potential to be influential.

The Diagonal Elements of the Hat Matrix

Since the leverage of the tth observation depends on ht, the tth diagonal ele-
ment of the hat matrix, it is worth studying the properties of these diagonal
elements in a little more detail. We can express ht as

ht = et
⊤PXet = ∥PXet∥2. (3.69)

Since the rightmost expression here is a square, ht ≥ 0. Moreover, because
∥et∥ = 1, we obtain by applying the inequality (3.27) to the vector et that
ht = ∥PXet∥2 ≤ 1. Thus

0 ≤ ht ≤ 1. (3.70)

The geometrical reason for these bounds on the value of ht can be found in
Exercise 3.30.

The lower bound in (3.70) can be strengthened when there is a constant term.
In that case, none of the ht can be less than 1/n. This follows from equation
(3.69), because if X consisted only of a constant vector ι, et

⊤Pιet would
equal 1/n. If other regressors are present, then we have

ht = ∥PXet∥2 ≥ ∥PιPXet∥2 = ∥Pιet∥2 = 1/n.

Here we have used the fact that PιPX = Pι since ι is in S(X) by assumption,
and, for the inequality, we have used (3.27). Although ht cannot be 0 in normal
circumstances, there is a special case in which it equals 1. If one column of
X is the dummy variable et, then ht = et

⊤PXet = et
⊤et = 1.
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In a regression with n observations and k regressors, the average of the ht is
equal to k/n. In order to demonstrate this, we need to use some properties
of the trace of a square matrix. If A is an n × n matrix, its trace, denoted
Tr(A), is the sum of the elements on its principal diagonal. Thus

Tr(A) ≡
n∑

i=1

Aii.

The trace of a product of two not necessarily square matrices A and B is
unaffected by the order in which the two matrices are multiplied together.
If the dimensions of A are n × m, then, in order for the product AB to be
square, those of B must be m×n. This implies further that the product BA
exists and is m×m. We have

Tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

m∑
j=1

AijBji =
m∑
j=1

(BA)jj = Tr(BA). (3.71)

The result (3.71) can be extended. If we consider a (square) product of several
matrices, the trace is invariant under what is called a cyclic permutation of
the factors. Thus, as can be seen by successive applications of (3.71),

Tr(ABC) = Tr(CAB) = Tr(BCA). (3.72)

We now return to the ht. Their sum is

n∑
t=1

ht = Tr(PX) = Tr
(
X(X⊤X)−1X⊤)

= Tr
(
(X⊤X)−1X⊤X

)
= Tr(Ik) = k.

(3.73)

The first equality in the second line makes use of (3.72). Then, because we
are multiplying a k × k matrix by its inverse, we get a k × k identity matrix,
the trace of which is obviously just k. It follows from (3.73) that the average
of the ht equals k/n. When, for a given regressor matrix X, the diagonal
elements of PX are all close to their average value, no observation has very
much leverage. Such anX matrix is sometimes said to have a balanced design.
On the other hand, if some of the ht are much larger than k/n, and others
consequently smaller, the X matrix is said to have an unbalanced design.

The ht tend to be larger for values of the regressors that are farther away
from their average over the sample. As an example, Figure 3.15 plots them

as a function of xt for a particular sample of 100 observations for the model

yt = β1 + β2xt + ut.

The elements xt of the regressor are perfectly well behaved, being drawings
from the standard normal distribution. Although the average value of the ht
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Figure 3.15 A graph of ht as a function of xt

is 2/100 = 0.02, ht varies from 0.0100 for values of xt near the sample mean to
0.0695 for the largest value of xt, which is about 2.4 standard deviations above
the sample mean. Thus, even in this very typical case, some observations have
a great deal more leverage than others. Those observations with the greatest
amount of leverage are those for which xt is farthest from the sample mean,
in accordance with the intuition of Figure 3.14.

3.7 Final Remarks

In this chapter, we have discussed the numerical properties of OLS estimation
of linear regression models from a geometrical point of view. This perspective
often provides a much simpler way to understand such models than does a
purely algebraic approach. For example, the fact that certain matrices are
idempotent becomes quite clear as soon as one understands the notion of
an orthogonal projection. Most of the results discussed in this chapter are
thoroughly fundamental, and many of them will be used again and again
throughout the book. In particular, the FWL Theorem will turn out to be
extremely useful in many contexts.

The use of geometry as an aid to the understanding of linear regression has
a long history; see Herr (1980). One valuable reference on linear models that
takes the geometric approach is Seber (1980). A good expository paper that
is reasonably accessible is Bryant (1984), and a detailed treatment is provided
by Ruud (2000).

It is strongly recommended that readers attempt the exercises which follow
this chapter before starting Chapter 4, in which we turn our attention to the
statistical properties of OLS estimation. Many of the results of this chapter
will be useful in establishing these properties, and the exercises are designed
to enhance understanding of these results.
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3.8 Exercises

3.1 Consider two vectors x and y in E2. Let x = [x1
.... x2] and y = [y1

.... y2]. Show
trigonometrically that x⊤y ≡ x1y1 + x2y2 is equal to ∥x∥ ∥y∥ cos θ, where θ
is the angle between x and y.

3.2 A vector in En can be normalized by multiplying it by the reciprocal of its
norm. Show that, for any x ∈ En with x ̸= 0, the norm of x/∥x∥ is 1.

Now consider two vectors x,y ∈ En. Compute the norm of the sum and of
the difference of x normalized and y normalized, that is, of

x

∥x∥ +
y

∥y∥ and
x

∥x∥ − y

∥y∥ .

By using the fact that the norm of any nonzero vector is positive, prove the
Cauchy-Schwartz inequality (3.08):

|x⊤y| ≤ ∥x∥ ∥y∥. (3.08)

Show that this inequality becomes an equality when x and y are parallel.
Hint: Show first that x and y are parallel if and only if x/∥x∥ = ± y/∥y∥.

3.3 The triangle inequality states that, for x,y ∈ En,

∥x+ y∥ ≤ ∥x∥+ ∥y∥. (3.74)

Draw a 2--dimensional picture to illustrate this result. Prove the result alge-
braically by computing the squares of both sides of the above inequality, and
then using (3.08). In what circumstances does (3.74) hold with equality?

3.4 Suppose that x = [1.0
.... 1.5

.... 1.2
.... 0.7] and y = [3.2

.... 4.4
.... 2.5

.... 2.0]. What are
∥x∥, ∥y∥, and x⊤y? Use these quantities to calculate θ, the angle θ between
x and y, and cos θ.

3.5 Show explicitly that the left-hand sides of (3.11) and (3.12) are the same.
This can be done either by comparing typical elements or by using the results
in Section 3.3 on partitioned matrices.

3.6 Prove that, if the k columns of X are linearly independent, each vector z in
S(X) can be expressed as Xb for one and only one k --vector b. Hint: Suppose
that there are two different vectors, b1 and b2, such that z = Xbi, i = 1, 2,
and show that this implies that the columns of X are linearly dependent.

3.7 Consider the vectors x1 = [1
.... 2

.... 4], x2 = [2
.... 3

.... 5], and x3 = [3
.... 6

.... 12].
What is the dimension of the subspace that these vectors span?

3.8 Consider the example of the three vectors x1, x2, and x3 defined in (3.14).
Show that any vector z ≡ b1x1 + b2x2 in S(x1,x2) also belongs to S(x1,x3)
and S(x2,x3). Give explicit formulas for z as a linear combination of x1

and x3, and of x2 and x3.

3.9 Prove algebraically that PXMX = O. This is equation (3.25). Use only the
requirement (3.24) that PX and MX are complementary projections, and
the idempotency of PX.

3.10 Let X and W be two n × k matrices such that S(X) ̸= S(W ). Show that
the n × n matrix P ≡ X(W⊤X)−1W⊤ is idempotent but not symmetric.
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Characterize the spaces that P and I−P project on to, and show that they
are not orthogonal. Projections like P are called oblique projections.

3.11 Prove algebraically that equation (3.26), which is really Pythagoras’ Theorem
for linear regression, holds. Use the facts that PX and MX are symmetric,
idempotent, and orthogonal to each other.

3.12 Show algebraically that, if PX and MX are complementary orthogonal pro-
jections, then MX annihilates all vectors in S(X), and PX annihilates all
vectors in S⊥(X).

3.13 Consider the two regressions

y = β1x1 + β2x2 + β3x3 + u, and

y = α1z1 + α2z2 + α3z3 + u,

where z1 = x1 − 2x2, z2 = x2 + 4x3, and z3 = 2x1 − 3x2 + 5x3. Let
X = [x1 x2 x3] and Z = [z1 z2 z3]. Show that the columns of Z can be
expressed as linear combinations of the columns of X, that is, that Z = XA,
for some 3× 3 matrix A. Find the elements of this matrix A.

Show that the matrix A is invertible, by showing that the columns of X are
linear combinations of the columns of Z. Give the elements of A−1. Show
that the two regressions give the same fitted values and residuals.

Precisely how is the OLS estimate β̂1 related to the OLS estimates α̂i, for
i = 1, . . . , 3? Precisely how is α̂1 related to the β̂i, for i = 1, . . . , 3?

3.14 Let X be an n×k matrix of full rank. Consider the n×k matrix XA, where
A is a singular k × k matrix. Show that the columns of XA are linearly
dependent, and that S(XA) ⊂ S(X).

3.15 Use the result (3.35) to show that MXM1 = M1MX = MX, where X is
partitioned as [X1 X2].

3.16 Consider the following linear regression:

y = X1β1 +X2β2 + u,

where y is n× 1, X1 is n× k1, and X2 is n× k2. Let β̂1 and β̂2 be the OLS
parameter estimates from running this regression.

Now consider the following regressions, all to be estimated by OLS:

(a) y = X2β2 + u;

(b) P1y = X2β2 + u;

(c) P1y = P1X2β2 + u;

(d) PXy = X1β1 +X2β2 + u;

(e) PXy = X2β2 + u;

(f) M1y = X2β2 + u;

(g) M1y = M1X2β2 + u;

(h) M1y = X1β1 +M1X2β2 + u;

(i) M1y = M1X1β1 +M1X2β2 + u;

(j) PXy = M1X2β2 + u.
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Here P1 projects orthogonally on to the span of X1, and M1 = I− P1. For
which of the above regressions are the estimates of β2 the same as for the
original regression? Why? For which are the residuals the same? Why?

3.17 Consider the linear regression

y = β1ι+X2β2 + u,

where ι is an n--vector of 1s, and X2 is an n× (k− 1) matrix of observations
on the remaining regressors. Show, using the FWL Theorem, that the OLS
estimators of β1 and β2 can be written as[

β̂1

β̂2

]
=

[
n ι⊤X2

0 X2
⊤MιX2

]−1 [
ι⊤y

X2
⊤Mιy

]
,

where, as usual, Mι is the matrix that takes deviations from the sample mean.

3.18 Using equations (3.35), show that PX−P1 is an orthogonal projection matrix.
That is, show that PX − P1 is symmetric and idempotent.

⋆3.19 Show that PX − P1 = PM1X2
, where PM1X2

is the projection on to the
span of M1X2. This can be done most easily by showing that any vector
in S(M1X2) is invariant under the action of PX − P1, and that any vector
orthogonal to this span is annihilated by PX − P1.

3.20 Let ι be a vector of 1s, and let X be an n×3 matrix, with full rank, of which
the first column is ι. What can you say about the matrix MιX? What can
you say about the matrix PιX? What is MιMX equal to? What is PιMX

equal to?

3.21 Express the four seasonal variables, si, i = 1, 2, 3, 4, defined in (3.46), as
functions of the constant ι and the three variables s′i, i = 1, 2, 3, defined
in (3.49).

3.22 Show that the full n--dimensional space En is the span of the set of unit basis
vectors et, t = 1, . . . , n, where all the components of et are zero except for
the tth, which is equal to 1.

3.23 The file earnings-data.txt contains data on the weekly earnings of 46,302
women who lived in California between 1992 and 2015. Regress the log of
earnings on age, age squared, the five education dummies, and as many of the
24 year dummies as you can. How many regressors does your model contain?
What happens if you add a constant term?

Regress each of the log of earnings, age, age squared, and the five education
dummies on the year dummies that you included in your model. Then regress
the residuals from the first of these regressions on the residuals from the other
seven regressions. Do the estimates look familiar? Explain.

3.24 Verify numerically that regressing the log earnings variable on the full set of
education dummy variables, without a constant term, and taking the fitted
values is equivalent to replacing each observation by the group mean of log
earnings for women with that level of education.

How is the regression you just ran related to regressing the log earnings vari-
able on a constant term and the last four education dummies, ed2 through
ed5? How do you interpret the coefficients on the dummy variables in this
regression?
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3.25 The file tbrate-data.txt contains data for three quarterly time series for the
United States: rt, the interest rate on 90-day treasury bills, πt, the rate of
inflation, and dyt, the quarterly percentage change in seasonally adjusted real
GDP at annual rates. For the period 1955:1 to 2014:4, run the regression

∆rt = β1 + β2dyt + β3dyt−1 + β4πt + β5rt−1 + ut, (3.75)

where ∆ is the first-difference operator, defined so that ∆xt = xt − xt−1.
Plot the residuals and fitted values against time. Then regress the residuals
on the fitted values and on a constant. What do you learn from this second
regression? Now regress the fitted values on the residuals and on a constant.
What do you learn from this third regression?

3.26 For the same sample period, regress ∆rt on a constant, dyt, dyt−1, and rt−1.
Save the residuals from this regression, and call them êt. Then regress πt on
a constant, dyt, dyt−1, and rt−1. Save the residuals from this regression, and
call them v̂t. Now regress êt on v̂t. How are the estimated coefficient and
the residuals from this last regression related to anything that you obtained
when you estimated regression (3.75)?

3.27 Calculate the diagonal elements of the hat matrix for regression (3.75) and
use them to calculate a measure of leverage. Plot this measure against time.
On the basis of this plot, which observations seem to have unusually high
leverage?

3.28 Show explicitly that the tth residual from running regression (3.61) is 0.

3.29 Calculate a vector of “omit 1” residuals û(·) for regression (3.75). The tth ele-
ment of û(·) is the residual for the tth observation calculated from a regression
that uses data for every observation except the tth. Try to avoid running 240
regressions in order to do this! Regress û(·) on the ordinary residuals û. Is
the estimated coefficient roughly the size you expected it to be? Would it be
larger or smaller if you were to omit some of the high-leverage observations?

3.30 Show that the leverage measure ht is the square of the cosine of the angle
between the unit basis vector et and its projection on to the span S(X) of
the regressors.

3.31 Suppose the matrix X is 150 × 5 and has full rank. Let PX be the matrix
that projects on to S(X) and let MX = I−PX. What is Tr(PX)? What is
Tr(MX)? What would these be if X did not have full rank but instead had
rank 3?

3.32 Generate a figure like Figure 3.15 for yourself. Begin by drawing 100 observa-
tions of a regressor xt from the N(0, 1) distribution. Then compute and save
the ht for a regression of any regressand on a constant and xt. Plot the points
(xt, ht), and you should obtain a graph similar to the one in Figure 3.15.

Now add one more observation, x101. Start with x101 = x̄, the average value
of the xt, and then increase x101 progressively until x101 = x̄+ 20. For each
value of x101, compute the leverage measure h101. How does h101 change
as x101 gets larger? Why is this in accord with the result that ht = 1 if the
regressors include the dummy variable et?
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Chapter 4

The Statistical Properties

of Ordinary Least Squares

4.1 Introduction

In the previous chapter, we studied the numerical properties of ordinary least
squares estimation, properties that hold no matter how the data may have
been generated. In this chapter, we turn our attention to the statistical prop-
erties of OLS, ones that depend on how the data were actually generated.
These properties can never be shown to hold numerically for any actual data
set, but they can be proved to hold if we are willing to make certain as-
sumptions. Most of the properties that we will focus on concern the first two
moments of the least-squares estimator.

In Section 2.5, we introduced the concept of a data-generating process, or
DGP. For any data set that we are trying to analyze, the DGP is simply
the mechanism that actually generated the data. Most real DGPs for econ-
omic data are probably very complicated, and economists do not pretend to
understand every detail of them. However, for the purpose of studying the sta-
tistical properties of estimators, it is almost always necessary to assume that
the DGP is quite simple. For instance, when we are studying the (multiple)
linear regression model

yt = Xtβ + ut, ut ∼ IID(0, σ2), (4.01)

we may wish to assume that the data were actually generated by the DGP

yt = Xtβ0 + ut, ut ∼ NID(0, σ2
0). (4.02)

The symbol “∼” in (4.01) and (4.02) means “is distributed as.” We intro-
duced the abbreviation IID, which means “independently and identically dis-
tributed,” in Section 2.3. In the model (4.01), the notation IID(0, σ2) means
that the ut are statistically independent and all have the same distribution,
with expectation 0 and variance σ2. Similarly, in the DGP (4.02), the notation
NID(0, σ2

0) means that the ut are normally , independently, and identically dis-
tributed, with expectation 0 and variance σ2

0 . In both cases, it is implicitly
being assumed that the distribution of ut is in no way dependent on Xt.
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The differences between the regression model (4.01) and the DGP (4.02) may
seem subtle, but they are important. A key feature of a DGP is that it
constitutes a complete specification, where that expression means, as in Sec-
tion 2.3, that enough information is provided for the DGP to be simulated
on a computer. For that reason, in (4.02) we must provide specific values
for the parameters β and σ2 (the zero subscripts on these parameters are in-
tended to remind us of this), and we must specify from what distribution the
disturbances are to be drawn (here, the normal distribution).

A model is defined as a set of data-generating processes. Since a model is a
set, we will sometimes use the notation M to denote it. In the case of the
linear regression model (4.01), this set consists of all DGPs of the form (4.01)
in which the coefficient vector β takes some value in Rk, the variance σ2 is
some positive real number, and the distribution of ut varies over all possible
distributions that have expectation 0 and variance σ2. Although the DGP
(4.02) evidently belongs to this set, it is considerably more restrictive.

A subset of the set of DGPs of the form (4.02) defines what is called the
classical normal linear model, where the name indicates that the disturbances
are normally distributed. The subset results from the imposition of the re-
striction of exogeneity on the regressors in the matrix X; see the definition of
this concept in the next section. The model (4.01) is larger than the classical
normal linear model, not only because it does not require exogeneity of the
regressors, but also because, although (4.01) specifies the first two moments
of the disturbances, and requires them to be mutually independent, it says no
more about them, and in particular it does not require them to be normal.
All of the results we prove in this chapter, and many of those in the next,
apply to the linear regression model (4.01), with no normality assumption.
However, in order to obtain some of the results in the next two chapters, it
will be necessary to limit attention to the classical normal linear model.

For most of this chapter, we assume that whatever model we are studying,
the linear regression model or the classical normal linear model, is correctly
specified. By this, we mean that the DGP that actually generated our data
belongs to the model under study. A model is misspecified if that is not the
case. It is crucially important, when studying the properties of an estimation
procedure, to distinguish between properties which hold only when the model
is correctly specified, and properties, like those treated in the previous chapter,
which hold no matter what the DGP. We can talk about statistical properties
only if we specify the DGP.

In the remainder of this chapter, we study a number of the most important
statistical properties of ordinary least-squares estimation, by which we mean
least-squares estimation of linear regression models. In Section 4.2, we dis-
cuss the concept of bias and prove that β̂, the OLS estimator of β, is unbiased
under certain conditions. Then, in Section 4.3, we discuss the concepts of
asymptotic constructions and consistency, and prove that β̂ is consistent un-
der considerably weaker conditions. In Section 4.4, we turn our attention to
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the covariance matrix of β̂. In Section 4.5, we discuss what determines the pre-
cision of OLS estimates and introduce the concept of collinearity. This leads
to a discussion of the efficiency of least-squares estimation in Section 4.6,
in which we prove the famous Gauss-Markov Theorem. In Section 4.7, we
discuss the estimation of σ2 and the relationship between disturbances and
least-squares residuals. Up to this point, we will assume that the DGP be-
longs to the model being estimated. In Section 4.8, we relax this assumption
and consider the consequences of estimating a model that is misspecified in
certain ways. Finally, in Section 4.9, we discuss ways of measuring how well
a regression fits, in particular, the measure called R2.

4.2 Bias and Unbiasedness

One desirable statistical property of any estimator is for it to be unbiased.
Suppose that θ̂ is an estimator of some parameter θ, the true value of which
is θ0 for some given DGP. The estimation error is the difference θ̂−θ0 between
the estimator and the true value. Since the estimator is a random variable,
so is the estimation error. The expectation of the estimation error is what we
call the bias. It is defined to be E(θ̂)−θ0, and it is defined for the given DGP.

Suppose now that the DGP belongs to a model M. We can in principle
compute the bias of the estimator θ̂ for every DGP µ ∈ M. If we denote the
true value of θ for µ as θµ, then the bias for that DGP is Eµ(θ̂) − θµ, where
we use the notation Eµ for the expectation when all random variables are
generated by µ. If the bias of an estimator is zero for every µ ∈ M, then the
estimator is said to be unbiased. Otherwise, it is said to be biased. Intuitively,
if we were to use an unbiased estimator to calculate estimates for a very large
number of samples, then the average value of those estimates would tend to
the quantity being estimated. We would always prefer an unbiased estimator
to a biased one if their other statistical properties were the same.

As we first saw in Section 2.4, the linear regression model (4.01) can also be
written, using matrix notation, as

y = Xβ + u, u ∼ IID(0, σ2I), (4.03)

where y and u are n--vectors, X is an n× k matrix, and β is a k --vector. In
(4.03), the notation IID(0, σ2I) is the matrix version of that in (4.01): it is
just another way of saying that each element of the vector u is independently
and identically distributed with expectation 0 and variance σ2. This notation
is convenient to use when the model is written in matrix notation. Its meaning
should become clearer in Section 4.4.

Recall from Section 2.5 that the OLS estimator of β is

β̂ = (X⊤X)−1X⊤y. (4.04)
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Thus we have, for a DGP µ with true parameter vector βµ,

β̂ = (X⊤X)−1X⊤(Xβµ + u)

= βµ + (X⊤X)−1X⊤u.
(4.05)

The expectation of the second line here is

Eµ(β̂) = βµ + E
(
(X⊤X)−1X⊤u

)
. (4.06)

Thus β̂ is unbiased if and only if the second term on the right-hand side of
equation (4.06) is equal to a zero vector. What is not entirely obvious is just
what assumptions are needed to ensure that this condition holds. We will
discuss these assumptions in the next subsection.

Although it is desirable for an estimator to be unbiased, few estimators in
econometrics actually have this property. A closely related concept is that
of an unbiased estimating equation. Many estimators, including many biased
ones, are based on unbiased estimating equations. As we will see in later
chapters, such estimators often have good theoretical properties. Quite gen-
erally, the left-hand side of an estimating equation is a function of data and
parameters, called the estimating function. The estimator of the model para-
meters is found by solving the estimating equation or equations, that is, by
setting the estimating functions to zero. An estimating equation is unbiased
precisely when the corresponding estimating function is a zero function; recall
the definition in Section 2.5.

In general, an estimating equation takes the form

g(y,θ) = 0, (4.07)

where θ is a vector of model parameters, y represents the data, and g(y,θ)
is the estimating function. We say that (4.07) is unbiased for a model M if,
for every DGP µ ∈ M,

Eµg(y,θµ) = 0.

As above, the notation Eµ here denotes the expectation when the data y are
generated by the DGP µ, and θµ denotes the true value of θ for that DGP.
If θ is a k-vector, we need k estimating equations in order to define it. The
bias of the estimator θ̂ defined implicitly by a set of estimating equations is
defined as Eµ(θ̂ − θµ), and the estimator θ̂ is unbiased if this bias is zero for
all µ ∈ M.

The OLS estimator of the model (4.03) is defined by the estimating equations
(2.47) that we first saw in Section 2.5:

X⊤(y −Xβ) = 0. (4.08)

Suppose that the DGP is given by (4.03) with β = β0, so that y = Xβ0 + u.
Then the OLS estimating functions, the left-hand side of equations (4.08),
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become the components of the k-vector X⊤(X(β0 −β) +u). To see whether
these estimating equations are unbiased, we evaluate this quantity at β = β0.
The result is just X⊤u. Therefore, the estimating equations (4.08) are unbi-
ased whenever

E(X⊤u) = 0. (4.09)

Assumptions About Disturbances and Regressors

In certain cases, it may be reasonable to treat the matrix X as nonstochastic,
or fixed. For example, this would certainly be a reasonable assumption to
make if the data pertained to an experiment, and the experimenter had chosen
the values of all the variables that enter into X before y was determined. In
this case, we have E(X⊤u) = X⊤E(u), since we may move the nonstochastic
factor X⊤ outside the expectation operator. But then, by (4.09), the OLS
estimating equations are unbiased, because part of the model specification is
that E(u) = 0,

Similarly, in this case, the matrix (X⊤X)−1X⊤ is not random, and the second
term in (4.06) becomes

E
(
(X⊤X)−1X⊤u

)
= (X⊤X)−1X⊤E(u). (4.10)

Therefore, the OLS estimator itself is unbiased.

Unfortunately, the assumption that X is fixed, convenient though it may be
for showing unbiasedness, is frequently not a reasonable assumption to make in
applied econometric work. More commonly, at least some of the columns of X
correspond to variables that are no less random than y itself, and it would
often stretch credibility to treat them as fixed. Luckily, we can still show
that β̂ and its estimating equations are unbiased in some quite reasonable
circumstances without making such a strong assumption.

A weaker assumption is that the explanatory variables which form the columns
of X are exogenous. The concept of exogeneity was introduced in Section 2.3.
When applied to the matrix X, it implies that any randomness in the DGP
that generated X is independent of the disturbances u in the DGP for y.
This independence in turn implies that

E(u |X) = 0. (4.11)

In words, this says that the expectation of the entire vector u, that is, of every
one of the ut, is zero conditional on the entire matrix X. See Section 2.2 for
a discussion of conditional expectations. Although condition (4.11) is weaker
than the condition of independence of X and u, it is convenient to refer to
(4.11) as an exogeneity assumption.

Given the exogeneity assumption (4.11), it is easy to show that both the
estimator β̂ and the estimating equations (4.08) are unbiased. Because the
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expectation of X⊤ conditional on X is just itself, and the expectation of u
conditional on X is assumed to be 0, it is clear that E(X⊤u) = 0. Similarly,

E
(
(X⊤X)−1X⊤u |X

)
= 0; (4.12)

see equation (2.17). Then, applying the Law of Iterated Expectations, we
see that the unconditional expectation of the left-hand side of (4.12) must be
equal to the expectation of the right-hand side, which is just 0.

Assumption (4.11) is perfectly reasonable in the context of some types of data.
In particular, suppose that a sample consists of cross-section data, in which
each observation might correspond to an individual firm, household, person,
or city. For many cross-section data sets, there may be no reason to believe
that ut is in any way related to the values of the regressors for any of the
observations. On the other hand, suppose that a sample consists of time-
series data, in which each observation might correspond to a year, quarter,
month, or day, as would be the case, for instance, if we wished to estimate a
consumption function, as in Chapter 2. Even if we are willing to assume that
ut is in no way related to current and past values of the regressors, it must
be related to future values if current values of the dependent variable affect
future values of some of the regressors. Thus, in the context of time-series
data, the exogeneity assumption (4.11) is a very strong one that we may often
not feel comfortable in making.

The assumption that we made in Section 2.3 about the disturbances and the
explanatory variables, namely, that

E(ut |Xt) = 0, (4.13)

is substantially weaker than assumption (4.11), because (4.11) rules out the
possibility that the expectation of ut depends on the values of the regressors for
any observation, while (4.13) merely rules out the possibility that it depends
on their values for the current observation. For reasons that will become
apparent in the next subsection, we refer to (4.13) as a predeterminedness
condition. Equivalently, we say that the regressors are predetermined with
respect to the disturbances. Yet another way of expressing this is to call the
disturbances innovations.

The OLS Estimator Can Be Biased

We have just seen that the OLS estimator β̂ is unbiased if we make assump-
tion (4.11) that the explanatory variables X are exogenous, but we remarked
that this assumption can sometimes be uncomfortably strong. If we are not
prepared to go beyond the predeterminedness assumption (4.13), which it is
rarely sensible to do if we are using time-series data, then it turns out that β̂
is, in general, biased. It is easy to see this in the context of a simple model
involving time-series data.
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Many regression models for time-series data include one or more lagged vari-
ables among the regressors. The first lag of a time-series variable that takes
on the value zt at time t has value zt−1. Similarly, the second lag of zt
has value zt−2, and the pth lag has value zt−p. In some models, lags of
the dependent variable itself are used as regressors. Indeed, in some cases,
the only regressors, except perhaps for a constant term and time trend or
dummy variables, are lagged dependent variables. Such models are said to be
autoregressive, because the conditional expectation of the dependent variable
depends on lagged values of the dependent variable itself.

A simple example of an autoregressive model is

yt = β1 + β2yt−1 + ut, ut ∼ IID(0, σ2). (4.14)

This model is said to be first-order autoregressive, or AR(1), because only
one lag of yt appears on the right-hand side. The model (4.14) can also be
written in vector notation as

y = β1ι+ β2y1 + u, u ∼ IID(0, σ2I), (4.15)

where, as usual, ι is a vector of 1s, the vector y has typical element yt, and
the vector y1 has typical element yt−1.

It is perfectly reasonable to assume that the predeterminedness condition
(4.13) holds for the model (4.14), because this condition amounts to saying
that E(ut) = 0 for every possible value of yt−1. The lagged dependent variable
yt−1 is then said to be predetermined with respect to the disturbance ut. Not
only is yt−1 realized before ut, but its realized value has no impact on the
expectation of ut. However, it is clear that the exogeneity assumption (4.11),
which would here require that E(u |y1) = 0, cannot possibly hold, because
yt−1 depends on ut−1, ut−2, and so on. Assumption (4.11) evidently fails to
hold for any model in which the regression function includes a lagged depen-
dent variable.

To see the consequences of assumption (4.11) not holding, we use (4.15) and
the FWL Theorem to write out β̂2 explicitly as

β̂2 = (y1
⊤Mιy1)

−1y1
⊤Mιy.

HereMι denotes the projection matrix I−ι(ι⊤ι)−1ι⊤, which centers any vector
it multiplies; recall (3.31). If we replace y by β10ι+β20y1+u, where β10 and
β20 are specific values of the parameters, and use the fact that Mι annihilates
the constant vector, we find that

β̂2 = (y1
⊤Mιy1)

−1y1
⊤Mι(y1β20 + u)

= β20 + (y1
⊤Mιy1)

−1y1
⊤Mιu.

(4.16)

This is evidently just a special case of (4.05).
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It is clear that β̂2 is unbiased if and only if the second term in the second line
of (4.16) has expectation zero. But this term does not have expectation zero.
Because y1 is stochastic, we cannot simply move the expectations operator, as
we did in (4.10), and then take the unconditional expectation of u. Because
E(u |y1) ̸= 0, we also cannot take expectations conditional on y1, in the way
that we took expectations conditional on X in (4.12), and then rely on the
Law of Iterated Expectations. In fact, as readers are asked to demonstrate in
Exercise 4.1, the estimator β̂2 is biased.

It seems reasonable that, if β̂2 is biased, so must be β̂1. The equivalent of the
second line of (4.16) is

β̂1 = β10 + (ι⊤My1ι)
−1ι⊤My1u, (4.17)

where the notation should be self-explanatory. Once again, because the vector
y1 depends on u, we cannot employ the methods that we used in (4.10) or
(4.12) to prove that the second term on the right-hand side of (4.17) has
expectation zero. In fact, that is not so, and β̂1 is consequently biased, as
readers are also asked to demonstrate in Exercise 4.1.

The problems we have just encountered when dealing with the autoregressive
model (4.14) evidently affect every regression model with random regressors
for which the exogeneity assumption (4.11) does not hold. Thus, for all such
models, the least-squares estimator of the parameters of the regression func-
tion is biased. Assumption (4.11) cannot possibly hold when the regressor
matrix X contains lagged dependent variables, and it probably fails to hold
for most other models that involve time-series data.

In contrast to the OLS estimator, the OLS estimating equations (4.08) are
unbiased whenever the regressors are predetermined. By assumption (4.13),

E(X⊤u) = E
( n∑
t=1

Xt
⊤ut

)
=

n∑
t=1

E(Xt
⊤ut)

=
n∑

t=1

E
(
E(Xt

⊤ut |Xt)
)
=

n∑
t=1

E
(
Xt

⊤E(ut |Xt)
)
= 0.

Intuitively, the conditions for E(X⊤u) to equal 0 are much weaker than the
conditions for E

(
(X⊤X)−1X⊤u

)
to equal 0, because we are not inverting a

matrix that depends on u or multiplying X⊤u by a random matrix. Thus
the bias in the estimator β̂ arises from the fact that we have to solve the
estimating equations (4.08), even though they are themselves unbiased.
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4.3 Asymptotic Theory and Consistency

It is sometimes possible to prove that an estimator always has some property,
such as unbiasedness, as we did in the previous section for the OLS estimator
in certain circumstances. Theoretical results like that one, which hold for
every sample, are said to be exact. However, it is often difficult or impossible
to obtain exact results. We must then be content with approximate results.
In econometrics, this is usually accomplished by use of asymptotic theory,
where the sample size is assumed to tend to infinity in some way. The asymp-
totic approximation is given by what happens in the limit as the sample size
becomes infinite.

A sample of infinite size cannot exist in the real world. In order to calculate
the limit, we make use of an asymptotic construction, a purely mathematical
rule or rules that specify the properties of a sample of arbitrarily large size.
For instance, we can imagine simulating data and letting the sample size n
become as large as we want. In the case of a model with cross-section data,
this is very easy. We can pretend that the original sample is taken from
a population of infinite size, and we can imagine drawing more and more
observations from that population. In the case of a pure time-series model
like (4.14), we can easily generate samples of any size we want, just by letting
the simulations run on for long enough. Thus, in both of these cases, we can
reasonably think of letting n tend to infinity.

Even in the case of a model with fixed regressors, there are ways to let n tend
to infinity. Suppose that the original X matrix is of dimension m× k. Then
we can create X matrices of dimensions 2m× k, 3m× k, 4m× k, and so on,
simply by stacking as many copies of the original X matrix as we like. By
simulating vectors of disturbances of the appropriate dimension, we can then
generate n--vectors y for any n that is an integer multiple of m.

In general, an asymptotic construction is meant to reflect the properties of
the finite data set being analyzed. The two examples above illustrate this
clearly. But in some cases, more than one construction may suggest itself as
appropriate. For example, consider the model

yt = β1 + β2
1−
t
+ ut, ut ∼ IID(0, σ2). (4.18)

Since both regressors here are nonstochastic, the least-squares estimators β̂1

and β̂2 are unbiased, whatever the sample size. Suppose that we have an
actual data set with n observations, potentially correctly modeled by (4.18).
The values of the second regressor thus range from 1 to 1/n. If we continue to
apply the formula (4.18) for samples of sizes greater than n, the value of the
regressor gets smaller and smaller, and ultimately tends to zero. However, if
we adopt the construction of the previous paragraph, the regressor remains
bounded below by 1/m. We will return to this example shortly.
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Stochastic Limits

In Section 2.5, we described an estimator as a rule for obtaining estimates from
any set of data. The rule itself is quite deterministic. Data that are generated
by the sort of DGP we have looked at so far are realizations of random vectors
or matrices, and so the estimates computed from them are also realizations of
random variables. We can therefore think of an estimator as being a random
variable whose realizations are estimates. It is a deterministic function of
random variables.

For any estimator, an asymptotic construction tells us how to generate a
sequence of estimators, one for each sample size. If we wish to talk about the
limit of this sequence, we must be able to define the limit of a sequence of
random variables. Unfortunately, there is more than one form of stochastic
convergence. Fortunately, for the purposes of this book, we need to consider
only two of these. The first is convergence in probability, whereby we can find
the probability limit, or plim for short, of a sequence of random variables. In
general, a probability limit is itself a random variable.

Let {Yn} denote a sequence of scalar random variables Yn, n = 1, . . . ,∞. For
any such sequence, there must be a joint distribution defined for any finite
set of elements of the sequence. If the sequence converges in probability, then
we may write

plim
n→∞

Yn = Y∞, (4.19)

where Y∞ is the plim of the sequence. For equation (4.19) to be true, what
we need is that, for all ε > 0,

lim
n→∞

Pr
(
|Yn − Y∞| > ε

)
= 0. (4.20)

Since a probability is a real number between 0 and 1, the limit in (4.20) is
the ordinary limit of a sequence of (deterministic) real numbers. Convergence
in probability means that, for any chosen tolerance ε, however small, we can
find N large enough so that, for all n > N , the probability is smaller than
that tolerance of finding the absolute value of the difference between Yn and
the limiting random variable Y∞ to be greater than the tolerance.

If instead of a sequence of scalar random variables, we consider a sequence
of random vectors, or matrices, denoted by {Yn}, then plimn→∞ Yn = Y∞
means that

lim
n→∞

Pr
(
∥Yn − Y∞∥ > ε

)
= 0.

Here ∥ · ∥ denotes the Euclidean norm of a vector (see Section 3.2), which
simplifies to the absolute value when its argument is a scalar.

The second form of stochastic convergence that we will need is quite different
from convergence in probability. It is called convergence in distribution, or
convergence in law, or sometimes weak convergence. For a probability limit
to exist, there must exist a joint distribution for Y∞ and any finite set of

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

4.3 Asymptotic Theory and Consistency 107

the Yn. However, if the Yn were all mutually independent, equation (4.20)
could never be true, unless the Yn were actually nonrandom for all n greater
than some threshold. In that case, convergence in probability would reduce
to the ordinary convergence of a deterministic sequence. Suppose that the Yn

are not only independent but also IID. Then the sequence {Yn} does converge
in distribution. However, it cannot possibly converge to a random variable.
That should be obvious as soon as we ask ourselves what such a limiting
random variable might be.

For convergence in distribution, it is not the random variables themselves
that converge, but instead the sequence of CDFs of the random variables. If
the random variables are IID, then they all have the same CDF, and so the
limiting CDF is simply the CDF of each element of the sequence. In general,
a sequence {Yn} of scalar random variables converges in distribution to the
distribution characterized by the CDF F if

lim
n→∞

Fn(x) = F (x),

where Fn is the CDF of Yn, for all real x at which F is continuous. We write
the relation as

Yn
d−→ F. (4.21)

It is not necessary for any finite set of the elements of the sequence to have
a well-defined joint distribution. The elements of such a finite set may be
independent or may be linked by an arbitrary pattern of dependence, without
this having any effect on the convergence in distribution (or otherwise) of
the sequence, since only the marginal CDFs of the individual elements are
required to converge.

It is sometimes convenient to write Yn
d−→ Y∞ as an alternative to (4.21).

Here there is a random variable on the right-hand side of the relation, even
though Y∞ may be quite independent of the elements of the sequence. What
is required is that the CDF of Y∞ is the limit of the CDFs Fn as n → ∞.

It is a little trickier to define convergence in distribution for a sequence of
vector-valued random variables, although the idea is straightforward. Let
the joint CDF of element n of the sequence {Yn} be denoted by Fn(y), for
n = 1, . . . ,∞. The sequence converges in distribution if the sequence {Fn(y)}
converges to a joint CDF F∞(y), avoiding points at which F∞ is not contin-
uous. Here, we make no effort to make this final condition precise.

As we discussed above, the convergence in distribution of a sequence in no
way implies convergence in probability. In contrast, it can be shown that,
if a sequence {Yn} converges in probability, it also converges in distribution.
However, there is a special case in which the two concepts coincide, namely,
when the limiting distribution is degenerate. A distribution is said to be
degenerate when all the probability mass of the distribution is concentrated
on one single point, so that the plim is nonstochastic. This special case arises
frequently in econometrics.
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A simple example of a nonstochastic plim is the limit of the proportion of
heads in a series of independent tosses of an unbiased coin. Suppose that Zt

is a random variable equal to 1 if the coin comes up heads, and equal to 0 if
it comes up tails. After n tosses, the proportion of heads is just

Yn ≡ 1−
n

n∑
t=1

Zt.

If the coin really is unbiased, E(Yn) = 1/2. Thus it should come as no surprise
to learn that plim Yn = 1/2. Proving this requires a certain amount of effort,
however, and we will therefore not attempt a proof here. For a detailed
discussion and proof, see Davidson and MacKinnon (1993, Section 4.2).

The coin-tossing example is really a special case of an extremely powerful
result in probability theory, which is called a law of large numbers, or LLN.
Suppose that Ȳn is the sample mean of Yt, t = 1, . . . , n, a sequence of random
variables, each with expectation µ

Y
. Then, provided the Yt are independent

(or at least, not too dependent), a law of large numbers would state that

plim
n→∞

Ȳn = plim
n→∞

1−
n

n∑
t=1

Yt = µ
Y
. (4.22)

In words, Ȳn has a nonstochastic plim which is equal to the common expec-
tation of each of the Yt.

It is not hard to see intuitively why (4.22) is true under certain conditions.
Suppose, for example, that the Yt are IID, with variance σ2. Then we see at
once that

E(Ȳn) =
1−
n

n∑
t=1

E(Yt) =
1−
n

n∑
t=1

µ
Y
= µ

Y
, and

Var(Ȳn) =
(
1−
n

)2 n∑
t=1

σ2 = 1−
n
σ2.

Thus Ȳn has expectation µ
Y

and a variance which tends to zero as n → ∞.
In the limit, we expect that, on account of the shrinking variance, Ȳn will
become a nonstochastic quantity equal to its expectation µ

Y
. The law of

large numbers assures us that this is indeed the case.

Another useful way to think about laws of large numbers is to note that, as
n → ∞, we are collecting more and more information about the expectation
of the Yt, with each individual observation providing a smaller and smaller
fraction of that information. Thus, eventually, the random components of the
individual Yt cancel out, and the sample mean Ȳn converges to the population
mean µ

Y
. For this to happen, we need to make some assumption in order to

prevent any one of the Yt from having too much impact on Ȳn. The assumption
that they are IID is sufficient for this. Alternatively, if they are not IID, we
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could assume that the variance of each Yt is greater than some finite nonzero
lower bound, but smaller than some finite upper bound. We also need to
assume that there is not too much dependence among the Yt in order to
ensure that the random components of the individual Yt really do cancel out.

There are actually many laws of large numbers, which differ principally in
the conditions that they impose on the random variables which are being
averaged. In almost all cases, the result (4.22) is replaced by

plim
n→∞

1−
n

n∑
t=1

Yt = lim
n→∞

1−
n

n∑
t=1

E(Yt),

where the different elements of the sequence of the Yt may have different ex-
pectations. We will not attempt to prove any of these LLNs. Section 4.5
of Davidson and MacKinnon (1993) provides a simple proof of a relatively
elementary law of large numbers. More advanced LLNs are discussed in Sec-
tion 4.7 of that book, and, in more detail, in Davidson (1994).

Probability limits have some very convenient properties. For example, sup-
pose that {Yn}, n = 1, . . . ,∞, is a sequence of random variables which has
a nonstochastic plim Y∞ as n → ∞, and η(Yn) is a smooth function of Yn.
Then plim η(Yn) = η(Y∞). Another useful property is that, if we have two
sequences {Yn} and {Zn} that converge in probability, then plim YnZn =
plimYn plimZn. These features of plims are emphatically not shared by
expectations. When η(·) is a nonlinear function, E

(
η(Y )

)
̸= η

(
E(Y )

)
, and

E(Y Z) ̸= E(Y ) E(Z) unless Y and Z are independent. Thus, it is often very
easy to calculate plims in circumstances where it would be difficult or impos-
sible to calculate expectations.

However, working with plims can be a little bit tricky. The problem is that
many of the stochastic quantities we encounter in econometrics do not have
probability limits unless we divide them by n or, perhaps, by some power
of n. For example, consider the matrix X⊤X, which appears in the formula
(4.04) for β̂. Each element of this matrix is a scalar product of two of the
columns of X, that is, two n--vectors. Thus it is a sum of n numbers. As
n → ∞, we would expect that, for any sensible asymptotic construction, such
a sum would tend to infinity as well. Therefore, the matrix X⊤X would not
generally have a plim. However, it is not at all unreasonable to assume that

plim
n→∞

1−
n
X⊤X = SX⊤X , (4.23)

where SX⊤X is a finite nonstochastic matrix, because each element of the
matrix on the left-hand side of equation (4.23) is now an average of n numbers:

(
1−
n
X⊤X

)
ij
= 1−
n

n∑
t=1

xtixtj .
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In effect, when we write (4.23), we are implicitly making some assumption
sufficient for a LLN to hold for the sequences generated by the squares of
the regressors and their cross-products. Thus there should not be too much
dependence between xtixtj and xsixsj for s ̸= t, and the variances of these
quantities should not differ too much as t and s vary.

For a more detailed treatment of stochastic convergence, see van der Vaart
(1998), especially Chapter 2. Advanced treatments of asymptotic theory in
econometrics include Davidson (1994), Gallant (1997), and White (2000).

Same-Order Notation

At this point, it is convenient to introduce the concept of the same-order
relation and its associated notation. Almost all of the quantities that we
encounter in econometrics depend on the sample size. In many cases, when
we are using asymptotic theory, the only thing about these quantities that
concerns us is the rate at which they change as the sample size changes. The
same-order relation provides a very convenient way to deal with such cases.

To begin with, let us suppose that f(n) is a real-valued function of the positive
integer n, and r is a rational number. Then we say that f(n) is of the same
order as nr if there exists a constant K, independent of n, and a positive
integer N such that ∣∣∣∣f(n)nr

∣∣∣∣ < K for all n > N. (4.24)

When f(n) is of the same order as nr, we can write f(n) = O(nr). Of course,
equation (4.24) does not express an equality in the usual sense. But, as we
will see in a moment, this “big O” notation is often very convenient.

The definition we have just given is appropriate only if f(n) is a deterministic
function. However, in most econometric applications, some or all of the quan-
tities with which we are concerned are stochastic rather than deterministic.
To deal with such quantities, we need to make use of the stochastic same-
order relation. Let {an} be a sequence of random variables indexed by the
positive integer n. Then we say that an is of order nr in probability if, for all
ε > 0, there exist a constant K and a positive integer N such that

Pr
(∣∣∣an

nr

∣∣∣ > K
)
< ε for all n > N. (4.25)

When an is of order nr in probability, we can write an = Op(n
r). In most

cases, it is obvious that a quantity is stochastic, and there is no harm in
writing O(nr) when we really mean Op(n

r). The properties of the same-order
relations are the same in the deterministic and stochastic cases.

The same-order relations are useful because we can manipulate them as if
they were simply powers of n. Suppose, for example, that we are dealing with
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two functions, f(n) and g(n), which are O(nr) and O(nq), respectively. Then

f(n)g(n) = O(nr)O(nq) = O(nr+q), and

f(n) + g(n) = O(nr) +O(nq) = O(nmax(r,q)).
(4.26)

In the first line here, we see that the order of the product of the two functions
is just n to the power r + q. In the second line, we see that the order of the
sum of the functions is just n to the power that is the maximum of r and q.
Both these properties are often very useful in asymptotic analysis.

In equation (4.23), we made the assumption that n−1X⊤X has a probability
limit of SX⊤X , which is a finite, positive definite, deterministic matrix. From
the definition (4.20) of a probability limit, it follows that each element of
the matrix n−1X⊤X is Op(1). Moreover, the definition (4.25) lets us write
X⊤X = Op(n). Similarly, it is very reasonable to assume that X⊤y = Op(n).
In that case, using the first line of equations (4.26), we have

β̂ = (X⊤X)−1X⊤y = Op(n
−1)Op(n) = Op(1). (4.27)

It is customary to write O(1) instead of O(n0), as we did in the last expression
here, but the same-order relation is still about n. Equation (4.27) says that β̂
does not systematically get larger or smaller as n → ∞, and this is of course
a desirable property of any sensible asymptotic construction.

Consistency

Even when the OLS estimator is biased, it may turn out to be consistent.
Since consistency is an asymptotic property, whether or not it holds depends
on the asymptotic construction. Given a model M and an estimator β̂ of its
parameters, and given a suitable asymptotic construction that allows β̂ to be
defined for arbitrary sample size n, the estimator is consistent if, for every
DGP µ ∈ M,

plim
n→∞

µ β̂ = βµ,

where as before the notation means that, for samples generated by the DGP µ,
the plim of the sequence of estimators β̂ is nonstochastic and equal to the value
of β associated with µ.

We now show that, under a suitable asymptotic construction, the OLS esti-
mator β̂ is consistent. When the DGP µ is a special case of the regression
model (4.03) that is being estimated, we saw in (4.05) that

β̂ = βµ + (X⊤X)−1X⊤u. (4.28)

To demonstrate that β̂ is consistent, we need to show that the second term on
the right-hand side here has a plim of zero. This term is the product of two
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matrix expressions, (X⊤X)−1 and X⊤u. Neither X⊤X nor X⊤u has a prob-
ability limit. However, we can divide both of these expressions by n without
changing the value of this term, since n · n−1 = 1. By doing so, we convert
them into quantities that, for many reasonable asymptotic constructions, have
nonstochastic plims. The plim of the second term in (4.28) becomes(

plim
n→∞

1−
n
X⊤X

)−1

plim
n→∞

1−
n
X⊤u =

(
SX⊤X

)−1
plim
n→∞

1−
n
X⊤u = 0. (4.29)

In writing the first equality here, we have assumed, first, that equation (4.23)
holds, and, second, that SX⊤X is nonsingular. As we discuss below, the second
of these assumptions is nontrivial. It can fail even when the matrix X⊤X is
nonsingular for any finite n.

To obtain the second equality in (4.29), we start with assumption (4.13),
which can reasonably be made even when there are lagged dependent variables
among the regressors. This assumption tells us that E(Xt

⊤ut |Xt) = 0, and
the Law of Iterated Expectations then tells us that E(Xt

⊤ut) = 0. Thus,
assuming that we can apply a law of large numbers,

plim
n→∞

1−
n
X⊤u = plim

n→∞

1−
n

n∑
t=1

Xt
⊤ut = 0.

Equations (4.28) and (4.29) together give us the result that β̂ is consistent.

We have just seen that the OLS estimator β̂ is consistent under consider-
ably weaker assumptions about the relationship between the disturbances and
the regressors than were needed to prove that it is unbiased; compare (4.13)
and (4.11). This may wrongly suggest that consistency is a weaker condition
than unbiasedness. Actually, it is neither weaker nor stronger. Consistency
and unbiasedness are simply different concepts. Consistency is an asymptotic
property, while unbiasedness is a property that may hold in samples of any
size. Sometimes, least-squares estimators may be biased but consistent, for
example, in models where X includes lagged dependent variables. In other
circumstances, however, these estimators may be unbiased but not consistent.

As an example, consider again the model (4.18), repeated here for ease of
reference:

yt = β1 + β2
1−
t
+ ut, ut ∼ IID(0, σ2). (4.18)

The least-squares estimates β̂1 and β̂2 are evidently unbiased. However, β̂2

is not consistent if we use the first of the asymptotic constructions suggested
above, where the formula (4.18) is used unchanged for arbitrarily large sam-
ples. The problem is that, as n → ∞, each observation provides less and
less information about β2. This happens because the regressor 1/t tends to
zero, and hence varies less and less across observations as t becomes larger.
As a consequence, the matrix SX⊤X can be shown to be singular; see Exer-
cise 4.5. Therefore, equation (4.29) does not hold, and the second term on the
right-hand side of equation (4.28) does not have a probability limit of zero.
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The above example illustrates the importance of the choice of the asymptotic
construction. Even though β̂2 is inconsistent under one asymptotic construc-
tion, it is consistent under the alternative asymptotic construction in which
we create arbitrarily large samples by stacking copies of the original X matrix.
The model (4.18) is in any case rather a curious one, since β̂1 is consistent
even though β̂2 is not, as readers are asked to show in Exercise 4.6. The
estimator β̂1 is consistent because, as the sample size n gets larger, we obtain
an amount of information about β1 that is roughly proportional to n. In
contrast, β̂2 is not consistent because each successive observation gives us less
and less information about β2.

We make use of asymptotic constructions in order to obtain approximations
to the statistical properties of estimators (or test statistics) for finite sample
sizes. A good construction provides a good approximation. A useful guideline
for the choice of a good construction is that, as the sample size increases,
the data generated for observations past those of the actual sample should
have properties, both stochastic and nonstochastic, as similar as possible to
those of the observations in the real sample. They should be “more of the
same.” This guideline suggests that the second of the constructions suggested
for model (4.18) is preferable to the first.

An estimator that is not consistent is said to be inconsistent. There are
two types of inconsistency, which are actually quite different. If an unbiased
estimator, like β̂2 in the previous example, is inconsistent, it is so because
it does not tend to any nonstochastic probability limit. In contrast, many
inconsistent estimators do tend to nonstochastic probability limits, but they
tend to the wrong ones.

To illustrate the various types of inconsistency, and the relationship between
bias and inconsistency, imagine that we are trying to estimate the population
mean, µ, from a sample of data yt, t = 1, . . . , n. A sensible estimator would be
the sample mean, ȳ. Under reasonable assumptions about the way the yt are
generated, ȳ is unbiased and consistent. Three not very sensible estimators
are the following:

µ̂1 =
1

n+ 1

n∑
t=1

yt,

µ̂2 =
1.01

n

n∑
t=1

yt, and

µ̂3 = 0.01y1 +
0.99

n− 1

n∑
t=2

yt.

The first of these estimators, µ̂1, is biased but consistent. It is evidently equal
to n/(n+1) times ȳ. Thus its expectation is

(
n/(n+1)

)
µ, which tends to µ as

n → ∞, and it is consistent whenever ȳ is. The second estimator, µ̂2, is clearly
biased and inconsistent. Its expectation is 1.01µ, since it is equal to 1.01 ȳ,
and it actually tends to a plim of 1.01µ as n → ∞. The third estimator, µ̂3,
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is perhaps the most interesting. It is clearly unbiased, since it is a weighted
average of two estimators, y1 and the average of y2 through yn, each of which
is unbiased. The second of these two estimators is also consistent. However,
µ̂3 itself is not consistent, because it does not converge to a nonstochastic
plim. Instead, it converges to the random quantity 0.99µ+ 0.01y1.

4.4 Covariance Matrices and Precision Matrices

Although it is valuable to know that the least-squares estimator β̂ can be
either unbiased or, under weaker conditions, consistent, this information by
itself is not very useful. If we are to interpret any given set of OLS para-
meter estimates, we need to know, at least approximately, how the vector β̂
is actually distributed.

For purposes of inference, the most important feature of the distribution of
any vector of parameter estimates is the matrix of its central second moments.
This matrix is the analog, for vector random variables, of the variance of a
scalar random variable. If b is any random vector, its matrix of central second
moments may be denoted by Var(b), using the same notation that we would
use for a variance in the scalar case. Usage, perhaps somewhat illogically,
dictates that this matrix should be called the covariance matrix, although
the terms variance matrix and variance-covariance matrix are also sometimes
used. Whatever it is called, the covariance matrix is an extremely important
concept which comes up over and over again in econometrics.

The covariance matrix Var(b) of a random k --vector b, with typical element bi,
organizes all the central second moments of the bi into a k × k symmetric
matrix. The ith diagonal element of Var(b) is Var(bi), the variance of bi. The
ij th off-diagonal element of Var(b) is Cov(bi, bj), the covariance of bi and bj .
The concept of covariance was introduced in Exercise 2.10. In terms of the
random variables bi and bj , the definition is

Cov(bi, bj) ≡ E
((
bi − E(bi)

)(
bj − E(bj)

))
. (4.30)

Many of the properties of covariance matrices follow immediately from (4.30).
For example, it is easy to see that, if i = j, Cov(bi, bj) = Var(bi). Moreover,
since from (4.30) it is obvious that Cov(bi, bj) = Cov(bj , bi), Var(b) must be a
symmetric matrix. The full covariance matrix Var(b) can be expressed readily
using matrix notation. It is just

Var(b) ≡ E
((
b− E(b)

)(
b− E(b)

)⊤), (4.31)

as is obvious from (4.30). An important special case of equation (4.31) arises
when E(b) = 0. In this case, Var(b) = E(bb⊤).
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The special case in which Var(b) is diagonal, so that all the covariances are
zero, is of particular interest. If bi and bj are statistically independent, then
Cov(bi, bj) = 0; see Exercise 2.13. The converse is not true, however. It is per-
fectly possible for two random variables that are not statistically independent
to have covariance 0; for an extreme example of this, see Exercise 2.14.

The correlation between bi and bj is

ρ(bi, bj) ≡
Cov(bi, bj)(

Var(bi)Var(bj)
)1/2 . (4.32)

It is often useful to think in terms of correlations rather than covariances,
because, according to the result of Exercise 4.10, the former always lie between
−1 and 1. We can arrange the correlations between all the elements of b into
a symmetric matrix called the correlation matrix. It is clear from (4.32) that
all the elements on the principal diagonal of this matrix must be 1. This
demonstrates that the correlation of any random variable with itself equals 1.

In addition to being symmetric, Var(b) must be a positive semidefinitematrix;
see Exercise 4.9. In most cases, covariance matrices and correlation matrices
are positive definite rather than positive semidefinite, and their properties
depend crucially on this fact.

Positive Definite Matrices

A k × k symmetric matrix A is said to be positive definite if, for all nonzero
k --vectors x, the matrix product x⊤Ax, which is just a scalar, is positive. The
quantity x⊤Ax is called a quadratic form. A quadratic form always involves
a k --vector, in this case x, and a k× k matrix, in this case A. By the rules of
matrix multiplication,

x⊤Ax =
k∑

i=1

k∑
j=1

xixjAij . (4.33)

If this quadratic form can take on zero values but not negative values, the
matrix A is said to be positive semidefinite.

Any matrix of the form B⊤B is positive semidefinite. To see this, observe
that B⊤B is symmetric and that, for any nonzero x,

x⊤B⊤Bx = (Bx)⊤(Bx) = ∥Bx∥2 ≥ 0. (4.34)

This result can hold with equality only if Bx = 0. But, in that case, since
x ̸= 0, the columns of B are linearly dependent. We express this circumstance
by saying that B does not have full column rank. Note that B can have full
rank but not full column rank if B has fewer rows than columns, in which case
the maximum possible rank equals the number of rows. However, a matrix
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with full column rank necessarily also has full rank. When B does have full
column rank, it follows from (4.34) that B⊤B is positive definite. Similarly, if
A is positive definite, then any matrix of the form B⊤AB is positive definite
if B has full column rank and positive semidefinite otherwise.

It is easy to see that the diagonal elements of a positive definite matrix must
all be positive. Suppose that this is not the case and that, say, A22 is negative.
Then, if we chose x to be the vector e2, that is, a vector with 1 as its second
element and all other elements equal to 0 (see Section 3.6), we could make
x⊤Ax < 0. From (4.33), the quadratic form would just be e2

⊤Ae2 = A22 < 0.
For a positive semidefinite matrix, the diagonal elements may be 0. Unlike
the diagonal elements, the off-diagonal elements of A may be of either sign.

A particularly simple example of a positive definite matrix is the identity
matrix, I. Because all the off-diagonal elements are zero, (4.33) tells us that
a quadratic form in I is

x⊤Ix =
k∑

i=1

x2
i ,

which is certainly positive for all nonzero vectors x. The identity matrix was
used in (4.03) in a notation that may not have been clear at the time. There
we specified that u ∼ IID(0, σ2I). This is just a compact way of saying that
the vector of disturbances u is assumed to have expectation 0 and covariance
matrix σ2I.

A positive definite matrix cannot be singular, because, if A is singular, there
must exist a nonzero x such that Ax = 0. But then x⊤Ax = 0 as well, which
means that A is not positive definite. Thus the inverse of a positive definite
matrix always exists. It too is a positive definite matrix, as readers are asked
to show in Exercise 4.13.

There is a sort of converse of the result that any matrix of the form B⊤B,
where B has full column rank, is positive definite. It is that, if the k × k
matrix A is symmetric and positive definite, then there always exists a full-
rank k × k matrix B such that A = B⊤B. For any given matrix A, the
corresponding matrix B is not unique. In particular, B can be chosen to be
symmetric, but it can also be chosen to be upper or lower triangular. Details
of a simple algorithm (Crout’s algorithm) for finding a triangular matrix B
can be found in Press, Teukolsky, Vetterling, and Flannery (2007).

For a scalar parameter, the accuracy of an estimator is often taken to be
proportional to the inverse of its variance, and this is sometimes called the
precision of the estimator. For a parameter vector, the precision matrix is
defined as the inverse of the covariance matrix of the estimator. It exists and
is positive definite if and only if the covariance matrix is positive definite.

The OLS Covariance Matrix

The notation we used in the specification (4.03) of the linear regression model
can now be explained. It serves both to indicate that the disturbances have
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expectation zero, and also to specify the covariance matrix of the disturbances,
usually called the disturbance covariance matrix or error covariance matrix.

If the disturbances are IID, they all have the same variance σ2, and the covar-
iance of any pair of them is zero. Thus the covariance matrix of the vector u
is σ2I, and we have

Var(u) = E(uu⊤) = σ2I. (4.35)

A matrix like this one, which is proportional to an identity matrix, is called
a scalar matrix. Notice that (4.35) does not require the disturbances to be
independent, or even that they all have the same distribution. All that is
required is that they all have the same variance and that the covariance of
each pair of disturbances is zero. This weaker condition is often expressed by
saying that the disturbances are white noise. Although this expression is a
mixed metaphor, it has been in use for a long time, because it provides an
easy shorthand way to refer to this condition

When equation (4.35) does not hold, we denote the n× n disturbance covar-
iance matrix by Ω. When the diagonal elements of the matrix Ω differ, the
disturbances are said to be heteroskedastic, or to display heteroskedasticity.
In the opposite case, when all the disturbances have the same variance, they
are said to be homoskedastic, or to display homoskedasticity.

When Ω has nonzero off-diagonal elements, the disturbances are said to be
autocorrelated, or, for time series, serially correlated. Autocorrelation may
also arise outside a time-series context. For instance, if the observations of a
sample characterize different locations in space, they may well display spatial
correlation. Of course, autocorrelated disturbances may or may not also be
heteroskedastic, and heteroskedastic disturbances may or may not also be
autocorrelated.

If we assume that the matrix X is exogenous, we can calculate the covariance
matrix of β̂. From (4.05), we know that β̂−β0 = (X⊤X)−1X⊤u. By equation
(4.31), under the assumption that β̂ is unbiased, Var(β̂) is the expectation of
the k × k matrix

(β̂ − β0)(β̂ − β0)
⊤= (X⊤X)−1X⊤uu⊤X(X⊤X)−1. (4.36)

Taking this expectation, conditional on X, gives

Var(β̂) = (X⊤X)−1X⊤E(uu⊤)X(X⊤X)−1

= (X⊤X)−1X⊤ΩX(X⊤X)−1.
(4.37)

This form of covariance matrix is often called a sandwich covariance matrix,
for the obvious reason that the matrix X⊤ΩX is sandwiched between the two
instances of the matrix (X⊤X)−1. The diagonal elements of Var(β̂) are often
particularly interesting, since the square root of the k th diagonal element is
the standard deviation of β̂k.
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If Ω = σ2
0I, so that there is neither heteroskedasticity nor autocorrelation,

then equations (4.37) simplify greatly. They become

Var(β̂) = (X⊤X)−1X⊤σ2
0 IX(X⊤X)−1

= σ2
0(X

⊤X)−1X⊤X(X⊤X)−1 = σ2
0(X

⊤X)−1.
(4.38)

This is the standard result for the covariance matrix of β̂ under the conven-
tional, but often too strong, assumptions that β̂ is unbiased and that the
covariance matrix of the disturbances is a scalar matrix.

4.5 Precision of the Least-Squares Estimates

We now investigate what determines the precision of the least-squares esti-
mates β̂ when the disturbances are homoskedastic and serially uncorrelated,
so that equation (4.38) holds. Recall that the precision matrix is the inverse
of the covariance matrix. Thus, in this case, the precision matrix is

1

σ2
0

X⊤X. (4.39)

There are really only three things that matter. The first of these is σ2
0 , the

true variance of the disturbances. Not surprisingly, the precision matrix (4.39)
is inversely proportional to σ2

0 . Thus the more random variation there is in
the disturbances, the less precise are the parameter estimates.

The second thing that affects the precision of β̂ is the sample size n. It is
illuminating to rewrite expression (4.39) as

n

σ2
0

(
1−
n
X⊤X

)
. (4.40)

If we make the assumption (4.23), then n−1X⊤X is Op(1). Thus it does
not vary systematically with n. In that case, the precision matrix (4.40)
must be Op(n). Thus, if we were to double the sample size, we would expect
the precision of β̂ to be roughly doubled and the standard deviations of the
individual β̂i to be divided by

√
2.

As an example, suppose that we are estimating a regression model with just a
constant term. We can write the model as y = β1ι+u, where ι is an n--vector
of ones. Plugging in ι for X in (4.04) and (4.38), we find that

β̂1 = (ι⊤ι)−1ι⊤y = 1−
n

n∑
t=1

yt, and

Var(β̂1) = σ2
0(ι

⊤ι)−1 = 1−
n
σ2
0 .
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Thus, in this particularly simple case, the precision of the least-squares esti-
mator is exactly proportional to n, since the variance is proportional to 1/n.

The third thing that affects the precision of β̂ is the matrix X. Suppose that
we are interested in a particular coefficient which, without loss of generality,
we may call β1. Then, if β2 denotes the (k − 1)--vector of the remaining
coefficients, we can rewrite the regression model (4.03) as

y = x1β1 +X2β2 + u, (4.41)

where X has been partitioned into x1 and X2 to conform with the partition
of β. By the FWL Theorem, regression (4.41) yields the same estimate of β1

as the FWL regression

M2y = M2x1β1 + residuals,

where, as in Section 3.4, M2 ≡ I − X2(X2
⊤X2)

−1X2
⊤. This estimate is

β̂1 = x1
⊤M2y/x1

⊤M2x1, and, by calculations similar to the ones that cul-
minated in equations (4.38), its variance is σ2

0(x1
⊤M2x1)

−1. Thus we see that
the precision of β̂1 is

x1
⊤M2x1/σ

2
0 , (4.42)

which is equal to the squared length of the vector M2x1, divided by the
variance of the disturbances.

The intuition behind equation (4.42) is simple. How much information the
sample gives us about β1 is proportional to the squared Euclidean length of
the vector M2x1, which is the numerator of (4.42). When ∥M2x1∥ is big,
either because n is large or because at least some elements of M2x1 are large,
β̂1 is relatively precise. When ∥M2x1∥ is small, either because n is small or
because all the elements of M2x1 are small, β̂1 is relatively imprecise.

The squared Euclidean length of the vector M2x1 is just the sum of squared
residuals from the regression

x1 = X2c + residuals. (4.43)

Thus the precision of β̂1, expression (4.42), is proportional to the sum of
squared residuals from regression (4.43). When x1 is well explained by the
other columns of X, this SSR is small, and the variance of β̂1 is consequently
large. When x1 is not well explained by the other columns of X, this SSR is
large, and the variance of β̂1 is consequently small.

As the above discussion makes clear, the precision with which β1 is estimated
depends on X2 just as much as it depends on x1. Sometimes, if we just
regress y on a constant and x1, we may obtain what seems to be a very
precise estimate of β1, but if we then include some additional regressors, the
estimate becomes much less precise. The reason for this is that the additional
regressors do a much better job of explaining x1 in regression (4.43) than does
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a constant alone. As a consequence, the length of M2x1 is much less than
the length of Mιx1.

This type of situation is sometimes referred to as collinearity, and the regressor
x1 is said to be collinear with some of the other regressors. This terminology
is not very satisfactory, since, if a regressor were collinear with other regressors
in the usual mathematical sense of the term, the regressors would be linearly
dependent. It would be better to speak of approximate collinearity, although
econometricians seldom bother with this nicety. Collinearity can cause diffi-
culties for applied econometric work, but these difficulties are essentially the
same as the ones caused by having a sample size that is too small. In either
case, the data simply do not contain enough information to allow us to obtain
precise estimates of all the coefficients.

What we have called collinearity is often called multicollinearity by econo-
metricians. This is in fact an abuse of the term multicollinearity as it was
introduced by Frisch (1934); see Hendry (1995, Section 7.8) for details.

The covariance matrix of β̂ summarizes all that we know about its second
moments. In practice, of course, we rarely know this matrix, but we usually
can estimate it. For the model (4.01), this merely involves getting an estimate
of σ2

0 . However, under less restrictive assumptions than those of model (4.01),
other ways have to be found to estimate the covariance matrix. Some of these
will be discussed in Sections 5.4 and 5.5. Using an appropriate estimate of the
covariance matrix, we can then, under appropriate assumptions, make exact
or approximate inferences about the parameter vector β. Just how we can do
this will be discussed at length in Chapters 5, 6, and 7.

Linear Functions of Parameter Estimates

The covariance matrix of β̂ can be used to calculate the variance of any linear
(strictly speaking, affine) function of β̂. Suppose that we are interested in
the variance of γ̂, where γ = w⊤β, γ̂ = w⊤β̂, and w is a k --vector of known
coefficients. By choosing w appropriately, we can make γ equal to any one of
the βi, or to the sum of the βi, or to any linear combination of the βi in which
we might be interested. For instance, if we set w equal to a unit basis vector,
with w = ei, then the scalar product w⊤β = ei

⊤β = βi. If w = ι, the vector
of ones, w⊤β =

∑
i βi. Again, if γ = 3β1 − β4, w would be a vector with 3 as

the first element, −1 as the fourth element, and 0 for all the other elements.

By (4.31), we see that

Var(γ̂) = Var(w⊤β̂ ) = E
(
w⊤(β̂ − β0)(β̂ − β0)

⊤w
)

= w⊤E
(
(β̂ − β0)(β̂ − β0)

⊤)w
= w⊤Var(β̂)w. (4.44)

Notice that, in general, the variance of γ̂ depends on every element of the
covariance matrix of β̂; this is made explicit in expression (4.85), which readers
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are asked to derive in Exercise 4.16. Of course, if some elements of the vectorw
are equal to 0, Var(γ̂) does not depend on the corresponding rows and columns
of the covariance matrix.

It may be illuminating to consider the special case used as an example above,
in which γ = 3β1 − β4. In this case, the result (4.44) implies that

Var(γ̂) = w2
1 Var(β̂1) + w2

4 Var(β̂4) + 2w1w4Cov(β̂1, β̂4)

= 9Var(β̂1) + Var(β̂4)− 6Cov(β̂1, β̂4).

Notice that the variance of γ̂ depends on the covariance of β̂1 and β̂4 as well
as on their variances. If this covariance is large and positive, Var(γ̂) may be
small, even when Var(β̂1) and Var(β̂4) are both large.

The Variance of Forecast Errors

The result (4.44) can be used to obtain the variance of the error associated
with any prediction based on a linear regression. In the time-series context,
predictions of yt are generally made before yt is actually observed, and these
predictions are usually called forecasts. We will use the nouns “forecast” and
“prediction” interchangeably.

Suppose we have computed a vector of OLS estimates β̂ and wish to use them
to predict ys, for s not in 1, . . . , n, using an observed vector of regressors Xs.
Then the forecast of ys is simply Xsβ̂. For simplicity, let us assume that the
variance of β̂ is given by (4.38), and that β̂ is unbiased, which implies that
the prediction itself is unbiased. Therefore, the prediction error (or forecast
error) has expectation zero, and its variance is

E(ys −Xsβ̂)
2 = E(Xsβ0 + us −Xsβ̂)

2

= E(u2
s) + E(Xsβ0 −Xsβ̂)

2

= σ2
0 +Var(Xsβ̂). (4.45)

The first equality here depends on the assumption that the regression model
is correctly specified, the second depends on the assumption that the distur-
bances are serially uncorrelated, which ensures that E(usXsβ̂) = 0, and the
third uses the fact that β̂ is assumed to be unbiased.

Using the result (4.44), and recalling that Xs is a row vector, we see that
expression (4.45) is equal to

σ2
0 +XsVar(β̂)Xs

⊤= σ2
0 + σ2

0Xs(X
⊤X)−1Xs

⊤. (4.46)

Thus we find that the variance of the forecast error is the sum of two terms.
The first term is simply the variance of the disturbance us. If we knew the
true value of β, this would be the variance of the forecast error. The second
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term, which makes the forecast error larger than σ2
0 , arises because we are

using the estimate β̂ instead of the true parameter vector β0. It expresses
parameter uncertainty, and it can be thought of as the penalty we pay for
our ignorance about β. Of course, the result (4.46) can easily be generalized
to the case in which we are forecasting a vector of values of the dependent
variable; see Exercise 4.24.

In practice, the expected squared forecast error is almost always larger than
expression (4.45) would suggest. That expression is based on the assumption
that the correct model is actually y = Xβ+u, but we rarely know the correct
model. Suppose the yt were instead generated by the DGP

y = Zγ0 + u, (4.47)

where some but not all of the columns of Z may belong to S(X). If we
nevertheless estimate the incorrect model y = Xβ + u, and treat all the
regressors as fixed, we find that

β̂ = (X⊤X)−1X⊤Zγ0 + (X⊤X)−1X⊤u

≡ β0 + (X⊤X)−1X⊤u.
(4.48)

Equations (4.48) implicitly define the pseudo-true parameter vector β0 as
(X⊤X)−1X⊤Zγ0. More generally, when the regressors are stochastic, β0

may be defined as the plim of β̂ under the DGP (4.47) and an appropriate
asymptotic construction.

We can now compute the expected squared forecast error when we incorrectly
base our forecast on the false model y = Xβ + u. It is

E(ys −Xsβ̂)
2 = E(Zsγ0 + us −Xsβ̂)

2

= E(u2
s) + E(Zsγ0 −Xsβ̂)

2 (4.49)

= E(u2
s) + E(Zsγ0 −Xsβ0 +Xsβ0 −Xsβ̂)

2

= σ2
0 + E(Zsγ0 −Xsβ0)

⊤(Zsγ0 −Xsβ0) + Var(Xsβ̂).

In the third line, we add and subtract the predictions that would be obtained
if we knew the pseudo-true vector β0. The fourth line then follows from a
little algebra and the exogeneity assumption that E(u|X,Z) = 0.

It is evident from the last line of equations (4.49) that the expected squared
forecast error will be larger when the DGP is (4.47) than when it is a special
case of the model we are using. The first and last terms in the last line of
equations (4.49) are the same as the two terms in expression (4.45). The
middle term, which can be thought of as a squared bias, arises because using
a false model causes additional forecast errors. If Xsβ0 provides a good
approximation to Zsγ0, the middle term will be small. But if it provides a
poor approximation, the middle term may be large, and the expected squared
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forecast error may be much larger than expression (4.46) would suggest, on
account of model uncertainty.

Our discussion of forecast errors has been extremely brief. Because forecast-
ing is a very important application of econometric methods, there is a large
literature on it. Important topics include forecast evaluation, methods for
comparing competing forecasts, and methods for combining forecasts. Elliott
and Timmermann (2016) provides a comprehensive treatment of forecasting
in economics. Other useful references include Clements and Hendry (2002),
Elliott and Timmermann (2008), and Pesaran (2015, Chapter 17). One per-
haps surprising result, which has been observed many times, is that simple
models often produce better forecasts than more complicated models, even
when the latter appear to fit better within sample.

4.6 Efficiency of the OLS Estimator

One of the reasons for the popularity of ordinary least squares is that, under
certain conditions, the OLS estimator can be shown to be more efficient than
many competing estimators. One estimator is said to be more efficient than
another if, on average, it yields more accurate estimates than the other. The
reason for the terminology is that an estimator which yields more accurate
estimates can be thought of as utilizing the information available in the sample
more efficiently.

For scalar parameters, one estimator of a parameter is more efficient than
another if the precision of the former is larger than that of the latter. For
parameter vectors, there is a natural way to generalize this idea. Suppose
that β̂ and β̃ are two unbiased estimators of a k --vector of parameters β, with
covariance matrices Var(β̂) and Var(β̃), respectively. Then, if efficiency is
measured in terms of precision, β̃ is said to be more efficient than β̂ if and
only if the difference between their precision matrices, Var(β̃)−1 − Var(β̂)−1,
is a nonzero positive semidefinite matrix.

Since it is more usual to work in terms of variance than of precision, it is
convenient to express the efficiency condition directly in terms of covariance
matrices. As readers are asked to show in Exercise 4.14, if A and B are
positive definite matrices of the same dimensions, then the matrix A −B is
positive semidefinite if and only if B−1 −A−1 is positive semidefinite. Thus
the efficiency condition expressed above in terms of precision matrices is equiv-
alent to saying that β̃ is more efficient than β̂ if and only if Var(β̂)−Var(β̃)
is a nonzero positive semidefinite matrix.

If β̃ is more efficient than β̂ in this sense, then every individual parameter in
the vector β, and every linear combination of those parameters, is estimated
at least as efficiently by using β̃ as by using β̂. Consider an arbitrary linear
combination of the parameters in β, say γ = w⊤β, for any k --vector w that
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we choose. As we saw in the preceding section, Var(γ̃) = w⊤Var(β̃)w, and
similarly for Var(γ̂). Therefore, the difference between Var(γ̂) and Var(γ̃) is

w⊤Var(β̂)w −w⊤Var(β̃)w = w⊤(Var(β̂)−Var(β̃)
)
w. (4.50)

The right-hand side of equation (4.50) must be either positive or zero when-
ever the matrix Var(β̂)−Var(β̃) is positive semidefinite. Thus, if β̃ is a more
efficient estimator than β̂, we can be sure that γ̃ is estimated with no more
variance than γ̂. In practice, when one estimator is more efficient than an-
other, the difference between the covariance matrices is very often positive
definite. When that is the case, every parameter or linear combination of
parameters is estimated more efficiently using β̃ than using β̂.

We now let β̃ denote the vector of OLS parameter estimates. As we are
about to show, this estimator is more efficient than any other linear unbiased
estimator. In Section 4.2, we discussed what it means for an estimator to be
unbiased, but we have not yet discussed what it means for an estimator to be
linear. It simply means that we can write the estimator as a linear function
of y, the vector of observations on the dependent variable. It is clear that
β̃ itself is a linear estimator, because it is equal to the matrix (X⊤X)−1X⊤

times the vector y.

If β̂ now denotes any linear estimator that is not the OLS estimator, we can
always write

β̂ = Ay = (X⊤X)−1X⊤y +Cy, (4.51)

where A and C are non-random or exogenous k × n matrices that usually
depend on X. The first equality here just says that β̂ is a linear estimator.
The second follows from our definition of C:

C ≡ A− (X⊤X)−1X⊤. (4.52)

So far, least squares is the only estimator for linear regression models that
we have encountered. Thus it may be difficult to imagine what kind of esti-
mator β̂ might be. In fact, there are many estimators of this type, including
instrumental variables estimators (Chapter 8)) and generalized least-squares
estimators (Chapter 9). An alternative way of writing the class of linear
unbiased estimators is explored in Exercise 4.25.

The principal theoretical result on the efficiency of the OLS estimator is called
the Gauss-Markov Theorem. An informal way of stating this theorem is to
say that β̃ is the best linear unbiased estimator, or BLUE for short. In other
words, the OLS estimator is more efficient than any other linear unbiased
estimator.

Theorem 4.1. (Gauss-Markov Theorem)

If it is assumed that E(u |X) = 0 and E(uu⊤|X) = σ2I in the
linear regression model (4.03), then the OLS estimator β̃ is more ef-
ficient than any other linear unbiased estimator β̂, in the sense that
Var(β̂)−Var(β̃) is a positive semidefinite matrix.
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Proof:

We assume that the DGP is a special case of (4.03), with parameters β0 and
σ2
0 . Substituting for y in (4.51), we find that

β̂ = A(Xβ0 + u) = AXβ0 +Au. (4.53)

Since we want β̂ to be unbiased, we require that the expectation of the right-
most expression in (4.53), conditional on X, should be β0. The second term
in that expression has conditional expectation 0, and so the first term must
have conditional expectation β0. This is the case for all β0 if and only if
AX = I, the k × k identity matrix. From (4.52), this condition is equivalent

to CX = O. Thus requiring β̂ to be unbiased imposes a strong condition on
the matrix C.

The unbiasedness condition that CX = O implies that Cy = Cu. Since,
from (4.51), Cy = β̂ − β̃, this makes it clear that β̂ − β̃ has conditional ex-
pectation zero. The unbiasedness condition also implies that the matrix of
the covariances of elements of the matrix of β̂ − β̃ and those of β̃ is a zero
matrix. To see this, observe that

E
(
(β̂ − β̃)(β̃ − β0)

⊤) = E
(
Cuu⊤X(X⊤X)−1

)
= Cσ2

0IX(X⊤X)−1

= σ2
0CX(X⊤X)−1 = O.

(4.54)

Consequently, equation (4.51) says that the unbiased linear estimator β̂ is
equal to the least-squares estimator β̃ plus a random component Cu which
has expectation zero and is uncorrelated with β̃. The random component
simply adds noise to the efficient estimator β̃. This makes it clear that β̃ is
more efficient than β̂. To complete the proof, we note that

Var(β̂) = Var
(
β̃ + (β̂ − β̃)

)
= Var

(
β̃ +Cu

)
= Var(β̃) + Var(Cu),

(4.55)

because, from (4.54), the covariance of β̂ and Cu is zero. Thus the difference
between Var(β̂) and Var(β̃) is Var(Cu). Since it is a covariance matrix, this
difference is necessarily positive semidefinite.

Remark: For the Gauss-Markov theorem to hold, it is not necessary to sup-
pose that the disturbances are normally distributed.

We will encounter many cases in which an inefficient estimator is equal to
an efficient estimator plus a random variable that has expectation zero and is
uncorrelated with the efficient estimator. The zero correlation ensures that the
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covariance matrix of the inefficient estimator is equal to the covariance matrix
of the efficient estimator plus another matrix that is positive semidefinite, as
in the last line of (4.55). If the correlation were not zero, this sort of proof
would not work.

The Gauss-Markov Theorem that the OLS estimator is BLUE is one of the
most famous results in statistics. However, it is important to keep in mind the
limitations of this theorem. The theorem applies only to a correctly specified
model with exogenous regressors and disturbances with a scalar covariance
matrix. Moreover, it does not say that the OLS estimator β̂ is more efficient
than every imaginable estimator. Estimators which are nonlinear and/or bi-
ased may well perform better than ordinary least squares.

4.7 Residuals and Disturbances

Once we have obtained the OLS estimates β̂, it is easy to calculate the vector
of least-squares residuals, û ≡ y −Xβ̂.1 The numerical properties of û were
discussed in Section 3.3. These properties include the fact that û is orthog-
onal to Xβ̂ and to every vector that lies in S(X). In this section, we turn
our attention to the statistical properties of û as an estimator of u. These
properties are very important, because we will want to use û for a number of
purposes. In particular, we will want to use it to estimate σ2, the variance
of the disturbances. We need an estimate of σ2 if we are to estimate the
covariance matrix (4.38) of β̂. As we will see in later chapters, the residuals
can also be used to test some of the strong assumptions that are often made
about the distribution of the disturbances and to implement more sophisti-
cated estimation methods that require weaker assumptions.

The consistency of β̂ implies that û → u as n → ∞, but the finite-sample
properties of û differ from those of u. As we saw in Section 3.3, the vector
of residuals û is what remains after we project the regressand y off S(X).
Suppose we are estimating the linear regression model (4.01). If we assume
that the DGP belongs to this model, as (4.02) does, then

MXy = MXXβ0 +MXu = MXu.

The first term in the middle expression here vanishes because MX annihilates
everything that lies in S(X). The statistical properties of û as an estimator
of u when the model (4.01) is correctly specified follow directly from the key
result that û = MXu.

This result implies that each of the residuals is equal to a linear combination
of every one of the disturbances. Consider a single row of the matrix product

1 For the remainder of this chapter, we revert to letting β̂ rather than β̃ denote
the OLS estimator.
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û = MXu. Since the product has dimensions n × 1, this row has just one
element, and this element is one of the residuals. Recalling the result on
partitioned matrices in Exercise 2.16, which allows us to select any row of a
matrix product by selecting the corresponding row of the leftmost factor, we
can write the tth residual as

ût = ut −Xt(X
⊤X)−1X⊤u

= ut −
n∑

s=1

Xt(X
⊤X)−1Xs

⊤us. (4.56)

Thus, even if each of the disturbances ut is independent of all the others,
as we have been assuming, each of the ût is not independent of all the other
residuals. In general, there is some dependence between every pair of residuals.
However, this dependence generally diminishes as the sample size n increases.

Let us now assume that E(u |X) = 0. This is assumption (4.11), which we
made in Section 4.2 in order to prove that β̂ is unbiased. According to this
assumption, E(ut |X) = 0 for all t. All the expectations we will take in the
remainder of this section will be conditional on X. Since, by (4.56), ût is
just a linear combination of all the ut, the expectation of ût conditional on
X must be zero. Thus, in this respect, the residuals ût behave just like the
disturbances ut.

In other respects, however, the residuals do not have the same properties as
the disturbances. Consider Var(ût), the variance of ût. Since E(ût) = 0,
this variance is just E(û2

t ). As we saw in Section 3.3, the Euclidean length
of the vector of least-squares residuals, û, is always smaller than that of the
vector of residuals evaluated at any other value, u(β). In particular, û must
be shorter than the vector of disturbances u = u(β0). Thus we know that
∥û∥2 ≤ ∥u∥2. This implies that E

(
∥û∥2

)
≤ E

(
∥u∥2

)
. If, as usual, we assume

that the variance of the disturbances is σ2
0 under the true DGP, we see that

n∑
t=1

Var(ût) =
n∑

t=1

E(û2
t ) = E

( n∑
t=1

û2
t

)
= E

(
∥û∥2

)
≤ E

(
∥u∥2

)
= E

( n∑
t=1

u2
t

)
=

n∑
t=1

E(u2
t ) = nσ2

0 .

This suggests that, at least for most observations, the variance of ût must be
less than σ2

0 . In fact, as we are about to see, Var(ût) is less than σ2
0 for every

observation.

The easiest way to calculate the variance of ût is to calculate the covariance
matrix of the entire vector û:

Var(û) = Var(MXu) = E(MXuu⊤MX)

= MXE(uu⊤)MX = MXVar(u)MX

= MX(σ2
0I)MX = σ2

0MXMX = σ2
0MX .

(4.57)
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The second equality in the first line here uses the fact that MXu has expecta-
tion 0. The third equality in the last line uses the fact that MX is idempotent.
From the result (4.57), we see immediately that, in general, E(ûtûs) ̸= 0 for
t ̸= s. Thus, even though the original disturbances are assumed to be uncor-
related, the residuals are not uncorrelated.

From equations (4.57), it can also be seen that the residuals do not have a
constant variance, and that the variance of every residual must always be
smaller than σ2

0 . Recall from Section 3.6 that ht denotes the tth diagonal
element of the projection matrix PX. Thus a typical diagonal element of MX

is 1− ht. Therefore, it follows from (4.57) that

Var(ût) = E(û2
t ) = (1− ht)σ

2
0 . (4.58)

Since 0 ≤ 1−ht < 1, this equation implies that E(û2
t ) must always be smaller

than σ2
0 . Just how much smaller depends on ht. It is clear that high-leverage

observations, for which ht is relatively large, must have residuals with smaller
variance than low-leverage observations, for which ht is relatively small. This
makes sense, since high-leverage observations have more impact on the para-
meter values. As a consequence, the residuals for high-leverage observations
tend to be shrunk more, relative to the disturbances, than the residuals for
low-leverage observations.

Estimating the Variance of the Disturbances

The method of least squares provides estimates of the regression coefficients,
but it does not directly provide an estimate of σ2, the variance of the distur-
bances. The method of moments suggests that we can estimate σ2 by using
the corresponding sample moment. If we actually observed the ut, this sample
moment would be

1−
n

n∑
t=1

u2
t . (4.59)

We do not observe the ut, but we do observe the ût. Thus the simplest possible
MM estimator is

σ̂2 ≡ 1−
n

n∑
t=1

û2
t . (4.60)

This estimator is just the average of n squared residuals. It can be shown to
be consistent; see Exercise 4.21. However, because each squared residual has
expectation less than σ2

0 , by (4.58), σ̂2 must be biased downward.

It is easy to calculate the bias of σ̂2. We saw in Section 3.6 that
∑n

t=1 ht = k.
Therefore, from (4.58) and (4.60),

E(σ̂2) = 1−
n

n∑
t=1

E(û2
t ) =

1−
n

n∑
t=1

(1− ht)σ
2
0 =

n− k

n
σ2
0 . (4.61)
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Since û = MXu and MX is idempotent, the sum of squared residuals is just
u⊤MXu. The result (4.61) implies that

E
(
u⊤MXu

)
= E

(
SSR(β̂)

)
= E

( n∑
t=1

û2
t

)
= (n− k)σ2

0 . (4.62)

Readers are asked to show this in a different way in Exercise 4.22. Notice,
from (4.62), that adding one more regressor has exactly the same effect on
the expectation of the SSR as taking away one observation.

The result (4.61) suggests another estimator, which is unbiased:

s2 ≡ 1

n− k

n∑
t=1

û2
t . (4.63)

The only difference between σ̂2 and s2 is that the former divides the SSR by n
and the latter divides it by n− k. As a result, s2 is unbiased whenever β̂ is.
Ideally, if we were able to observe the disturbances, our estimator would be
(4.59), which would be unbiased. When we replace the disturbances ut by the
residuals ût, we introduce a downward bias. Dividing by n− k instead of by
n eliminates this bias.

Virtually all OLS regression programs report s2 as the estimated variance of
the disturbances. The square root of this estimate, s, is called the standard
error of the regression or the regression standard error. It is important to
remember that, even though s2 provides an unbiased estimate of σ2

0, s itself
does not provide an unbiased estimate of σ0, because taking the square root
of s2 is a nonlinear operation. If we replace σ2

0 by s2 in expression (4.38), we
can obtain an unbiased estimate of Var(β̂),

V̂ar(β̂) = s2(X⊤X)−1. (4.64)

This is the usual estimate of the covariance matrix of the OLS parameter
estimates under the assumption of IID disturbances.

It is easy to see that s2 is not only unbiased, but also consistent under any
reasonable asymptotic construction. We know from Exercise 4.21 that σ̂2 is
consistent, and, since limn→∞(n − k)/n = 1, the consistency of s2 follows
immediately from (4.63).

4.8 Misspecification of Linear Regression Models

Up to this point, we have (with one exception) assumed that the DGP belongs
to the model that is being estimated, or, in other words, that the model
is correctly specified. This is obviously a very strong assumption indeed.
It is therefore important to know something about the statistical properties
of β̂ when the model is not correctly specified. In this section, we consider
a simple case of misspecification, namely, underspecification. In order to
understand underspecification better, we begin by discussing its opposite,
overspecification.
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Overspecification

A model is said to be overspecified if some variables that rightly belong to the
information set Ωt, but do not appear in the DGP, are mistakenly included
in the model. Overspecification is not a form of misspecification. Including
irrelevant explanatory variables in a model makes the model larger than it
need have been, but, since the DGP remains a special case of the model, there
is no misspecification. Consider the case of an overspecified linear regression
model. Suppose that we estimate the model

y = Xβ +Zγ + u, u ∼ IID(0, σ2I), (4.65)

when the data are actually generated by

y = Xβ0 + u, u ∼ IID(0, σ2
0I). (4.66)

It is assumed that Xt and Zt, the t
th rows of X and Z, respectively, belong to

Ωt. Recall the discussion of information sets in Section 2.3. The overspecified
model (4.65) is not misspecified, since the DGP (4.66) is a special case of it,
with β = β0, γ = 0, and σ2 = σ2

0 .

Suppose now that we run the linear regression (4.65). By the FWL Theorem,
the estimates β̂ from (4.65) are the same as those from the regression

MZy = MZXβ + residuals,

where, as usual, MZ = I−Z(Z⊤Z)−1Z⊤. Thus we see that

β̂ = (X⊤MZX)−1X⊤MZy. (4.67)

Since β̂ is part of the OLS estimator of a correctly specified model, it must
be unbiased if X and Z are exogenous. Indeed, if we replace y by Xβ0 + u,
we find from (4.67) that

β̂ = β0 + (X⊤MZX)−1X⊤MZu. (4.68)

The conditional expectation of the second term on the right-hand side of
(4.68) is 0, provided we take expectations conditional on Z as well as on X;
see Section 4.2. Since Zt is assumed to belong to Ωt, it is perfectly legitimate
to do this.

If we had estimated (4.65) subject to the valid restriction that γ = 0, we
would have obtained the OLS estimate β̃, expression (4.04), which is unbiased
and has covariance matrix (4.38). We see that both β̃ and β̂ are unbiased
estimators, linear in y. Both are OLS estimators, and so it seems that we
should be able to apply the Gauss-Markov Theorem to both of them. This is
in fact correct, but we must be careful to apply the theorem in the context of
the appropriate model for each of the estimators.
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For β̃, the appropriate model is the restricted model,

y = Xβ + u, u ∼ IID(0, σ2I), (4.69)

in which the restriction γ = 0 is explicitly imposed. Provided this restriction
is correct, as it is if the true DGP takes the form (4.66), β̃ must be more
efficient than any other linear unbiased estimator of β. Thus we should find
that the matrix Var(β̂)−Var(β̃) is positive semidefinite.

For β̂, the appropriate model is the unrestricted model (4.65). In this context,
the Gauss-Markov Theorem says that, when we do not know the true value
of γ, β̂ is the best linear unbiased estimator of β. It is important to note here
that β̃ is not an unbiased estimator of β for the unrestricted model, and so
it cannot be included in the class of estimators covered by the Gauss-Markov
Theorem for that model. We will make this point more fully in the next
subsection, when we discuss underspecification.

It is illuminating to check these consequences of the Gauss-Markov Theorem
explicitly. From equation (4.68), it follows that

Var(β̂) = E
(
(β̂ − β0)(β̂ − β0)

⊤)
= (X⊤MZX)−1X⊤MZE(uu

⊤)MZX(X⊤MZX)−1

= σ2
0(X

⊤MZX)−1X⊤MZIMZX(X⊤MZX)−1

= σ2
0(X

⊤MZX)−1.

(4.70)

The situation is clear in the case in which there is only one parameter, β,
corresponding to a single regressor, x. Since MZ is a projection matrix, the
Euclidean length of MZx must be smaller (or at least, no larger) than the
Euclidean length of x; recall (3.27). Thus x⊤MZx ≤ x⊤x, which implies that

σ2
0(x

⊤MZx)
−1 ≥ σ2

0(x
⊤x)−1. (4.71)

The inequality in (4.71) almost always holds strictly. The only exception is
the special case in which x lies in S⊥(Z), which implies that the regression of
x on Z has no explanatory power at all.

In general, we wish to show that Var(β̂)−Var(β̃) is a positive semidefinite
matrix. As we saw in Section 4.5, this is equivalent to showing that the matrix
Var(β̃)−1 −Var(β̂)−1 is positive semidefinite. A little algebra shows that

X⊤X −X⊤MZX = X⊤(I−MZ)X

= X⊤PZX = (PZX)⊤PZX.
(4.72)

SinceX⊤X−X⊤MZX can be written as the transpose of a matrix times itself,
it must be positive semidefinite. Dividing by σ2

0 gives the desired result.
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We have established that the OLS estimator of β in the overspecified regres-
sion model (4.65) is at most as efficient as the OLS estimator in the restricted
model (4.69), provided the restrictions are true. Therefore, adding additional
variables that do not really belong in a model normally leads to less accurate
estimates. Only in certain very special cases is there no loss of efficiency.
In such cases, the covariance matrices of β̃ and β̂ must be the same, which
implies that the matrix difference computed in (4.72) must be zero.

The last expression in (4.72) is a zero matrix whenever PZX = O. This
condition holds whenever the two sets of regressors X and Z are mutually
orthogonal, so that Z⊤X = O. In this special case, β̂ is just as efficient
as β̃. In general, however, including regressors that do not belong in a model
increases the variance of the estimates of the coefficients on the regressors that
do belong, and the increase can be very great in many cases. As can be seen
from the left-hand side of (4.71), the variance of the estimated coefficient β̂
associated with any regressor x is proportional to the inverse of the SSR from
a regression of x on all the other regressors. The more other regressors there
are, whether they truly belong in the model or not, the smaller is this SSR.

Underspecification

The opposite of overspecification is underspecification, in which we omit some
variables that actually do appear in the DGP. To avoid any new notation, let
us suppose that the model we estimate is (4.69), which yields the estimator β̃,
but that the DGP is really

y = Xβ0 +Zγ0 + u, u ∼ IID(0, σ2
0I). (4.73)

Thus the situation is precisely the opposite of the one considered above. The
estimator β̂, based on regression (4.65), is now the “correct” one to use, while
the estimator β̃ is based on an underspecified model. It is clear that under-
specification, unlike overspecification, is a form of misspecification, because
the DGP (4.73) does not belong to the model (4.69).

The first point to recognize about β̃ is that it is now, in general, biased. Sub-
stituting the right-hand side of (4.73) for y in (4.04), and taking expectations
conditional on X and Z, we find that

E(β̃) = E
(
(X⊤X)−1X⊤(Xβ0 +Zγ0 + u)

)
= β0 + (X⊤X)−1X⊤Zγ0 + E

(
(X⊤X)−1X⊤u

)
= β0 + (X⊤X)−1X⊤Zγ0.

(4.74)

The second term in the last line of (4.74) is equal to zero only when X⊤Z = O
or γ0 = 0. The first possibility arises when the two sets of regressors are
mutually orthogonal, the second when (4.69) is not in fact underspecified.
Except in these very special cases, β̃ is generally biased. The magnitude of
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the bias depends on the parameter vector γ0 and on the X and Z matrices.
Because this bias does not vanish as n → ∞, β̃ is also generally inconsistent.

Since β̃ is biased, we cannot reasonably use its covariance matrix to evaluate
its accuracy. Instead, we can use the mean squared error matrix, or MSE
matrix, of β̃. This matrix is defined as

MSE(β̃) ≡ E
(
(β̃ − β0)(β̃ − β0)

⊤). (4.75)

The MSE matrix is equal to Var(β̃) if β̃ is unbiased, but not otherwise. For
a scalar parameter β̃, the MSE is equal to the square of the bias plus the
variance:

MSE(β̃) =
(
E(β̃)− β0

)2
+Var(β̃).

Thus, when we use MSE to evaluate the accuracy of an estimator, we are
choosing to give equal weight to random errors and to systematic errors that
arise from bias.2

From equations (4.74), we can see that

β̃ − β0 = (X⊤X)−1X⊤Zγ0 + (X⊤X)−1X⊤u.

Therefore, β̃ − β0 times itself transposed is equal to

(X⊤X)−1X⊤Zγ0γ0
⊤Z⊤X(X⊤X)−1 + (X⊤X)−1X⊤uu⊤X(X⊤X)−1

+ (X⊤X)−1X⊤Zγ0u
⊤X(X⊤X)−1 + (X⊤X)−1X⊤uγ0

⊤Z⊤X(X⊤X)−1.

The second term here has expectation σ2
0(X

⊤X)−1, and the third and fourth
terms, one of which is the transpose of the other, have expectation zero. Thus
we conclude that

MSE(β̃) = σ2
0(X

⊤X)−1 + (X⊤X)−1X⊤Zγ0γ0
⊤Z⊤X(X⊤X)−1. (4.76)

The first term is what the covariance matrix would be if we were estimating
a correctly specified model, and the second term arises because the restricted
estimator β̃ is biased.

We would like to compare MSE(β̃), expression (4.76), with MSE(β̂) = Var(β̂),
which is given by expression (4.70). However, no unambiguous comparison is
possible. The first term in (4.76) cannot be larger, in the matrix sense, than
(4.70). If the bias is small, the second term must be small, and it may well
be that β̃ is more efficient than β̂. However, if the bias is large, the second
term is necessarily large, and β̃ must be less efficient than β̂. Of course, it is
quite possible that some parameters may be estimated more efficiently by β̃
and others more efficiently by β̂.

2 For a scalar parameter, it is common to report the square root of the MSE,
called the root mean squared error, or RMSE, instead of the MSE itself.
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Whether or not the restricted estimator β̃ happens to be more efficient than
the unrestricted estimator β̂, the covariance matrix for β̃ that is calculated
by a least-squares regression program is incorrect. The program attempts
to estimate the first term in (4.76), but it ignores the second. However, s2

is typically larger than σ2
0 if some regressors have been incorrectly omitted.

Thus, the program yields a biased estimate of the first term.

It is tempting to conclude that underspecification is a more severe problem
than overspecification. After all, the former constitutes misspecification, but
the latter does not. In consequence, as we have seen, underspecification leads
to biased estimates and an estimated covariance matrix that may be severely
misleading, while overspecification merely leads to inefficiency. Therefore, it
would seem that we should always err on the side of overspecification. If all
samples were extremely large, this might be a reasonable conclusion. The bias
caused by underspecification does not go away as the sample size increases,
but the variances of all consistent estimators tend to zero. Therefore, in
sufficiently large samples, it makes sense to avoid underspecification at all
costs. However, in samples of modest size, the gain in efficiency from omitting
some variables, even if their coefficients are not actually zero, may be very
large relative to the bias that is caused by their omission.

4.9 Measures of Goodness of Fit

A natural question to ask about any regression is: How well does it fit? There
is more than one way to answer this question, and none of the answers may
be entirely satisfactory in every case.

One possibility might be to use s, the estimated standard error of the regres-
sion. But s can be rather hard to interpret, since it depends on the scale of
the yt. When the regressand is in logarithms, however, s is meaningful and
easy to interpret. Consider the loglinear model

log yt = β1 + β2 log xt2 + β3 log xt3 + ut. (4.77)

As we saw in Section 2.3, this model can be obtained by taking logarithms of
both sides of the model

yt = eβ1xβ2

t2 x
β3

t3 e
ut. (4.78)

The factor eut is, for ut small, approximately equal to 1 + ut. Thus the stan-
dard deviation of ut in (4.77) is, approximately, the standard deviation of the
proportional disturbance in the regression (4.78). Therefore, for any regres-
sion where the dependent variable is in logs, we can simply interpret 100s,
provided it is small, as an estimate of the percentage error in the regression.

When the regressand is not in logarithms, we could divide s by ȳ, the average
of the yt, or perhaps by the average absolute value of yt if they were not all of
the same sign. This would provide a measure of how large are the disturbances
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in the regression relative to the magnitude of the dependent variable. In many
cases, s/ȳ (for a model in levels) or s (for a model in logarithms) provides
a useful measure of how well a regression fits. However, these measures are
not entirely satisfactory. They are bounded from below, since they cannot be
negative, but they are not bounded from above. Moreover, s/ȳ is very hard
to interpret if yt can be either positive or negative.

A much more commonly used (and misused) measure of goodness of fit is the
coefficient of determination, or R2. There are several versions of R2. The
most fundamental is the uncentered R2, denoted R2

u, which is the ratio of the
explained sum of squares (ESS) of the regression to the total sum of squares
(TSS). Recall that, for the regression y = Xβ + u,

TSS = ∥y∥2 = ∥PXy∥2 + ∥MXy∥2 = ESS + SSR.

This is a consequence of Pythagoras’ Theorem; see equation (3.26). Thus

R2
u =

ESS

TSS
=

∥PXy∥2

∥y∥2
= 1− ∥MXy∥2

∥y∥2
= 1− SSR

TSS
= cos2θ, (4.79)

where θ is the angle between y and PXy; see Figure 3.10. For any angle θ,
we know that −1 ≤ cos θ ≤ 1. Consequently, 0 ≤ R2

u ≤ 1. If the angle θ were
zero, y and Xβ̂ would coincide, the residual vector û would vanish, and we
would have what is called a perfect fit, with R2

u = 1. At the other extreme, if
R2

u = 0, the fitted value vector would vanish, and y would coincide with the
residual vector û.

Because R2
u depends on the data only through the residuals and fitted values,

it is invariant under nonsingular linear transformations of the regressors. In
addition, because it is defined as a ratio, the value of R2

u is invariant to
changes in the scale of y. For example, we could change the units in which the
regressand is measured from dollars to thousands of dollars without affecting
the value of R2

u.

The centered R2, denoted R2
c , is much more commonly encountered than the

uncentered one. For this version, all variables are centered, that is, expressed
as deviations from their respective means, before ESS and TSS are calculated.
The advantage of R2

c is that it is invariant to changes in the mean of the
regressand. By adding a large enough constant to all the yt, we could always
make R2

u become arbitrarily close to 1, at least if the regression included a
constant, since the SSR would stay the same and the TSS would increase
without limit; see Exercise 4.30.

One important limitation of both versions of R2 is that they are valid only if
a regression model is estimated by least squares, since otherwise it would not
be true that TSS = ESS + SSR. Moreover, the centered version is not valid
if the regressors do not include a constant term or the equivalent, that is, if ι,
the vector of 1s, does not belong to S(X).
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Another, possibly undesirable, feature of both R2
u and R2

c as measures of
goodness of fit is that both increase whenever more regressors are added. To
demonstrate this, we argue in terms of R2

u, but the FWL Theorem can be
used to show that the same results hold for R2

c . Consider once more the
restricted and unrestricted models, (4.69) and (4.65), respectively. Since both
regressions have the same dependent variable, they have the same TSS. Thus
the regression with the larger ESS must also have the larger R2. The ESS
from (4.65) is ∥PX,Z y∥2 and that from (4.69) is ∥PXy∥2, and so the difference
between them is

y⊤(PX,Z − PX)y. (4.80)

Clearly, S(X) ⊂ S(X,Z). Thus PX projects on to a subspace of the image
of PX,Z . This implies that the matrix in the middle of (4.80), say Q, is an
orthogonal projection matrix; see Exercise 3.18. Consequently, (4.80) takes
the form y⊤Qy = ∥Qy∥2 ≥ 0. The ESS from (4.65) is therefore no less than
that from (4.69), and so the R2 from (4.65) is no less than that from (4.69).

The R2 can be modified so that adding additional regressors does not neces-
sarily increase its value. If ι ∈ S(X), the centered R2 can be written as

R2
c = 1−

∑n
t=1 û

2
t∑n

t=1(yt − ȳ)2
. (4.81)

The numerator of the second term is just the SSR. As we saw in Section 4.6,
it has expectation (n − k)σ2

0 under standard assumptions. The denominator
is n−1 times an unbiased estimator of the variance of yt about its true mean.
As such, it has expectation (n−1)Var(y). Thus the second term of (4.81) can
be thought of as the ratio of two biased estimators. If we replace these biased
estimators by unbiased estimators, we obtain the adjusted R2,

R̄2 ≡ 1−
1

n−k

∑n
t=1 û

2
t

1
n−1

∑n
t=1(yt − ȳ)2

= 1− (n− 1)y⊤MXy

(n− k)y⊤Mιy
. (4.82)

The adjusted R2 is reported by virtually all regression packages, often in
preference to R2

c . However, R̄2 is really no more informative than R2
c . The

two are generally very similar, except when (n− k)/(n− 1) is noticeably less
than 1.

One nice feature of R2
u and R2

c is that they are constrained to lie between 0
and 1. In contrast, R̄2 can actually be negative. If a model has very little
explanatory power, it is conceivable that (n− 1)/(n− k) may be greater than
y⊤Mιy/y

⊤MXy. When that happens, R̄2 < 0.

The widespread use of R̄2 dates from the early days of econometrics, when
sample sizes were often small, and investigators were easily impressed by mod-
els that yielded large values of R2

c . As we saw above, adding an extra regressor
to a linear regression always increases R2

c . This increase can be quite notice-
able when the sample size is small, even if the added regressor does not really
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belong in the regression. In contrast, adding an extra regressor increases R̄2

only if the proportional reduction in the SSR is greater than the proportional
reduction in n− k. Therefore, a naive investigator who tries to maximize R̄2

is less likely to end up choosing a severely overspecified model than one who
tries to maximize R2

c .

It can be extremely misleading to compare any form of R2 for models that are
estimated using different data sets. Suppose, for example, that we estimate
Model 1 using a set of data for which the regressors, and consequently the
regressand, vary a lot, and we estimate Model 2 using a second set of data for
which both the regressors and the regressand vary much less. Then, even if
both models fit equally well, in the sense that their residuals have just about
the same variance, Model 1 has a much larger R2 than Model 2. This can
most easily be seen from equation (4.81). Increasing the denominator of the
second term while holding the numerator constant evidently increases the R2.

4.10 Final Remarks

In this chapter, we have dealt with many of the best-known and most fun-
damental statistical properties of ordinary least squares. In particular, we
discussed the properties of β̂ as an estimator of β in several sections and
of s2 as an estimator of σ2

0 in Section 4.7. We introduced some of the key
concepts of asymptotic analysis, including laws of large numbers, the same-
order notation, and consistency in Section 4.3. We also proved the famous
Gauss-Markov Theorem that ordinary least squares is the best linear unbiased
estimator in Section 4.6.

In addition, we derived Var(β̂), the covariance matrix of β̂, in Section 4.4,
and we showed how to estimate it when the error covariance matrix is a
scalar matrix in Section 4.7. However, we have not yet said anything about
how to use β̂ and the estimate of Var(β̂) to make inferences about β. This
important topic will be taken up in the next two chapters.

4.11 Exercises

4.1 Generate a sample of size 25 from the autoregressive model (4.14), with
β1 = 1 and β2 = 0.8. For simplicity, assume that y0 = 0 and that the ut
are NID(0, 1). Use this sample to compute the OLS estimates β̂1 and β̂2.
Repeat at least 1000 times, and find the averages of the β̂1 and the β̂2. Use
these averages to estimate the bias of the OLS estimators of β1 and β2.

Repeat this exercise for sample sizes of 50, 100, and 200. What happens to
the bias of β̂1 and β̂2 as the sample size is increased?

4.2 Show that the unconditional distribution of yt in the model (4.14) has ex-
pectation β1/(1 − β2) and variance σ2/(1 − β22). Repeat the simulations of
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Exercise 4.1 under the assumption that y0 is drawn from a normal distribu-
tion with that expectation and variance. Are β̂1 and β̂2 more or less biased
when the data are generated in this more realistic way?

4.3 Consider a sequence of random variables Yt, t = 1, . . . ,∞, which are such
that E(Yt) = µt. By considering the centered variables Yt−µt, show that the
law of large numbers can be formulated as

plim
n→∞

1−
n

n∑
t=1

Yt = lim
n→∞

1−
n

n∑
t=1

µt.

4.4 Let the scalar random variable Yn have CDF

Fn(x) =

{
0 for x < 0,
nx for 0 ≤ x ≤ 1/n,
1 for x > 1/n.

Yn is said to have the uniform distribution U(0, 1/n), since its density is
constant and equal to n on the interval [0, 1/n], and zero elsewhere.

Show that the sequence {Yn} converges in distribution. What is the limit-
ing CDF F∞? Show that F∞ has a point of discontinuity at 0, and that
limn→∞ Fn(0) ̸= F∞(0).

4.5 Consider the model (4.18). Show that the matrix SX⊤X is singular under the
asymptotic construction that uses the model unchanged for all sample sizes.
In order to do so, it may be helpful to know that

∞∑
t=1

1/t2 = π2/6.

4.6 Use the FWL Theorem to obtain an explicit expression for β̂1 in the model
(4.18). Under the asymptotic construction in which the model is unchanged
for all sample sizes, show that β̂1 has a nonstochastic plim equal to the true
value of β1.

4.7 Using the data on consumption and personal disposable income for the United
States in the file consumption-data.txt, estimate the following model for the
period 1948:1 to 2014:4:

ct = β1 + β2yt + ut, ut ∼ NID(0, σ2).

Here ct = logCt is the log of consumption, and yt = log Yt is the log of
disposable income. Then use a random number generator and the estimates
of β1, β2, and σ to obtain 268 simulated observations for ct.

Begin by regressing your simulated log consumption variable on the log of
income and a constant using just the first 4 observations. Save the estimates
of β2 and σ. Repeat this exercise for sample sizes of 5, 6, . . . , 268. Plot the
estimates of β2 and σ as functions of the sample size. What happens to these
estimates as the sample size grows?

Repeat the complete exercise using a different set of simulated consumption
data. Which features of the paths of the parameter estimates are common to
the two experiments, and which are different?

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

4.11 Exercises 139

4.8 Plot the EDF (empirical distribution function) of the residuals from OLS
estimation using one of the sets of simulated data, for the entire sample period,
that you obtained in the last exercise; see Exercise 2.1 for a definition of the
EDF. On the same graph, plot the CDF of the N(0, σ2) distribution, where
σ2 now denotes the variance you used to simulate the log of consumption.

Show that the distributions characterized by the EDF and the normal CDF
have the same expectation but different variances. How could you modify
the residuals so that the EDF of the modified residuals would have the same
variance, σ2, as the normal CDF?

4.9 In Section 4.4, it is stated that the covariance matrix Var(b) of any ran-
dom k --vector b is positive semidefinite. Prove this fact by considering arbi-
trary linear combinations w⊤b of the components of b with nonrandom w. If
Var(b) is positive semidefinite without being positive definite, what can you
say about b?

4.10 For any pair of random variables, b1 and b2, show, by using the fact that the
covariance matrix of b ≡ [b1

.... b2] is positive semidefinite, that

Cov(b1, b2)
2 ≤ Var(b1)Var(b2).

Use this result to show that the correlation of b1 and b2 lies between −1 and 1.

4.11 Consider the linear regression model with n observations,

y = δ1d1 + δ2d2 + u, u ∼ IID(0, σ2I). (4.83)

The two regressors are dummy variables, with every element of d2 equal to 1
minus the corresponding element of d1. The vector d1 has n1 elements equal
to 1, and the vector d2 has n2 = n− n1 elements equal to 1.3

The parameter of interest is γ ≡ δ2 − δ1. Find the standard deviation of γ̂
(that is, the positive square root of its true variance) and write it as a function
of σ, n, and either n1 or n2.

Suppose the data for regression (4.83) come from an experiment that you
design and administer. If you can only afford to collect 800 observations, how
should you choose n1 and n2 in order to estimate γ as efficiently as possible?

4.12 Suppose that X, a matrix of regressors that do not vary systematically with
the sample size n, is added to regression (4.83), so that it becomes

y = δ1d1 + δ2d2 +Xβ + u. (4.84)

What is the true variance of γ̂ in this case? Write this variance as a function
of n and n2 using same-order notation. Will this variance tend to 0 as n→ ∞
if n2 is held fixed?

4.13 If A is a positive definite matrix, show that A−1 is also positive definite.

4.14 If A is a symmetric positive definite k × k matrix, then I − A is positive
definite if and only if A−1− I is positive definite, where I is the k×k identity

3 Equations like (4.83) are frequently used to study treatment effects. dt2 = 1
corresponds to the tth observation being treated, and dt2 = 0 (which implies
that dt1 = 1) corresponds to its not being treated.
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matrix. Prove this result by considering the quadratic form x⊤(I−A)x and
expressing x as R−1z, where R is a symmetric matrix such that A = R2.

Extend the above result to show that, if A and B are symmetric positive
definite matrices of the same dimensions, then A − B is positive definite if
and only if B−1 −A−1 is positive definite.

4.15 Show that the variance of a sum of random variables zt, t = 1, . . . , n, with
Cov(zt, zs) = 0 for t ̸= s, equals the sum of their individual variances, what-
ever their expectations may be.

4.16 If γ ≡ w⊤β =
∑k

i=1 wiβi, show that Var(γ̂), which is given by (4.44), can
also be written as

k∑
i=1

w2
i Var(β̂i) + 2

k∑
i=2

i−1∑
j=1

wiwj Cov(β̂i, β̂j). (4.85)

4.17 Use the result (4.58) on the variance of the OLS residual ût to construct an
unbiased estimating equation for the parameter σ2 that is linear in σ2. Show
that solving this estimating equation yields the unbiased estimator of σ2.

4.18 Using the data in the file consumption-data.txt, construct the variables ct,
the logarithm of consumption, and yt, the logarithm of income, and their
first differences ∆ct ≡ ct − ct−1 and ∆yt ≡ yt − yt−1. Use these data to
estimate the following model for the period 1948:1 to 2014:4:

∆ct = β1 + β2∆yt + β3∆yt−1 + β4∆yt−2 + ut. (4.86)

Let γ =
∑4

i=2 βi. Calculate γ̂ and its standard error in two different ways.
One method should explicitly use the result (4.44), and the other should use
a transformation of regression (4.86) which allows γ̂ and its standard error to
be read off directly from the regression output.

4.19 Using the data in the file house-price-data.txt, regress the logarithm of the
price on a constant, the logarithm of lot size, and the variables baths, sty,
ffin, ca, gar, and reg. What is s, the standard error of the regression?

Now estimate the model again using data for only the first 540 observations,
and use those estimates to forecast the log prices for the last 6 observations.
What are the standard errors of these forecasts? How are they related to the
value of s for the regression with 540 observations?

Hint: It is possible to obtain both the forecasts and the standard errors by
running a single regression with 546 observations and 14 regressors.

⋆4.20 Starting from equation (4.56) and using the result proved in Exercise 4.15,
but without using (4.57), prove that, if E(u2t ) = σ20 and E(usut) = 0 for all
s ̸= t, then Var(ût) = (1− ht)σ

2
0 . This is the result (4.58).

4.21 Use the result (4.58) to show that the MM estimator σ̂2 of (4.60) is consistent.
You may assume that a LLN applies to the average in that equation.

4.22 Prove that E(û⊤û) = (n− k)σ20 . This is the result (4.62). The proof should
make use of the fact that the trace of a product of matrices is invariant to
cyclic permutations; see Section 4.6.
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4.23 Consider two linear regressions, one restricted and the other unrestricted:

y = Xβ + u, and

y = Xβ +Zγ + u.

Show that, in the case of mutually orthogonal regressors, with X⊤Z = O,
the estimates of β from the two regressions are identical.

4.24 Suppose that you use the OLS estimates β̂, obtained by regressing the n× 1
vector y on the n × k matrix X, to forecast the n∗ × 1 vector y∗ using the
n∗ × k matrix X∗. Assuming that the disturbances, both within the sample
used to estimate the parameters β and outside the sample in the forecast
period, are IID(0, σ2), and that the model is correctly specified, what is the
covariance matrix of the vector of forecast errors?

4.25 The class of estimators considered by the Gauss-Markov Theorem can be
written as β̂ = Ay, with AX = I. Show that this class of estimators is in
fact identical to the class of estimators of the form

β̂ = (W⊤X)−1W⊤y, (4.87)

where W is a matrix of exogenous variables such that W⊤X is nonsingular.

4.26 Show that the estimator (4.87) is unchanged if W is replaced by any other
matrix W ′ of the same dimensions such that PW = PW ′ , or, equivalently,
such that S(W ) = S(W ′). In particular, show that the estimator (4.87) is
the OLS estimator if PX = PW .

4.27 Show that the difference between the unrestricted estimator β̂ of model (4.65)
and the restricted estimator β̃ of model (4.69) is given by

β̂ − β̃ = (X⊤MZX)−1X⊤MZMXy.

Hint: In order to prove this result, it is convenient to premultiply the difference
by (X⊤MZX)−1X⊤MZX.

4.28 Consider the linear regression model

yt = β1 + β2xt2 + β3xt3 + ut.

Explain how you could estimate this model subject to the restriction that
β2 + β3 = 1 by running a regression that imposes the restriction. Also,
explain how you could estimate the unrestricted model in such a way that the
value of one of the coefficients would be zero if the restriction held exactly for
your data.

4.29 Prove that, for a linear regression model with a constant term, the uncentered
R2
u is always greater than the centered R2

c .

4.30 Consider a linear regression model for a dependent variable yt that has a
sample mean of 17.21. Suppose that we create a new variable y′t = yt + 10
and run the same linear regression using y′t instead of yt as the regressand.
How are R2

c , R
2
u, and the estimate of the constant term related in the two

regressions? What if instead y′t = yt − 10?
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4.31 Using the data in the file consumption-data.txt, construct the variables ct,
the logarithm of consumption, and yt, the logarithm of income. Use them to
estimate the following two models for the period 1948:1 to 2014:4:

ct = β1 + β2yt + ut, and (4.88)

∆ct = γ1 + γ2∆yt + vt. (4.89)

Here ∆ denotes the first difference operator, so that ∆ct ≡ ct − ct−1, and
∆yt ≡ yt − yt−1. Which model has the larger R2? In your opinion, which
model has the better fit? Explain.

4.32 Using the data in the file consumption-data.txt, construct the variables ct, the
logarithm of consumption, and yt, the logarithm of income. Use them to esti-
mate, for the period 1948:1 to 2014:4, the following autoregressive distributed
lag, or ADL, model:

ct = α+ βct−1 + γ0yt + γ1yt−1 + ut. (4.90)

Such models are often expressed in first-difference form, that is, as

∆ct = δ + ϕct−1 + θ∆yt + ψyt−1 + ut, (4.91)

where the first-difference operator ∆ is defined so that ∆ct = ct − ct−1.
Estimate the first-difference model (4.91), and then, without using the results
of (4.90), rederive the estimates of α, β, γ0, and γ1 solely on the basis of your
results from (4.91).

4.33 Simulate model (4.90) of the previous question, using your estimates of α,
β, γ0, γ1, and the variance σ2 of the disturbances. Perform the simulation
conditional on the income series and the first observation c1 of consumption.
Plot the residuals from running (4.90) on the simulated data, and compare
the plot with that of the residuals from the real data. Comments?
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Chapter 5

Hypothesis Testing in

Linear Regression Models

5.1 Introduction

As we saw in Section 4.2, the vector of OLS parameter estimates β̂ is a random
vector. Since it would be an astonishing coincidence if β̂ were equal to the
true parameter vector β0 in any finite sample, we must take the randomness
of β̂ into account if we are to make inferences about β. In classical economet-
rics, the two principal ways of doing this are performing hypothesis tests and
constructing confidence intervals or, more generally, confidence regions. We
discuss hypothesis testing in this chapter and confidence intervals in the next
one. We start with hypothesis testing because it typically plays a larger role
than confidence intervals in applied econometrics and because it is essential to
have a thorough grasp of hypothesis testing if the construction of confidence
intervals is to be understood at anything more than a very superficial level.

In the next section, we develop the fundamental ideas of hypothesis testing
in the context of a very simple special case. In Section 5.3, we review some
of the properties of a number of important distributions, all related to the
standard normal distribution, which are commonly encountered in the context
of hypothesis testing. This material is needed for Section 5.4, in which we
develop a number of results about hypothesis tests in the classical normal
linear model. In Section 5.5, we relax some of the assumptions of that model
and develop the asymptotic theory of linear regression models. That theory
is then used to study large-sample tests in Section 5.6.

The remainder of the chapter deals with more advanced topics. In Section 5.7,
we discuss some of the rather tricky issues associated with performing two or
more tests at the same time. In Section 5.8, we discuss the power of a test, that
is, what determines the ability of a test to reject a hypothesis that is false.
Finally, in Section 5.9, we introduce the important concept of pretesting,
in which the results of a test are used to determine which of two or more
estimators to use.
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5.2 Basic Ideas

When we conduct hypothesis tests, we must do so in the context of a model.
The hypotheses considered in this chapter are about a parameter or para-
meters of the model. As with the parameter estimators considered in previous
chapters, we work with a data set, consisting of observations on a dependent
variable and some explanatory variables.

The very simplest sort of hypothesis test concerns the (population) mean from
which a random sample has been drawn. By saying that the sample is random,
we mean that the observations are independent and identically distributed
(IID), and are realizations drawn from some underlying distribution. The
term “population mean”, borrowed from biostatistics, here refers simply to
the expectation of that distribution.

Suppose that we wish to test the hypothesis that the expectation is equal to
some value that we specify. A suitable model for this test is the following
regression model

yt = β + ut, ut ∼ IID(0, σ2), (5.01)

where yt is an observation on the dependent variable, β is the expectation
of each of the yt, and is the only parameter of the regression function, and
σ2 is the variance of the disturbance ut. Let β0 be the specified value of the
expectation, so that we can express the hypothesis to be tested as β = β0.

1

The least-squares estimator of β is just the sample mean. If we denote it by β̂,
then it follows that, for a sample of size n,

β̂ = 1−
n

n∑
t=1

yt and Var(β̂) = 1−
n
σ2. (5.02)

These formulas can either be obtained from first principles or as special cases
of the general results for OLS estimation. In this case, the regressor matrix X
is just ι, an n--vector of 1s. Thus, for the model (5.01), the standard formulas

β̂ = (X⊤X)−1X⊤y and Var(β̂) = σ2(X⊤X)−1 yield the two formulas given
in (5.02).

The hypothesis to be tested is called, for historical reasons, the null hypothesis.
It is often given the label H0 for short. In order to test H0, we need a test
statistic, which is a random variable that has a known distribution when the
null hypothesis is true and some other distribution when the null hypothesis
is false. If the value of this test statistic is one that might frequently be
encountered by chance under the null hypothesis, then the test provides no

1 It may be slightly confusing that a 0 subscript is used here to denote the value
of a parameter under the hypothesis being tested as well as its true value. So
long as it is assumed that the hypothesis is true, however, there should be no
possible confusion.
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evidence against the null. On the other hand, if the value of the test statistic
is an extreme one that would rarely be encountered by chance under the
null, then the test does provide evidence against the null. If this evidence
is sufficiently convincing, we may decide to reject the null hypothesis that
β = β0.

For the moment, we will restrict the model (5.01) by making two very strong
assumptions. The first is that ut is normally distributed, and the second
is that σ is known. Under these assumptions, a test of the hypothesis that
β = β0 can be based on the test statistic

z =
β̂ − β0(

Var(β̂)
)1/2 =

n1/2

σ
(β̂ − β0). (5.03)

It turns out that, under the null hypothesis, z is distributed as N(0, 1). It has
expectation 0 because β̂ is an unbiased estimator of β, and β = β0 under the
null. It has variance unity because, by (5.02),

E(z2) =
n

σ2
E
(
(β̂ − β0)

2
)
=

n

σ2

σ2

n
= 1.

Finally, to see that z is normally distributed, note that β̂ is just the average
of the yt, each of which is normally distributed if the corresponding ut is; see
Exercise 2.7. As we will see in the next section, this implies that z is also
normally distributed. Thus z has the first property that we would like a test
statistic to possess: It has a known distribution under the null hypothesis.

For every null hypothesis there is, at least implicitly, an alternative hypothesis,
which is often given the label H1. The alternative hypothesis is what we are
testing the null against. Note that, if we consider the model that results from
imposing the condition of the null hypothesis on the model (5.01), we get

yt − β0 = ut, ut ∼ IID(0, σ2).

The parameter β does not appear in this model; rather it appears only in the
model (5.01), in which the null hypothesis is not imposed. In this case, the
model (5.01) represents the alternative hypothesis, which can be thought of
as providing a framework in which the null hypothesis can be expressed as a
restriction on one or more parameters, here just β = β0. As important as the
fact that z has the N(0, 1) distribution under the null is the fact that z does
not have this distribution under the alternative. Suppose that β takes on some
other value, say β1. Then it is clear that β̂ = β1 + γ̂, where γ̂ has expectation 0
and variance σ2/n; recall equation (4.05). In fact, γ̂ is normal under our
assumption that the ut are normal, just like β̂, and so γ̂ ∼ N(0, σ2/n). It
follows that z is also normal (see Exercise 2.7 again), and we find from (5.03)
that

z ∼ N(λ, 1), with λ =
n1/2

σ
(β1 − β0). (5.04)
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The expectation λ is called the non-centrality parameter, or NCP of the
distribution of z. Provided n is large enough, we would expect λ to be large
and positive if β1 > β0 and large and negative if β1 < β0. Thus we reject the
null hypothesis whenever z is sufficiently far from 0. Just how we can decide
what “sufficiently far” means will be discussed shortly.

If we want to test the null that β = β0 against the alternative that β ̸= β0,
we must perform a two-tailed test and reject the null whenever the absolute
value of z is sufficiently large. If instead we were interested in testing the
null hypothesis that β ≤ β0 against the alternative that β > β0, we would
perform a one-tailed test and reject the null whenever z was sufficiently large
and positive. In general, tests of equality restrictions are two-tailed tests, and
tests of inequality restrictions are one-tailed tests.

Since z is a random variable that can, in principle, take on any value on the
real line, no value of z is absolutely incompatible with the null hypothesis,
and so we can never be absolutely certain that the null hypothesis is false.
One way to deal with this situation is to decide in advance on a rejection rule,
according to which we choose to reject the null hypothesis if and only if the
value of z falls into the rejection region of the rule. For two-tailed tests, the
appropriate rejection region is the union of two sets, one containing all values
of z greater than some positive value, the other all values of z less than some
negative value. For a one-tailed test, the rejection region would consist of just
one set, containing either sufficiently positive or sufficiently negative values
of z, according to the sign of the inequality we wish to test.

A test statistic combined with a rejection rule is generally simply called a test.
A test returns a binary result, namely, reject or do-not-reject. We can never
reach a conclusion that a null hypothesis is true on the basis of statistical
evidence, and so our conclusion if a test fails to reject must simply be that
the test provides no evidence against the null. Other tests, or other data sets,
may well provide strong evidence against it.

If the test incorrectly leads us to reject a null hypothesis that is true, we are
said to make a Type I error. The probability of making such an error is, by
construction, the probability, under the null hypothesis , that z falls into the
rejection region. A property of any given test is its significance level, or just
level, and it is defined as the probability, under the null, of making a Type I
error, that is, the probability of rejecting the null when it is true. A common
notation for this is α. Like all probabilities, α is a number between 0 and 1,
although, in practice, it is generally chosen to be much closer to 0 than 1.
Popular values of α include .05 and .01.

In order to construct the rejection region for a test at level α based on the
test statistic z, the first step is to calculate the critical value associated with
the level α. We begin with the simplest case, which is when we want to test
an inequality restriction of the form β ≥ β0. Evidence against this null is
provided by a value of z that is negative and large enough in absolute value.
The rejection region is thus an infinite interval containing everything to the
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left of the critical value appropriate for level α, say cα. In order to attain this
level, the probability under the null of a realization in this interval must be α.
We continue to suppose that z is standard normal under the null, and so the
critical value cα has to satisfy the equation

Φ(cα) = α; (5.05)

recall that Φ denotes the CDF of the standard normal distribution. We can
solve (5.05) in terms of the inverse function Φ−1, and we find that

cα = Φ−1(α).

Note that, for α < 1/2, cα, being in the left-hand tail of the standard normal
distribution, is negative.

In order to test an equality restriction, we use a two-tailed test. This means
that we need both a negative and a positive critical value. In this case, the
commonest sort of test is an equal-tail test, with the same probability mass
in the rejection regions on the left and on the right. For level α, then, that
means that we want a probabilty mass of α/2 in both tails. For the left-hand
tail, we must have

Φ(−cα) = α/2,

We know that the left-tail critical value is negative, hence the minus sign.
On account of the symmetry of the N(0,1) distribution, the right-tail critical
value is just +cα. We could equally well have defined cα by the equation

Φ(cα) = 1− α/2, (5.06)

which allocates a probability mass of α/2 to the right of cα. Solving equation
(5.06) for cα gives

cα = Φ−1(1− α/2). (5.07)

Clearly, the critical value cα increases as α approaches 0. As an example, when
α = .05, we see from equation (5.07) that the critical value for a two-tailed
test is Φ−1(.975) = 1.96. We would reject the null at the .05 level whenever
the observed absolute value of the test statistic exceeds 1.96.

Until now, we have assumed that the distribution of the test statistic under the
null hypothesis is known exactly, so that we have what is called an exact test.
In econometrics, however, the distribution of a test statistic is often known
only approximately. In this case, we need to draw a distinction between the
nominal level of the test, that is, the probability of making a Type I error
according to whatever approximate distribution we are using to determine the
rejection region, and the actual rejection probability, which may differ greatly
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Figure 5.1 The normal distribution centered and uncentered

from the nominal level. The rejection probability is generally unknowable in
practice, because it typically depends on unknown features of the DGP.2

The probability that a test rejects the null is called the power of the test. If the
data are generated by a DGP that satisfies the null hypothesis, the power of
an exact test is equal to its level. In general, power depends on precisely how
the data were generated and on the sample size. We can see from (5.04) that
the distribution of z is entirely determined by the value of the non-centrality
parameter λ, with λ = 0 under the null, and that the value of λ depends on
the parameters of the DGP. In this example, λ is proportional to β1−β0 and
to the square root of the sample size, and it is inversely proportional to σ.

Values of λ different from 0 move the probability mass of the N(λ, 1) distribu-
tion away from the center of the N(0, 1) distribution and into its tails. This
can be seen in Figure 5.1, which graphs the N(0, 1) density and the N(λ, 1)
density for λ = 2. The second density places much more probability than the
first on values of z greater than 2. Thus, if the rejection region for our test
were the interval from 2 to +∞, there would be a much higher probability
in that region for λ = 2 than for λ = 0. Therefore, we would reject the null
hypothesis more often when the null hypothesis is false, with λ = 2, than
when it is true, with λ = 0.

Mistakenly failing to reject a false null hypothesis is called making a Type II
error. The probability of making such a mistake is equal to 1 minus the
power of the test. It is not hard to see that, quite generally, the probability

2 Another term that often arises in the discussion of hypothesis testing is the size
of a test. Technically, this is the supremum of the rejection probability over all
DGPs that satisfy the null hypothesis. For an exact test, the size equals the
level. For an approximate test, the size is typically difficult or impossible to
calculate. It is often, but by no means always, greater than the nominal level
of the test.
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of rejecting the null with a two-tailed test based on z increases with the
absolute value of λ. Consequently, the power of such a test increases as
β1 − β0 increases, as σ decreases, and as the sample size increases. We will
discuss what determines the power of a test in more detail in Section 5.8.

P Values

As we have defined it, the result of a test is yes or no: Reject or do not reject.
The result depends on the chosen level, and it is to that extent subjective:
different people can be expected to have different tolerances for Type I error.
A more sophisticated approach to deciding whether or not to reject the null
hypothesis is to calculate the P value, or marginal significance level, associ-
ated with a test statistic. The P value for the statistic z is defined as the
greatest level for which a test based on z fails to reject the null. Equivalently,
at least if the statistic z has a continuous distribution, it is the smallest level
for which the test rejects. Thus, the test rejects for all levels greater than
the P value, and it fails to reject for all levels smaller than the P value. The
P value is given as a deterministic function of the (random) statistic z by
finding the level for which z is equal to the critical value for that level. There-
fore, if the P value determined by z is denoted p(z), we must be prepared to
accept a probability p(z) of Type I error if we choose to reject the null. But
the P value itself, being a purely objective quantity, is the same for everyone,
and it allows different people to draw their own subjective conclusions.

The consequences of the definition of the P value are a little trickier for the
equal-tail test we have been discussing. We find that

p(z) = 2
(
1− Φ(|z|)

)
. (5.08)

To see this, note that the test based on z rejects at level α if and only if
|z| > cα. This inequality is equivalent to Φ(|z|) > Φ(cα), because Φ(·) is a
strictly increasing function. Further, for this equal-tail test, Φ(cα) = 1−α/2,
by equation (5.06). The smallest value of α for which the inequality holds is
thus obtained by solving the equation

Φ(|z|) = 1− α/2,

and the solution is easily seen to be the right-hand side of equation (5.08).

One advantage of using P values is that they preserve all the information
conveyed by a test statistic, while presenting it in a way that is directly
interpretable. For example, the test statistics 2.02 and 5.77 would both lead
us to reject the null at the .05 level using a two-tailed test. The second of
these obviously provides more evidence against the null than does the first,
but it is only after they are converted to P values that the magnitude of the
difference becomes apparent. The P value for the first test statistic is .0434,
while the P value for the second is 7.93× 10−9, an extremely small number.
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Φ(z)

z

Figure 5.2 P values for a two-tailed test

Computing a P value transforms z from a random variable with the N(0, 1)
distribution into a new random variable p(z) with the uniform U(0, 1) dis-
tribution. In Exercise 5.1, readers are invited to prove this fact. It is quite
possible to think of p(z) as a test statistic, of which the observed realization
is p(ẑ) whenever the realization of z is ẑ. A test at level α rejects whenever
p(ẑ) < α. Note that the sign of this inequality is the opposite of that in the
condition |ẑ| > cα. Generally, one rejects for large values of test statistics,
but for small P values.

Figure 5.2 illustrates how the test statistic z is related to its P value p(z).
Suppose that the value of the test statistic is 1.51. Then

Pr(z > 1.51) = Pr(z < −1.51) = .0655. (5.09)

This implies, by equation (5.08), that the P value for an equal-tail test based
on z is .1310. The top panel of the figure illustrates (5.09) in terms of the
standard normal density, and the bottom panel illustrates it in terms of the
CDF. To avoid clutter, no critical values are shown on the figure, but it is
clear that a test based on z does not reject at any level smaller than .131.
From the figure, it is also easy to see that the P value for a one-tailed test of
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the hypothesis that β ≤ β0 is .0655. This is just Pr(z > 1.51). Similarly, the
P value for a one-tailed test of the hypothesis that β ≥ β0 is Pr(z < 1.51) =
.9345.

The P values discussed above, whether for one-tailed or two-tailed tests, are
based on the symmetric N(0, 1) distribution. In Exercise 5.19, readers are
asked to show how to compute P values for two-tailed tests based on an
asymmetric distribution.

In this section, we have introduced the basic ideas of hypothesis testing. How-
ever, we had to make two very restrictive assumptions. The first is that the
disturbances are normally distributed, and the second, which is grossly un-
realistic, is that the variance of the disturbances is known. In addition, we
limited our attention to a single restriction on a single parameter. In Sec-
tion 5.4, we will discuss the more general case of linear restrictions on the
parameters of a linear regression model with unknown disturbance variance.
Before we can do so, however, we need to review the properties of the normal
distribution and of several distributions that are closely related to it.

5.3 Some Common Distributions

Most test statistics in econometrics have one of four well-known distributions,
at least approximately. These are the standard normal distribution, the chi-
squared (or χ2) distribution, Student’s t distribution, and the F distribution.
The most basic of these is the normal distribution, since the other three
distributions can be derived from it. In this section, we discuss the standard,
or central, versions of these distributions. Later, in Section 5.8, we will have
occasion to introduce noncentral versions of all these distributions.

The Normal Distribution

The normal distribution, which is sometimes called the Gaussian distribu-
tion in honor of the celebrated German mathematician and astronomer Carl
Friedrich Gauß (1777–1855)3, even though he did not invent it, is certainly
the most famous distribution in statistics. As we saw in Section 2.2, there
is a whole family of normal distributions, all based on the standard normal
distribution, so called because it has expectation 0 and variance 1.

The density of the standard normal distribution, which is usually denoted
by ϕ(·), was defined in equation (2.06). No elementary closed-form expression
exists for its CDF, which is usually denoted by Φ(·). Although there is no
closed form, it is perfectly easy to evaluate Φ numerically, and virtually every
program for econometrics and statistics can do this. Thus it is straightforward

3 Here, but only here, we have used the German spelling of the name that,
elsewhere, is conventionally spelt “Gauss”.
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to compute the P value for any test statistic that is distributed as standard
normal. The graphs of the functions ϕ and Φ were first shown in Figure 2.1
and have just reappeared in Figure 5.2. In both tails, as can be seen in the
top panel of the figure, the density rapidly approaches 0. Thus, although a
standard normal r.v. can, in principle, take on any value on the real line,
values greater than about 4 in absolute value occur extremely rarely.

The full normal family of distributions of scalar random variables is what is
called a location-scale family. Any such family can be generated by varying
two parameters, the expectation, which is the location parameter, and the
variance.4 The base member of the family is usually chosen to have expecta-
tion zero and variance, and so also standard deviation, one. For the normal
family, the base is the standard normal distribution.

A random variable X that is normally distributed with expectation µ and
variance σ2 can be generated by the formula

X = µ+ σZ, (5.10)

where Z is standard normal. The distribution of X, that is, the normal
distribution with expectation µ and variance σ2, is denoted N(µ, σ2). Thus the
standard normal distribution is the N(0, 1) distribution. As readers were asked
to show in Exercise 2.8, the density of the N(µ, σ2) distribution, evaluated
at x, is

1−σϕ
(x− µ

σ

)
=

1

σ
√
2π

exp
(
− (x− µ)2

2σ2

)
. (5.11)

The formulas (5.10) and (5.11) illustrate an important point. In principle,
there are two equivalent ways of characterizing a probability distribution.
One is analytic, where the CDF or density of the distribution is given; this is
the case with (5.11). The other is to provide a recipe for simulation, by which
the distribution is specified by means of a random variable that has that dis-
tribution, and is defined by a formula, usually one involving either uniform
U(0,1) or standard normal N(0,1) variables; that is the case with (5.10). Al-
though these two sorts of characterization are entirely equivalent in principle,
it is often much easier to implement the recipe for a simulation, and it may
be difficult to derive an analytic formula from the recipe. In what follows in
this section, we rely exclusively on recipes for simulation.

In expression (5.10), as in Section 2.2, we have distinguished between the
random variable X and a value x that it can take on. However, for the
following discussion, this distinction is more confusing than illuminating. For
the rest of this section, we therefore use lower-case letters to denote both
random variables and the arguments of their densities or CDFs, depending on

4 It is the standard deviation, the square root of the variance, that is called the
scale parameter.
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context. No confusion should result. Adopting this convention, then, we see
that, if x is distributed as N(µ, σ2), we can invert equation (5.10) and obtain
z = (x− µ)/σ, where z is standard normal. Note also that z is the argument
of ϕ in the expression (5.11) of the density of x. In general, the density of a
normal variable x with expectation µ and variance σ2 is 1/σ times ϕ evaluated
at the corresponding standard normal variable, which is z = (x− µ)/σ.

Although the normal distribution is fully characterized by its first two mo-
ments, the higher moments are also important. Because the distribution is
symmetric around its expectation, the third central moment, which measures
the skewness of the distribution, is always zero.5 This is true for all of the odd
central moments. The fourth moment of a symmetric distribution provides a
way to measure its kurtosis, which essentially means how thick the tails are.
In the case of the N(µ, σ2) distribution, the fourth central moment is 3σ4; see
Exercise 5.2.

The Multivariate Normal Distribution

As its name suggests, the multivariate normal distribution is a family of dis-
tributions for random vectors, with the scalar normal distribution being a
special case of it. When the vector has just two members, the two random
variables are said to have the bivariate normal distribution. As we will see
in a moment, all these distributions, like the scalar normal distribution, are
completely characterized by their first two moments.

In order to construct the multivariate normal distribution, we begin with a
set of m mutually independent standard normal variables, zi, i = 1, . . . ,m,
which we can assemble into a random m--vector. We write z ∼ N(0, I), where
the m-vector 0 is the vector of the expectations of the components of z,
and I is the m ×m covariance matrix, because by construction the variance
of each component of z is 1, and, since the zi are mutually independent, all
the covariances are 0; see Exercise 2.13. Then, by definition, any m--vector x
of linearly independent linear combinations of the components of z has a
multivariate normal distribution. Such a vector x can always be written
as Az, for some nonsingular nonrandom m×m matrix A.

One of the most important properties of the multivariate normal distribution,
which we used in Section 5.2, is that any linear combination of the elements of
a multivariate normal vector is itself normally distributed. The proof of this
result, even for the special case in which the random variables are independent,
requires some effort. It is therefore relegated to an appendix; see Section 5.11.

We denote the components of x as xi, i = 1, . . . ,m. From the result proved
in Section 5.11, it follows that each xi is normally distributed, with (uncon-
ditional) expectation zero. Therefore, from results proved in Section 4.4, we

5 A distribution is said to be skewed to the right if the third central moment is
positive, and to the left if the third central moment is negative.
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σ1 = 1.5, σ2 = 1.0, ρ = −0.9

Figure 5.3 Contours of two bivariate normal densities

can see that the covariance matrix of x is

Var(x) = E(xx⊤) = AE(zz⊤)A⊤= AIA⊤= AA⊤.

Here we have used the fact that the covariance matrix of z is the identity
matrix I.

Let us denote the covariance matrix of x by Ω. Recall that, according to a
result mentioned in Section 4.4 in connection with Crout’s algorithm, for any
positive definite matrix Ω, we can always find a lower-triangular matrix A
such that AA⊤= Ω. Thus, in order to construct a vector x with covariance
matrix Ω, we may always choose the matrix A to be lower-triangular. The
distribution of x is multivariate normal with expectation vector 0 and covar-
iance matrix Ω. We write this as x ∼ N(0,Ω). If we add an m--vector µ of
constants to x, the resulting vector has the N(µ,Ω) distribution.

It is clear from this argument that any linear combination of random variables
that are jointly multivariate normal must itself be normally distributed. Thus,
if x ∼ N(µ,Ω), any scalar a⊤x, where a is an m--vector of fixed coefficients,
is normally distributed with expectation a⊤µ and variance a⊤Ωa.

We saw above that z ∼ N(0, I) whenever the components of the vector z are
independent. Another crucial property of the multivariate normal distribution
is that the converse of this result is also true: If x is any multivariate normal
vector with zero covariances, the components of x are mutually independent.
This is a very special property of the multivariate normal distribution, and
readers are asked to prove it, for the bivariate case, in Exercise 5.5. In general,
a zero covariance between two random variables does not imply that they are
independent.
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It is important to note that the results of the last two paragraphs do not hold
unless the vector x ismultivariate normal, that is, constructed as a set of linear
combinations of independent normal variables. In most cases, when we have
to deal with linear combinations of two or more normal random variables, it is
reasonable to assume that they are jointly distributed as multivariate normal.
However, as Exercise 2.14 illustrates, it is possible for two or more random
variables not to be multivariate normal even though each one individually has
a normal distribution.

Figure 5.3 illustrates the bivariate normal distribution, of which the density is
given in Exercise 5.5 in terms of the variances σ2

1 and σ2
2 of the two variables,

and their correlation ρ. Contours of the density are plotted, on the right for
σ1 = σ2 = 1.0 and ρ = 0.5, on the left for σ1 = 1.5, σ2 = 1.0, and ρ = −0.9.
The contours of the bivariate normal density can be seen to be elliptical. The
ellipses slope upward when ρ > 0 and downward when ρ < 0. They do so
more steeply the larger is the ratio σ2/σ1. The closer |ρ| is to 1, for given
values of σ1 and σ2, the more elongated are the elliptical contours.

The Chi-Squared Distribution

Suppose, as in our discussion of the multivariate normal distribution, that
the random vector z is such that its components z1, . . . , zm are mutually
independent standard normal random variables, that is, z ∼ N(0, I). Then
the random variable

y ≡ ∥z∥2 = z⊤z =
m∑
i=1

z2i (5.12)

is said to have the chi-squared distribution with m degrees of freedom. A
compact way of writing this is: y ∼ χ2(m). From (5.12), it is clear that
m must be a positive integer. In the case of a test statistic, it will turn out
to be equal to the number of restrictions being tested.

The expectation and variance of the χ2(m) distribution can easily be obtained
from the definition (5.12). The expectation is

E(y) =
m∑
i=1

E(z2i ) =
m∑
i=1

1 = m. (5.13)

Since the zi are independent, the variance of the sum of the z2i is just the sum
of the (identical) variances:

Var(y) =
m∑
i=1

Var(z2i ) = mE
(
(z2i − 1)2

)
= mE(z4i − 2z2i + 1) = m(3− 2 + 1) = 2m.

(5.14)

The third equality here uses the fact that E(z4i ) = 3; see Exercise 5.2.
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Figure 5.4 Various chi-squared PDFs

Another important property of the chi-squared distribution, which follows
immediately from (5.12), is that, if y1 ∼ χ2(m1) and y2 ∼ χ2(m2), and y1
and y2 are independent, then y1 + y2 ∼ χ2(m1 + m2). To see this, rewrite
(5.12) as

y = y1 + y2 =

m1∑
i=1

z2i +

m1+m2∑
i=m1+1

z2i =

m1+m2∑
i=1

z2i ,

from which the result follows.

Figure 5.4 shows the density of the χ2(m) distribution for m = 1, m = 3,
m = 5, and m = 7. The changes in the location and height of the density
function as m increases are what we should expect from the results (5.13) and
(5.14) about its expectation and variance. In addition, the density, which is
extremely skewed to the right for m = 1, becomes less skewed as m increases.
In fact, as we will see in Section 5.5, the χ2(m) distribution approaches the
N(m, 2m) distribution as m becomes large.

In Section 4.4, we introduced quadratic forms. As we will see, many test
statistics can be written as quadratic forms in normal vectors, or as functions
of such quadratic forms. The following theorem states two results about
quadratic forms in normal vectors that will prove to be extremely useful.

Theorem 5.1.

1. If the m--vector x is distributed as N(0,Ω), then the quadratic form
x⊤Ω−1x is distributed as χ2(m);
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2. If P is an n × n orthogonal projection matrix with rank r < n and z is
an n--vector that is distributed as N(0, I), then the quadratic form z⊤Pz
is distributed as χ2(r).

Proof:

Since the covariance matrix Ω is positive definite, as before we can find an
m × m nonrandom nonsingular matrix A such that AA⊤ = Ω. Since the
vector x is multivariate normal with expectation vector 0, so is the vector
A−1x. Moreover, the covariance matrix of A−1x is

E
(
A−1xx⊤(A⊤)−1

)
= A−1Ω (A⊤)−1 = A−1AA⊤(A⊤)−1 = Im.

Thus we have shown that the vector z ≡ A−1x is distributed as N(0, I).

The quadratic form x⊤Ω−1x is equal to x⊤(A⊤)−1A−1x = z⊤z. As we have
just shown, this is equal to the sum of m independent, squared, standard
normal random variables. From the definition of the chi-squared distribution,
we know that such a sum is distributed as χ2(m). This proves the first part
of the theorem.

Since P is an orthogonal projection matrix, it projects orthogonally on to
some subspace of En. Suppose, then, that P projects on to the span of the
columns of an n× r matrix Z. This allows us to write

z⊤Pz = z⊤Z(Z⊤Z)−1Z⊤z.

The r --vector x ≡ Z⊤z evidently has the N(0,Z⊤Z) distribution. Therefore,
z⊤Pz is seen to be a quadratic form in the multivariate normal r --vector x and
(Z⊤Z)−1, which is the inverse of its covariance matrix. That this quadratic
form is distributed as χ2(r) follows immediately from the the first part of the
theorem.

Student’s t Distribution

If z ∼ N(0, 1) and y ∼ χ2(m), and z and y are independent, then the random
variable

t ≡ z

(y/m)1/2
(5.15)

is said to have Student’s t distribution with m degrees of freedom. A compact
way of writing this is: t ∼ t(m). The density of Student’s t distribution looks
very much like that of the standard normal distribution, since both are bell-
shaped and symmetric around 0.6

6 “Student” was the pen name of W. S. Gosset, who worked for the Guinness
brewery in Dublin. He used a pen name because he did not want his employers
to know that he was wasting his time on statistics.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



158 Hypothesis Testing in Linear Regression Models

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

x

f(x)

........................................................................................................................................................................
.......................................

............................
......................
...................
..................
.................
................
...............
................
...............
...............
..............
...............
...............
..............
..............
..............
..............
..............
..............
.............
..............
..............
..............
.............
..............
..............
.............
..............
..............
..............
.............
..............
..............
..............
..............
.............
..............
..............
..............
...............
................
...............
....................


......................................................................................................... Standard Normal

..................
...........

........
......

.....
.....
....
....
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...........................................................................................................................

.................. t(1) or Cauchy

..............
........

.....
....
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
........................................................................................

............ t(2)

............
.....

....
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
......................................................................

......... t(5)

Figure 5.5 PDFs of the Student’s t distribution

The moments of the t distribution depend on m, and only the first m − 1
moments exist. Thus the t(1) distribution, which is also called the Cauchy
distribution, has no moments at all, and the t(2) distribution has no variance.
From (5.15), we see that, for the Cauchy distribution, the denominator of t
is just the absolute value of a standard normal random variable. Whenever
this denominator happens to be close to zero, the ratio is likely to be a very
big number, even if the numerator is not particularly large. Thus the Cauchy
distribution has very thick tails. As m increases, the chance that the denom-
inator of (5.15) is close to zero diminishes (see Figure 5.4), and so the tails
become thinner.

In general, if t is distributed as t(m) with m > 2, then Var(t) = m/(m − 2).
Thus, as m → ∞, the variance tends to 1, the variance of the standard
normal distribution. In fact, the entire t(m) distribution tends to the standard
normal distribution as m → ∞. By (5.12), the chi-squared variable y can be
expressed as

∑m
i=1 z

2
i , where the zi are independent standard normal variables.

Therefore, by a law of large numbers, such as (4.22), y/m, which is the average
of the z2i , tends to its expectation as m → ∞. By (5.13), this expectation is
just m/m = 1. It follows that the denominator of (5.15), (y/m)1/2, also tends
to 1, and hence that t → z ∼ N(0, 1) as m → ∞. Note that we are dealing
here with convergence in distribution.

Figure 5.5 shows the densities of the standard normal, t(1), t(2), and t(5)
distributions. In order to make the differences among the various densities in
the figure apparent, all the values of m are chosen to be very small. However,
it is clear from the figure that, for larger values of m, the density of t(m) is
very similar to the density of the standard normal distribution.
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The F Distribution

If y1 and y2 are independent random variables distributed as χ2(m1) and
χ2(m2), respectively, then the random variable

F ≡ y1/m1

y2/m2
(5.16)

is said to have the F distribution with m1 and m2 degrees of freedom. A
compact way of writing this is: F ∼ F (m1,m2).

7 The F (m1,m2) distribution
looks a lot like a rescaled version of the χ2(m1) distribution. As for the
t distribution, the denominator of (5.16) tends to unity as m2 → ∞, and so
m1F → y1 ∼ χ2(m1) as m2 → ∞. Therefore, for large values of m2, a random
variable that is distributed as F (m1,m2) behaves very much like 1/m1 times
a random variable that is distributed as χ2(m1).

The F distribution is very closely related to Student’s t distribution. It is
evident from (5.16) and (5.15) that the square of a random variable which is
distributed as t(m2) is distributed as F (1,m2). In the next section, we will
see how these two distributions arise in the context of hypothesis testing in
linear regression models.

5.4 Exact Tests in the Classical Normal Linear Model

In the example of Section 5.2, we were able to obtain a test statistic z that is
distributed as N(0, 1). Tests based on this statistic are exact. Unfortunately,
it is possible to perform exact tests only in certain special cases. One very
important special case of this type arises when we test linear restrictions on
the parameters of the classical normal linear model, which was introduced in
Section 4.1. This model may be written as

y = Xβ + u, u ∼ N(0, σ2I), (5.17)

where X is an n×k matrix of regressors, so that there are n observations and
k regressors, and it is assumed that the disturbance vector u is statistically
independent of the matrix X. Notice that in (5.17) the assumption which in
Section 4.1 was written as ut ∼ NID(0, σ2) is now expressed in matrix notation
using the multivariate normal distribution. In addition, since the assumption
that u and X are independent means that the generating process for X is
independent of that for y, we can express this independence assumption by
saying that the regressors X are exogenous in the model (5.17); the concept
of exogeneity8 was introduced in Section 2.3 and discussed in Section 4.2.

7 The F distribution was introduced by Snedecor (1934). The notation F is used
in honor of the well-known statistician R. A. Fisher.

8 This assumption is usually called strict exogeneity in the literature, but, since
we will not discuss any other sort of exogeneity in this book, it is convenient
to drop the word “strict.”
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Tests of a Single Restriction

We begin by considering a single, linear restriction on β. This could, in
principle, be any sort of linear restriction, for example, that β1 = 5 or β3 = β4.
However, it simplifies the analysis, and involves no loss of generality, if we
confine our attention to a restriction that one of the coefficients should equal 0.
If a restriction does not naturally have the form of a zero restriction, we can
always apply suitable linear transformations to y andX, of the sort considered
in Sections 2.3 and 2.4, in order to rewrite the model so that it does; see
Exercise 5.8 and Exercise 5.9.

Let us partition β as [β1
.... β2], where β1 is a (k − 1)--vector and β2 is a

scalar, and consider a restriction of the form β2 = 0. When X is partitioned
conformably with β, the model (5.17) can be rewritten as

y = X1β1 + β2x2 + u, u ∼ N(0, σ2I), (5.18)

where X1 denotes an n × (k − 1) matrix and x2 denotes an n--vector, with
X = [X1 x2].

By the FWL Theorem, the least-squares estimate of β2 from (5.18) is the
same as the least-squares estimate from the FWL regression

M1y = β2M1x2 + residuals, (5.19)

where M1 ≡ I−X1(X1
⊤X1)

−1X1
⊤ is the matrix that projects on to S⊥(X1).

By applying the standard formulas for the OLS estimator and covariance
matrix to regression (5.19), under the assumption that the model (5.18) is
correctly specified, we find that

β̂2 =
x2

⊤M1y

x2
⊤M1x2

and Var(β̂2) = σ2(x2
⊤M1x2)

−1.

In order to test the hypothesis that β2 equals any specified value, say β0
2 , we

have to subtract β0
2 from β̂2 and divide by the square root of the variance. For

the null hypothesis that β2 = 0, this yields a test statistic analogous to (5.03),

zβ2 ≡ x2
⊤M1y

σ(x2
⊤M1x2)1/2

, (5.20)

which can be computed only under the unrealistic assumption that σ is known.

If the data are actually generated by the model (5.18) with β2 = 0, then

M1y = M1(X1β1 + u) = M1u.

Therefore, the right-hand side of equation (5.20) becomes

x2
⊤M1u

σ(x2
⊤M1x2)1/2

. (5.21)
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It is now easy to see that zβ2 is distributed as N(0, 1). Because we can con-
dition on X, the only thing left in (5.21) that is stochastic is u. Since the
numerator is just a linear combination of the components of u, which is multi-
variate normal, the entire test statistic is normally distributed. The variance
of the numerator is

E(x2
⊤M1uu

⊤M1x2) = x2
⊤M1E(uu

⊤)M1x2

= x2
⊤M1σ

2 IM1x2 = σ2x2
⊤M1x2.

Since the denominator of (5.21) is just the square root of the variance of
the numerator, we conclude that zβ2 is distributed as N(0, 1) under the null
hypothesis.

The test statistic zβ2
defined in equation (5.20) has exactly the same distri-

bution under the null hypothesis as the test statistic z defined in (5.03). The
analysis of Section 5.2 therefore applies to it without any change. Thus we
now know how to test the hypothesis that any coefficient in the classical nor-
mal linear model is equal to 0, or to any specified value, but only if we know
the variance of the disturbances.

In order to handle the more realistic case in which the variance of the dis-
turbances is unknown, we need to replace σ in equation (5.20) by s, the
standard error of the regression (5.18), which was defined in equation (4.63).
If, as usual, MX is the orthogonal projection on to S⊥(X), then we have
s2 = y⊤MXy/(n− k), and so we obtain the test statistic

tβ2 ≡ x2
⊤M1y

s(x2
⊤M1x2)1/2

=

(
y⊤MXy

n− k

)−1/2
x2

⊤M1y

(x2
⊤M1x2)1/2

. (5.22)

As we will now demonstrate, this test statistic is distributed as t(n−k) under
the null hypothesis. Not surprisingly, it is called a t statistic.

As we discussed in the last section, for a test statistic to have the t(n − k)
distribution, it must be possible to write it as the ratio of a standard normal
variable z to the square root of ζ/(n − k), where ζ is independent of z and
distributed as χ2(n− k). The t statistic defined in (5.22) can be rewritten as

tβ2 =
zβ2(

y⊤MXy/((n− k)σ2)
)1/2 , (5.23)

which has the form of such a ratio. We have already shown that zβ2 ∼ N(0, 1).
Thus it only remains to show that y⊤MXy/σ2 ∼ χ2(n − k) and that the
random variables in the numerator and denominator of (5.23) are independent.

Under any DGP that belongs to (5.18),

y⊤MXy

σ2
=

u⊤MXu

σ2
= ε⊤MXε, (5.24)
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where ε ≡ u/σ is distributed as N(0, I). Since MX is a projection matrix
with rank n − k, the second part of Theorem 5.1 shows that the rightmost
expression in (5.24) is distributed as χ2(n− k).

To see that the random variables zβ2 and ε⊤MXε are independent, we note
first that ε⊤MXε depends on y only through MXy. Second, from (5.20), it
is not hard to see that zβ2 depends on y only through PXy, since

x2
⊤M1y = x2

⊤PXM1y = x2
⊤(PX − PXP1)y = x2

⊤M1PXy;

the first equality here simply uses the fact that x2 ∈ S(X), and the third
equality uses the result (3.35) that PXP1 = P1PX . Independence now follows
because, as we will see directly, PXy and MXy are independent.

We saw above that MXy = MXu. Further, from (5.17), PXy = Xβ+PXu,
from which it follows that the centered version of PXy is PXu. The n × n
matrix of covariances of the components of PXu and MXu is thus

E(PXuu⊤MX) = σ2PXMX = O,

by (3.25), because PX and MX are complementary projections. These zero
covariances imply that the vectors PXu and MXu are independent, since
both are multivariate normal. Geometrically, these vectors have zero covar-
iance because they lie in orthogonal subspaces, namely, the images of PX

and MX . Thus, even though the numerator and denominator of (5.23) both
depend on y, this orthogonality implies that they are independent.

We therefore conclude that the t statistic (5.23) for β2 = 0 in the model (5.18)
has the t(n−k) distribution. Performing one-tailed and two-tailed tests based
on tβ2 is almost the same as performing them based on zβ2 . We just have to
use the t(n − k) distribution instead of the N(0, 1) distribution to compute
P values or critical values. An interesting property of t statistics is explored
in Exercise 5.10.

Tests of Several Restrictions

Economists frequently want to test more than one linear restriction. Let us
suppose that there are r restrictions, with r ≤ k, since there cannot be more
equality restrictions than there are parameters in the unrestricted model. As
before, there is no loss of generality if we assume that the restrictions take
the form β2 = 0. The alternative hypothesis is the model (5.17), which has
been rewritten as

H1 : y = X1β1 +X2β2 + u, u ∼ N(0, σ2I). (5.25)

Here X1 is an n × k1 matrix, X2 is an n × k2 matrix, β1 is a k1--vector, β2

is a k2--vector, k = k1 + k2, and the number of restrictions r = k2. Unless
r = 1, it is no longer possible to use a t test, because there is one t statistic
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for each element of β2, and we want to compute a single test statistic for all
the restrictions at once.

It is natural to base a test on a comparison of how well the model fits when
the restrictions are imposed with how well it fits when they are not imposed.
The null hypothesis is the regression model

H0 : y = X1β1 + u, u ∼ N(0, σ2I), (5.26)

in which we impose the restriction that β2 = 0. As we saw in Section 4.8,
the restricted model (5.26) must always fit worse than the unrestricted model
(5.25), in the sense that the SSR from (5.26) cannot be smaller, and is al-
most always larger, than the SSR from (5.25). However, if the restrictions
are true, the reduction in SSR from adding X2 to the regression should be
relatively small. Therefore, it seems natural to base a test statistic on the
difference between these two SSRs. If USSR denotes the unrestricted sum
of squared residuals, from (5.25), and RSSR denotes the restricted sum of
squared residuals, from (5.26), the appropriate test statistic is

Fβ2 ≡ (RSSR−USSR)/r

USSR/(n− k)
. (5.27)

Under the null hypothesis, as we will now demonstrate, this test statistic has
the F distribution with r and n − k degrees of freedom. Not surprisingly, it
is called an F statistic.

The restricted SSR is y⊤M1y, and the unrestricted one is y⊤MXy. One
way to obtain a convenient expression for the difference between these two
expressions is to use the FWL Theorem. By this theorem, the USSR is the
SSR from the FWL regression

M1y = M1X2β2 + residuals. (5.28)

The total sum of squares from (5.28) is y⊤M1y. The explained sum of squares
can be expressed in terms of the orthogonal projection on to the r --dimensional
subspace S(M1X2), and so the difference is

USSR = y⊤M1y − y⊤M1PM1X2M1y. (5.29)

Therefore, since M1PM1X2M1 = PM1X2 ,

RSSR−USSR = y⊤PM1X2y,

and the F statistic (5.27) can be written as

Fβ2 =
y⊤PM1X2y/r

y⊤MXy/(n− k)
. (5.30)
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In general, MXy = MXu. Under the null hypothesis, M1y = M1u. Thus,
under this hypothesis, the F statistic (5.30) reduces to

ε⊤PM1X2ε/r

ε⊤MXε/(n− k)
, (5.31)

where, as before, ε ≡ u/σ. We saw in the last subsection that the quadratic
form in the denominator of (5.31) is distributed as χ2(n − k). Since the
quadratic form in the numerator can be written as ε⊤PM1X2ε, it is distributed
as χ2(r). Moreover, the random variables in the numerator and denominator
are independent, because MX and PM1X2 project on to mutually orthogonal
subspaces: MXM1X2 = MX(X2 − P1X2) = O. Thus it is apparent that
the statistic (5.31) has the F (r, n− k) distribution under the null hypothesis.

A Threefold Orthogonal Decomposition

Each of the restricted and unrestricted models generates an orthogonal de-
composition of the dependent variable y. It is illuminating to see how these
two decompositions interact to produce a threefold orthogonal decomposi-
tion. It turns out that all three components of this decomposition have useful
interpretations. From the two models, we find that

y = P1y +M1y and y = PXy +MXy. (5.32)

In Exercises 3.18 and 3.19, PX −P1 was seen to be an orthogonal projection
matrix, equal to PM1X2 . It follows that

PX = P1 + PM1X2 , (5.33)

where the two projections on the right-hand side of this equation are obviously
mutually orthogonal, since P1 annihilates M1X2. From (5.32) and (5.33), we
obtain the threefold orthogonal decomposition

y = P1y + PM1X2y +MXy. (5.34)

The first term is the vector of fitted values from the restricted model, X1β̃1. In
this and what follows, we use a tilde (˜) to denote the restricted estimates, and
a hat (ˆ) to denote the unrestricted estimates. The second term is the vector
of fitted values from the FWL regression (5.28). It equals M1X2β̂2, where,
by the FWL Theorem, β̂2 is a subvector of estimates from the unrestricted
model. Finally, MXy is the vector of residuals from the unrestricted model.

Since PXy = X1β̂1 +X2β̂2, the vector of fitted values from the unrestricted
model, we see that

X1β̂1 +X2β̂2 = X1β̃1 +M1X2β̂2. (5.35)
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In Exercise 5.11, this result is exploited to show how to obtain the restricted
estimates in terms of the unrestricted estimates.

The F statistic (5.30) can be written as the ratio of the squared norm of the
second component in (5.34) to the squared norm of the third, each normalized
by the appropriate number of degrees of freedom. Under both hypotheses,
the third component, MXy, equals MXu, and so it just consists of random
noise. Its squared norm is a χ2(n− k) variable times σ2, which serves as the
(unrestricted) estimate of σ2 and can be thought of as a measure of the scale
of the random noise. Since u ∼ N(0, σ2I), every element of u has the same
variance, and so every component of (5.34), if centered so as to leave only the
random part, should have the same scale.

Under the null hypothesis, the second component is PM1X2y = PM1X2u,
which just consists of random noise. But, under the alternative, PM1X2y =
M1X2β2 + PM1X2u, and it thus contains a systematic part related to X2.
The length of the second component must be greater, on average, under the
alternative than under the null, since the random part is there in all cases, but
the systematic part is present only under the alternative. The F test compares
the squared length of the second component with the squared length of the
third. It thus serves to detect the possible presence of systematic variation,
related to X2, in the second component of (5.34).

We want to reject the null whenever RSSR − USSR, the numerator of the
F statistic, is relatively large. Consequently, the P value corresponding to
a realized F statistic Fβ2 is computed as 1 − Fr,n−k(Fβ2), where Fr,n−k(·)
denotes the CDF of the F distribution with r and n− k degrees of freedom.
Although we compute the P value as if for a one-tailed test, F tests are
really two-tailed tests, because they test equality restrictions, not inequality
restrictions. An F test for β2 = 0 rejects the null hypothesis whenever β̂2 is
sufficiently far from 0, whether the individual elements of β̂2 are positive or
negative.

There is a very close relationship between F tests and t tests. In the previ-
ous section, we saw that the square of a random variable with the t(n − k)
distribution has the F (1, n−k) distribution. The square of the t statistic tβ2 ,
defined in (5.22), is

t2β2
=

y⊤M1x2(x2
⊤M1x2)

−1x2
⊤M1y

y⊤MXy/(n− k)
.

This test statistic is evidently a special case of (5.30), with the vector x2

replacing the matrix X2. Thus, when there is only one restriction, it makes
no difference whether we use a two-tailed t test or an F test.

An Example of the F Test

The most familiar application of the F test is testing the hypothesis that all
the coefficients in a classical normal linear model, except the constant term,
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are zero. The null hypothesis is that β2 = 0 in the model

y = β1ι+X2β2 + u, u ∼ N(0, σ2I), (5.36)

where ι is an n--vector of 1s and X2 is n× (k− 1). In this case, using (5.29),
the test statistic (5.30) can be written as

Fβ2 =
y⊤MιX2(X2

⊤MιX2)
−1X2

⊤Mιy/(k − 1)(
y⊤Mιy − y⊤MιX2(X2

⊤MιX2)−1X2
⊤Mιy

)
/(n− k)

, (5.37)

where Mι is the projection matrix that takes deviations from the mean, which
was defined in (3.31). Thus the matrix expression in the numerator of (5.37)
is just the explained sum of squares, or ESS, from the FWL regression

Mιy = MιX2β2 + residuals.

Similarly, the matrix expression in the denominator is the total sum of squares,
or TSS, from this regression, minus the ESS. Since the centered R2 from (5.36)
is just the ratio of this ESS to this TSS, it requires only a little algebra to
show that

Fβ2 =
n− k

k − 1
× R2

c

1−R2
c

.

Therefore, the F statistic (5.37) depends on the data only through the cen-
tered R2, of which it is a monotonically increasing function.

Testing the Equality of Two Parameter Vectors

It is often natural to divide a sample into two, or possibly more than two,
subsamples. These might correspond to periods of fixed exchange rates and
floating exchange rates, large firms and small firms, rich countries and poor
countries, or men and women, to name just a few examples. We may then
ask whether a linear regression model has the same coefficients for both the
subsamples. It is natural to use an F test for this purpose. Because the classic
treatment of this problem is found in Chow (1960), the test is often called a
Chow test; later treatments include Fisher (1970) and Dufour (1982).

Let us suppose, for simplicity, that there are only two subsamples, of lengths
n1 and n2, with n = n1 + n2. We will assume that both n1 and n2 are
greater than k, the number of regressors. If we separate the subsamples by
partitioning the variables, we can write

y ≡
[
y1

y2

]
, and X ≡

[
X1

X2

]
,

where y1 and y2 are, respectively, an n1--vector and an n2--vector, while X1

and X2 are n1 × k and n2 × k matrices. Even if we need different para-
meter vectors, β1 and β2, for the two subsamples, we can nonetheless put the
subsamples together in the following regression model:[

y1

y2

]
=

[
X1 O
O X2

] [
β1

β2

]
+ u, u ∼ N(0, σ2I). (5.38)
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The null hypothesis can now be written as β1 = β2. Since it is preferable
to express the null as a set of zero restrictions, a reformulation of (5.38) that
achieves this is:[

y1

y2

]
=

[
X1 O
X2 X2

] [
β1

γ

]
+ u, u ∼ N(0, σ2I). (5.39)

It can readily be seen that, in the first subsample, the regression functions
are the components of X1β1, while, in the second, they are the components
of X2(β1 + γ). Thus γ is to be defined as β2 − β1. If we define Z as an
n × k matrix with O in its first n1 rows and X2 in the remaining n2 rows,
then (5.39) can be rewritten as

y = Xβ1 +Zγ + u, u ∼ N(0, σ2I). (5.40)

This is a regression model with n observations and 2k regressors. It has
been constructed in such a way that β1 is estimated directly, while β2 is
estimated using the relation β2 = γ + β1. Since the restriction that β1 = β2

is equivalent to the restriction that γ = 0 in (5.40), the null hypothesis has
been expressed as a set of k zero restrictions. Since (5.40) is just a classical
normal linear model with k linear restrictions to be tested, the F test provides
the appropriate way to test those restrictions.

The F statistic can perfectly well be computed as usual, by running (5.40)
to get the USSR and then running the restricted model, which is just the
regression of y on X, to get the RSSR. However, there is another way to
compute the USSR. In Exercise 5.12, readers are invited to show that it
is simply the sum of the two SSRs obtained by running two independent
regressions on the two subsamples. If SSR1 and SSR2 denote the sums of
squared residuals from these two regressions, and RSSR denotes the sum of
squared residuals from regressing y on X, the F statistic becomes

Fγ =
(RSSR− SSR1 − SSR2)/k

(SSR1 + SSR2)/(n− 2k)
. (5.41)

This Chow statistic, as it is often called, is distributed as F (k, n− 2k) under
the null hypothesis that β1 = β2.

5.5 Asymptotic Theory for Linear Regression Models

The t and F tests that we developed in the previous section are exact only
under the strong assumptions of the classical normal linear model. If the
disturbance vector were not normally distributed or not independent of the
matrix of regressors, we could still compute t and F statistics, but they would
not actually have their namesake distributions in finite samples. However,
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like a great many test statistics in econometrics that do not have any known
distribution exactly, in many cases they would have known distributions ap-
proximately whenever the sample size was large enough. In such cases, we
can perform what are called large-sample tests or asymptotic tests, using the
approximate distributions to compute P values or critical values. In this sec-
tion, we introduce several key results of asymptotic theory for linear regression
models. These are then applied to large-sample tests in Section 5.6.

In general, asymptotic theory is concerned with the distributions of estimators
and test statistics as the sample size n tends to infinity. Nevertheless, it
often allows us to obtain simple results which provide useful approximations
even when the sample size is far from infinite. Some of the basic ideas of
asymptotic theory, in particular the concept of consistency, were introduced
in Section 4.3. In this section, we investigate the asymptotic properties of the
linear regression model. We show that, under much weaker assumptions than
those of the classical normal linear model, the OLS estimator is asymptotically
normally distributed with a familiar-looking covariance matrix.

Laws of Large Numbers

There are two types of fundamental results on which asymptotic theory is
based. The first type, which we briefly discussed in Section 4.3, is called a law
of large numbers, or LLN. A law of large numbers may apply to any quantity
which can be written as an average of n random variables, that is, 1/n times
their sum. Suppose, for example, that

x̄ ≡ 1−
n

n∑
t=1

xt,

where the xt are independent random variables, each with its own finite var-
iance σ2

t and with a common expectation µ. We say that the variances σ2
t are

bounded if there exists a finite real number K > 0 such that σ2
t < K for all t.

In that case, a fairly simple LLN assures us that, as n → ∞, x̄ tends to µ.

An example of how useful a law of large numbers can be is the Fundamental
Theorem of Statistics, which concerns the empirical distribution function,
or EDF, of a random sample. The EDF was introduced in Exercises 2.1
and 4.8. Let X be a random variable with CDF F , and suppose that we
obtain a random sample of size n with typical element xt, where each xt

is an independent realization of X. The empirical distribution defined by
this sample is the discrete distribution that gives a weight of 1/n to each of
the xt for t = 1, . . . , n. The EDF is the distribution function of the empirical
distribution. It is defined algebraically as

F̂ (x) ≡ 1−
n

n∑
t=1

I(xt ≤ x), (5.42)
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Figure 5.6 EDFs for several sample sizes

where I(·) is the indicator function, which takes the value 1 when its argument
is true and takes the value 0 otherwise. Thus, for a given argument x, the
sum on the right-hand side of (5.42) counts the number of realizations xt that
are smaller than or equal to x.

The EDF has the form of a step function: The height of each step is 1/n, and
the width is equal to the difference between two successive values of xt. As
an illustration, Figure 5.6 shows the EDFs for three samples of sizes 20, 100,
and 500 drawn from three normal distributions, each with variance 1 and with
expectations 0, 2, and 4, respectively. These may be compared with the CDF
of the standard normal distribution in the lower panel of Figure 5.2. There
is not much resemblance between the EDF based on n = 20 and the normal
CDF from which the sample was drawn, but the resemblance is somewhat
stronger for n = 100 and very much stronger for n = 500. It is a simple
matter to simulate data from an EDF, as we will see in Chapter 7, and this
type of simulation can be very useful.

The Fundamental Theorem of Statistics tells us that the EDF consistently
estimates the CDF of the random variable X. More formally, the theorem
can be stated as

Theorem 5.2. (Fundamental Theorem of Statistics)

For the EDF F̂ (x) defined in (5.42), for any x,

plim
n→∞

F̂ (x) = F (x).
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Proof:

For any real value of x, each term in the sum on the right-hand side of equation
(5.42) depends only on xt. The expectation of I(xt ≤ x) can be found by using
the fact that it can take on only two values, 1 and 0. The expectation is

E
(
I(xt ≤ x)

)
= 0 · Pr

(
I(xt ≤ x) = 0

)
+ 1 · Pr

(
I(xt ≤ x) = 1

)
= Pr

(
I(xt ≤ x) = 1

)
= Pr(xt ≤ x) = F (x).

Since the xt are mutually independent, so too are the terms I(xt ≤ x). Since
the xt all have the same distribution, so too must these terms. Thus F̂ (x) is
the mean of n IID random terms, each with finite expectation. The simplest
of all LLNs (due to Khinchin) applies to such a mean. Thus we conclude that,
for every x, F̂ (x) is a consistent estimator of F (x).

There are many different LLNs, some of which do not require that the individ-
ual random variables have a common expectation or be independent, although
the amount of dependence must be limited. If we can apply a LLN to any
random average, we can treat it as a nonrandom quantity for the purpose
of asymptotic analysis. In many cases, as we saw in Section 4.3, this means
that we must divide the quantity of interest by n. For example, the matrix
X⊤X that appears in the OLS estimator generally does not converge to any-
thing as n → ∞. In contrast, the matrix n−1X⊤X, under many asymptotic
constructions, tends to a nonstochastic limiting matrix SX⊤X as n → ∞.

Central Limit Theorems

The second type of fundamental result on which asymptotic theory is based
is called a central limit theorem, or CLT. Central limit theorems are crucial
in establishing the asymptotic distributions of estimators and test statistics.
They tell us that, in many circumstances, 1/

√
n times the sum of n cen-

tered random variables has an approximately normal distribution when n is
sufficiently large.

Suppose that the random variables xt, t = 1, . . . , n, are independently and
identically distributed with expectation µ and variance σ2. Then, according
to the Lindeberg-Lévy central limit theorem, the quantity

zn ≡ 1√
n

n∑
t=1

xt − µ

σ
(5.43)

is asymptotically distributed as N(0, 1). This means that, as n → ∞, the
sequence of random variables zn converges in distribution to the N(0, 1) dis-
tribution; recall the discussion of convergence in distribution in Section 4.3.
We can write this result compactly as zn

d−→ N(0, 1).
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It may seem curious that we divide by
√
n instead of by n in (5.43), but this

is an essential feature of every CLT. To see why, let us calculate the variance
of zn. Since the terms in the sum in (5.43) are independent, the variance of zn
is just the sum of the variances of the n terms:

Var(zn) = nVar
( 1√

n

xt − µ

σ

)
=

n

n
= 1.

If we had divided by n, we would, by a law of large numbers, have obtained a
random variable with a plim of 0 instead of a random variable with a limiting
standard normal distribution. Thus, whenever we want to use a CLT, we
must ensure that a factor of n−1/2 = 1/

√
n is present.

Just as there are many different LLNs, so too are there many different CLTs,
almost all of which impose weaker conditions on the xt than those imposed
by the Lindeberg-Lévy CLT. The assumption that the xt are identically dis-
tributed is easily relaxed, as is the assumption that they are independent.
However, if there is either too much dependence or too much heterogeneity, a
CLT may not apply. Several CLTs are discussed in Davidson and MacKinnon
(1993, Section 4.7). Davidson (1994) provides a more advanced treatment.

In all cases of interest to us, the CLT says that, for a sequence of uncorrelated
random variables xt, t = 1, . . . ,∞, with E(xt) = 0,

n−1/2
n∑

t=1

xt = x0
n

d−→ N
(
0, lim

n→∞
1−
n

n∑
t=1

Var(xt)
)
.

We sometimes need vector, or multivariate, versions of CLTs. Suppose that
we have a sequence of uncorrelated random m--vectors xt, for some fixed m,
with E(xt) = 0. Then the appropriate multivariate CLT tells us that

n−1/2
n∑

t=1

xt = x0
n

d−→ N
(
0, lim

n→∞
1−
n

n∑
t=1

Var(xt)
)
, (5.44)

where x0
n is multivariate normal, and each Var(xt) is an m×m matrix.

Figure 5.7 illustrates the fact that CLTs often provide good approximations
even when n is not very large. Both panels of the figure show the densities
of various random variables zn defined as in (5.43). In the top panel, the xt

are uniformly distributed, and we see that zn is remarkably close to being
distributed as standard normal even when n is as small as 8. This panel does
not show results for larger values of n because they would have made it too
hard to read. In the bottom panel, the xt have the χ2(1) distribution, which
exhibits extreme right skewness. The mode9 of the distribution is 0, there

9 A mode of a distribution is a point at which the density achieves a local maxi-
mum. If there is just one such point, a density is said to be unimodal.
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Figure 5.7 The normal approximation for different values of n

are no values less than 0, and there is a very long right-hand tail. For n = 4
and n = 8, the standard normal provides a poor approximation to the actual
distribution of zn. For n = 100, on the other hand, the approximation is not
bad at all, although it is still noticeably skewed to the right.

Asymptotic Normality and Root-n Consistency

Although the notion of asymptotic normality is very general, for now we will
introduce it for linear regression models only. Suppose that the data are
generated by the DGP

y = Xβ0 + u, u ∼ IID(0, σ2
0I), (5.45)

instead of the classical normal linear model (5.17). The disturbances here
are drawn from some specific but unknown distribution with expectation 0
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and variance σ2
0 . Although some or all of the regressors may be exogenous,

that assumption is stronger than we need. Instead, we allow Xt to con-
tain lagged dependent variables, replacing the exogeneity assumption with
assumption (4.13) from Section 4.2, plus an analogous assumption about the
variance. These two assumptions can be written as

E(ut |Xt) = 0 and E(u2
t |Xt) = σ2

0 . (5.46)

The first equation here, which is assumption (4.13), can be referred to in two
ways. From the point of view of the explanatory variables Xt, it says that
they are predetermined with respect to the disturbances, a terminology that
was introduced in Section 4.2. From the point of view of the disturbances,
however, it says that they are innovations. An innovation is a random variable
of which the expectation is 0 conditional on the information in the explanatory
variables, and so knowledge of the values taken by the latter is of no use in
predicting the expectation of the innovation. We thus have two different ways
of saying the same thing. Both can be useful, depending on the circumstances.

Although we have greatly weakened the assumptions of the classical normal
linear model in equations (5.45) and (5.46), we now need to make an additional
assumption in order to be able to use asymptotic results. We assume that the
data-generating process for the explanatory variables is such that, under the
asymptotic construction used in order to obtain asymptotic results,

plim
n→∞

1−
n
X⊤X = SX⊤X , (5.47)

where SX⊤X is a finite, deterministic, positive definite matrix. We made this
assumption previously, in Section 4.3, when we proved that the OLS estimator
is consistent. Although it is often reasonable, condition (5.47) is violated by
some asymptotic constructions, as we saw in Section 4.3. For example, it
cannot hold if one of the columns of the X matrix is a linear time trend,
because

∑n
t=1 t

2 grows at a rate faster than n.

Now consider the k--vector

v ≡ n−1/2X⊤u = n−1/2
n∑

t=1

utXt
⊤. (5.48)

We wish to apply a multivariate CLT to this vector. By the first assumption
in (5.46), E(ut |Xt) = 0. This implies that E(utXt

⊤) = 0, as required for the
CLT. Thus, assuming that the vectors utXt

⊤ satisfy the technical assumptions
for an appropriate multivariate CLT to apply, we have from (5.44) that

v
d−→ N

(
0, lim

n→∞
1−
n

n∑
t=1

Var(utXt
⊤)
)
= N

(
0, lim

n→∞
1−
n

n∑
t=1

E(u2
tXt

⊤Xt)
)
.
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Notice that, because Xt is a 1 × k row vector, the covariance matrix here is
k × k, as it must be.

The second assumption in equations (5.46) says that the disturbances are
conditionally homoskedastic. It allows us to simplify the limiting covariance
matrix:

lim
n→∞

1−
n

n∑
t=1

E(u2
tXt

⊤Xt) = lim
n→∞

σ2
0

1−
n

n∑
t=1

E(Xt
⊤Xt)

= σ2
0 plim
n→∞

1−
n

n∑
t=1

Xt
⊤Xt

= σ2
0 plim
n→∞

1−
n
X⊤X = σ2

0SX⊤X .

(5.49)

We applied a LLN in reverse to go from the first line to the second, and the
last equality follows from assumption (5.47). Thus we conclude that

v
d−→ N(0, σ2

0SX⊤X). (5.50)

Consider now the estimation error of the vector of OLS estimates. For the
DGP (5.45), this is

β̂ − β0 = (X⊤X)−1X⊤u. (5.51)

As we saw in Section 4.3, β̂ is consistent under any sensible asymptotic con-
struction. If it is, β̂ − β0 must tend to a limit of 0 as the sample size n → ∞.
Therefore, its limiting covariance matrix is a zero matrix. Thus it would ap-
pear that asymptotic theory has nothing to say about limiting variances for
consistent estimators. However, this is easily corrected by the usual device of
introducing a few well-chosen powers of n.10 If we rewrite equation (5.51) as

n1/2(β̂ − β0) = (n−1X⊤X)−1n−1/2X⊤u,

For the first factor, we have plimn→∞
[
(n−1X⊤X)−1 − S−1

X⊤X

]
= O, and so

plim
n→∞

[
(n−1X⊤X)−1 − S−1

X⊤X

]
n−1/2X⊤u = 0, or

plim
n→∞

[
n1/2(β̂ − β0)− S−1

X⊤X
v
]
= 0. (5.52)

10 Under standard assumptions, sums of random variables that have nonzero ex-
pectations, like the elements of the matrix X⊤X, are Op(n), and weighted sums
of random variables that have zero expectations, like the elements of the vector

X⊤u, are Op(n
1/2). We need to multiply the former by n−1 and the latter by

n−1/2 in order to obtain quantities that are Op(1).
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The relation (5.52) can be written as

n1/2(β̂ − β0)
a
= S−1

X⊤X
v, (5.53)

where the symbol
a
= is used for asymptotic equality. By definition, it means

that the plim of the difference between two things that are asymptotically
equal is zero. Because SX⊤X is deterministic, we find, using (5.50), that the

variance of the limiting distribution of n1/2(β̂ − β0) is

σ2
0S

−1
X⊤X

S
X⊤X

S−1
X⊤X

= σ2
0S

−1
X⊤X

.

Moreover, since S−1
X⊤X

v is just a deterministic linear combination of the com-
ponents of the multivariate normal random vector v, we conclude from (5.53)
that

n1/2(β̂ − β0)
d−→ N(0, σ2

0S
−1
X⊤X

).

Informally, we may say that the vector β̂ is asymptotically normal, or exhibits
asymptotic normality.

It is convenient to collect the key results above into a theorem.

Theorem 5.3.

For the correctly specified linear regression model

y = Xβ + u, u ∼ IID(0, σ2I), (5.54)

where the data are generated by the DGP (5.45), the regressors and
disturbances satisfy assumptions (5.46), and the regressors satisfy as-
sumption (5.47) for the chosen asymptotic construction, we have

n1/2(β̂ − β0)
d−→ N(0, σ2

0S
−1
X⊤X

), (5.55)

and
plim
n→∞

s2(n−1X⊤X)−1 = σ2
0S

−1
X⊤X

. (5.56)

Remark:

The first part of the theorem allows us to pretend that β̂ is normally dis-
tributed with expectation 0, and the second part, which follows on account of
the consistency of s2 for σ̂2 proved in Section 4.7, allows us to use s2(X⊤X)−1

to estimate Var(β̂). The result (5.56) tells us that the asymptotic covariance
matrix of the vector n1/2(β̂ − β0) is the limit of the matrix σ2

0(n
−1X⊤X)−1 as

n → ∞. Of course, both (5.55) and (5.56) just approximations. The theorem
does not tell us that asymptotic inference based on these approximations will
necessarily be reliable.
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It is important to remember that, whenever the matrix n−1X⊤X tends
to SX⊤X as n → ∞, the matrix (X⊤X)−1, without the factor of n, simply
tends to a zero matrix. As we saw just below equation (5.51), this is simply a
consequence of the fact that β̂ is consistent. Thus, although it would be con-
venient if we could dispense with powers of n when working out asymptotic
approximations to covariance matrices, it would be mathematically incorrect
and very risky to do so.

The result (5.55) gives us the rate of convergence of β̂ to its probability
limit of β0. Since multiplying the estimation error by n1/2 gives rise to an
expression of zero expectation and finite covariance matrix, it follows that
the estimation error itself tends to zero at the same rate as n−1/2, that is, it
is Op(n

−1/2). This property is expressed by saying that the estimator β̂ is
root-n consistent.

Quite generally, suppose that θ̂ is a root-n consistent, asymptotically normal,
estimator of a parameter vector θ. Any estimator of the covariance matrix
of θ̂ must tend to zero as n → ∞. Let θ0 denote the true value of θ, and
let V (θ) denote the limiting covariance matrix of n1/2(θ̂ − θ0). Then an
estimator V̂ar(θ̂) is said to be consistent for the covariance matrix of θ̂ if

plim
n→∞

(
n V̂ar(θ̂)

)
= V (θ). (5.57)

For every root-n consistent estimator, there is generally at least one such
covariance matrix estimator.

5.6 Large-Sample Tests

Theorem 5.3 implies that the t test discussed in Section 5.4 is asymptotically
valid under weaker conditions than those needed to prove that the t statistic
actually has Student’s t distribution in finite samples. Consider the linear
regression model (5.18), but with IID disturbances and regressors that may
be predetermined rather than exogenous. As before, we wish to test the
hypothesis that β2 = β0

2 . The t statistic for this hypothesis is simply

tβ2 =
β̂2 − β0

2√
s2(X⊤X)−1

22

=
n1/2(β̂2 − β0

2)√
s2(n−1X⊤X)−1

22

, (5.58)

where (X⊤X)−1
22 denotes the last element on the main diagonal of the matrix

(X⊤X)−1. The result (5.55) tells us that n1/2(β̂2 − β0
2) is asymptotically

normally distributed with variance the last element on the main diagonal
of σ2

0S
−1
X⊤X

. Equation (5.56) tells us that s2 times (X⊤X)−1
22 consistently

estimates this variance. Therefore, tβ2 has the standard normal distribution
asymptotically under the null hypothesis. We may write

tβ2

a∼ N(0, 1). (5.59)
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The notation “
a∼” means that tβ2 is asymptotically distributed as N(0, 1).

This is just a different way of saying that tβ2 converges in distribution to
N(0, 1), and this implies that tβ2 = Op(1).

The result (5.59) justifies the use of t tests outside the confines of the clas-
sical normal linear model. We can compute asymptotic P values or critical
values using either the standard normal or t distributions. Of course, these
asymptotic t tests are not exact in finite samples, and they may or may not be
reliable. It is often possible to perform more reliable tests by using bootstrap
methods, which will be introduced in Chapter 7.

Asymptotic F Tests

In view of the result (5.59) for the asymptotic t statistic, it should not be
surprising that the F statistic (5.30) for the null hypothesis that β2 = 0 in
the model (5.25) is also valid asymptotically when the DGP is (5.45) and
the disturbances satisfy assumptions (5.46). Under the null, Fβ2

is equal to
expression (5.31). Rewriting this expression in terms of quantities that are
Op(1), we obtain

Fβ2 =
n−1/2ε⊤M1X2(n

−1X2
⊤M1X2)

−1n−1/2X2
⊤M1ε/r

ε⊤MXε/(n− k)
, (5.60)

where ε ≡ u/σ0 and r = k2, the dimension of β2. We now show that rFβ2

is asymptotically distributed as χ2(r). This result follows from Theorem 5.3,
but it is not entirely obvious.

The denominator of the F statistic (5.60) is ε⊤MXε/(n− k), which is just s2

times 1/σ2
0 . Since s2 is consistent for σ2

0 , it is evident that the denominator
of expression (5.60) tends to 1 asymptotically.

The numerator of the F statistic, multiplied by r, is

n−1/2ε⊤M1X2(n
−1X2

⊤M1X2)
−1n−1/2X2

⊤M1ε. (5.61)

Let v = n−1/2X⊤ε. Then a central limit theorem shows that v
a∼ N(0,SX⊤X),

as in the previous section. Now

n−1/2X2
⊤M1ε = n−1/2X2

⊤ε− n−1X2
⊤X1(n

−1X1
⊤X1)

−1n−1/2X1
⊤ε. (5.62)

If we partition v, conformably with the partition of X, into two subvectors
v1 and v2, it is clear that the right-hand side of (5.62) tends to the vector
v2−S21S

−1
11 v1 as n → ∞. Here S11 and S21 are submatrices of SX⊤X , so that

n−1X1
⊤X1 tends to S11 and n−1X2

⊤X1 tends to S21. Since v is asymptotically
multivariate normal, and v2 − S21S

−1
11 v1 is just a linear combination of the

elements of v, this vector must itself be asymptotically multivariate normal.

The vector (5.62) evidently has expectation 0. Thus its covariance matrix is
the expectation of

n−1X2
⊤εε⊤X2 + S21S

−1
11 n−1X1

⊤εε⊤X1S
−1
11 S12 − 2n−1X2

⊤εε⊤X1S
−1
11 S12.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



178 Hypothesis Testing in Linear Regression Models

We can replace εε⊤ by its expectation, which is I. Then, by the second part
of Theorem 5.3, we can replace n−1Xi

⊤Xj by Sij , for i, j = 1, 2, which is what
each of those submatrices tends to asymptotically. This yields an expression
that can be simplified, allowing us to conclude that

Var(v2 − S21S
−1
11 v1) = S22 − S21S

−1
11 S12.

Thus the numerator of the F statistic, expression (5.61), is asymptotically
equal to

(v2 − S21S
−1
11 v1)

⊤(S22 − S21S
−1
11 S12)

−1(v2 − S21S
−1
11 v1). (5.63)

This is simply a quadratic form in the r--vector v2 − S21S
−1
11 v1, which is

asymptotically multivariate normal, and the inverse of its covariance matrix.
By Theorem 5.1, it follows that expression (5.63) is asymptotically distributed
as χ2(r). Because the denominator of the F statistic tends to 1 asymptotically,
we conclude that

rFβ2

a∼ χ2(r) (5.64)

under the null hypothesis with predetermined regressors. Since 1/r times a
random variable that has the χ2(r) distribution is distributed as F (r,∞), we
may also conclude that Fβ2

a∼ F (r, n− k).

The result (5.64) justifies the use of asymptotic F tests when the disturbances
are not normally distributed and some of the regressors are predetermined
rather than exogenous. We can compute the P value associated with an
F statistic using either the χ2 or F distributions. Of course, if we use the
χ2 distribution, we have to multiply the F statistic by r.

Wald Tests

A vector of r linear restrictions on a parameter vector β can always be written
in the form

Rβ = r, (5.65)

where R is an r × k matrix and r is an r --vector. For example, if k = 3 and
the restrictions were that β1 = 0 and β2 = −1, equations (5.65) would be[

1 0 0
0 1 0

]
β =

[
0

−1

]
.

The elements of the matrix R and the vector r must be known. They are not
functions of the data, and, as in this example, they are very often integers.

Now suppose that we have obtained a k --vector of unrestricted parameter esti-
mates β̂, of which the covariance matrix is Var(β̂). By a slight generalization
of the result (4.44), the covariance matrix of the vector Rβ is RVar(β̂)R⊤.
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Then the simplest way to test the restrictions (5.65) is to calculate the Wald
statistic

W (β̂) = (Rβ̂ − r)⊤
(
RV̂ar(β̂)R⊤)−1

(Rβ̂ − r), (5.66)

where V̂ar(β̂) estimates Var(β̂) consistently. Inserting appropriate powers
of n so that each factor is Op(1), equation (5.66) can be rewritten as

W (β̂) =
(
n1/2(Rβ̂ − r)

)⊤(RnV̂ar(β̂)R⊤)−1(
n1/2(Rβ̂ − r)

)
. (5.67)

Theorem 5.3 implies that the vector n1/2(Rβ̂−r) is asymptotically multivari-
ate normal. Therefore, the right-hand side of equation (5.67) is asymptotically
a quadratic form in an r--vector that is multivariate normal and the inverse
of its covariance matrix. It follows that, by Theorem 5.1, the Wald statistic
is asymptotically distributed as χ2(r) under the null hypothesis.

These results are much more general than the ones for asymptotic t tests and
F tests. Equation (5.66) would still define a Wald statistic for the hypothesis
(5.65) if β̂ were any root-n consistent estimator and V̂ar(β̂) were any consis-
tent estimator of its covariance matrix. Thus we will encounter Wald tests
several times throughout this book. For the specific case of a linear regression
model with zero restrictions on some of the parameters, Wald tests turn out
to be very closely related to t tests and F tests. In fact, the square of the
t statistic (5.22) is a Wald statistic, and r times the F statistic (5.30) is a Wald
statistic. Readers are asked to demonstrate these results in Exercise 5.15 and
Exercise 5.16, respectively.

Asymptotic tests cannot be exact in finite samples, because they are neces-
sarily based on P values, or critical values, that are approximate. By itself,
asymptotic theory cannot tell us just how accurate such tests are. If we decide
to use a nominal level of α for a test, we reject if the asymptotic P value is
less than α. In many cases, but certainly not all, asymptotic tests are prob-
ably quite accurate, committing Type I errors with probability reasonably
close to α. They may either overreject, that is, reject the null hypothesis
more than 100α% of the time when it is true, or underreject, that is, reject
the null hypothesis less than 100α% of the time. Whether they overreject or
underreject, and how severely, depends on many things, including the sam-
ple size, the distribution of the disturbances, the number of regressors and
their properties, the number of restrictions, and the relationship between the
disturbances and the regressors.

In the next section, we will see a test set up deliberately so as to underreject
for any given nominal level. The motivation for this is to be sure of not
committing a Type I error more frequently than at the rate chosen as the
level. Such tests are called conservative.
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5.7 Performing Multiple Hypothesis Tests

Up to this point, we have implicitly assumed that just one hypothesis test is
performed at a time. This allows test statistics and P values to be interpreted
in the usual way. In practice, however, investigators almost always perform
several tests simultaneously. For example, whenever an econometrics package
is used to run an OLS regression, the package will normally report a t statistic
for every coefficient. Unless the investigator consciously chooses to ignore all
but one of these t statistics, which most people would find it almost impossible
to do, he or she is implicitly (and often explicitly) engaged in multiple testing.
This simply means performing two or more hypothesis tests of different null
hypotheses as part of the same investigation. It is not to be confused with
testing two or more restrictions via a single test, such as an F test or a Wald
test.

The problem with multiple testing is that an unusually large test statistic is
much more likely to be obtained by chance when several tests are performed
rather than just one, even when all of the null hypotheses being tested sev-
erally are true. This is easiest to see if the test statistics are independent.
Suppose that we perform m independent exact tests at level α. Let αm de-
note the familywise error rate, which is the probability that at least one of
the tests rejects. Because the tests are independent, the familywise error rate
is simply one minus the probability that none of the tests rejects:

αm = 1− (1− α)m. (5.68)

When m is large, αm can be much larger than α. For example, if α = 0.05,
then α2 = 0.0975, α4 = 0.18549, α8 = 0.33658, and α16 = 0.55987. It is
evident from (5.68) that the familywise error rate can be very much larger
than the level of each individual test when the number of tests is large.

The simplest method for controlling the familywise error rate is known as the
Bonferroni procedure. Instead of rejecting any of the hypotheses when the
corresponding P value is less than α, rejection occurs only if the P value is
less than α/m. In this way, as we will see, the familywise error rate is bounded
above by α. This procedure is based on the Bonferroni inequality

Pr
( m⋃
i=1

(Pi ≤ α/m)
)
≤ α, (5.69)

where Pi is the P value for the ith test. The event on the left-hand side
of (5.69) is just the probability that at least one of the hypotheses is rejected
at level α/m, that is, the familywise error rate. The inequality ensures that
this rate is less than α. The Bonferroni inequality is easy to prove. Consider
the union of two events A and B, as illustrated in Figure 2.3. It is clear from
the figure that

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B), so that Pr(A∪B) ≤ Pr(A)+Pr(B).
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More generally, if we have a set of events Ai, i = 1, . . . ,m, it is easy to see
that

Pr
( m⋃
i=1

Ai) ≤
m∑
i=1

Pr(Ai). (5.70)

If the tests are all exact, then we have Pr(Pi ≤ α/m) = α/m, and so (5.69)
follows from (5.70).

The Bonferroni procedure is very easy to implement, but it can be extremely
conservative. For large m, α/m is very much smaller than α. It is even
smaller than the value α that solves equation (5.68) for a given αm, which
would be appropriate if all the tests were independent. When the P values
are positively correlated, as is often the case in practice, α/m can be much
too small. Consider the extreme case in which there is perfect dependence
and all the tests yield identical P values. In that case, the familywise error
rate for individual tests at level α is just α, and no correction is needed.

There is a large literature on multiple testing in statistics. For example, Simes
(1986) and Hochberg (1988) proposed improved Bonferroni procedures that
are less conservative. They both use all the P values, not just the smallest one.
The Simes procedure is quite simple. We first order the P values from the
smallest, P(1), to the largest, P(m). Then the rejection rule for the individual
tests becomes

P(j) ≤ jα/m for any j = 1, . . . ,m, (5.71)

where α is the desired familywise error rate. If the smallest P value is less
than α/m, both this procedure and the Bonferroni procedure reject the cor-
responding hypothesis. But the Simes procedure can also reject when the
second-smallest P value is less than 2α/m, the third-smallest is less than
3α/m, and so on. Thus it is always less conservative than the Bonferroni
procedure. Because it is based on an inequality that may not always hold,
the Simes procedure can conceivably yield misleading results, but it seems to
work well in practice.

A more recent approach is to control the false discovery rate instead of the
familywise error rate; see Benjamini and Hochberg (1995) and Benjamini
and Yekutieli (2001). The false discovery rate is the expected proportion of
erroneous rejections among all rejections. The idea is that some of the tested
hypotheses may be true and others may be false, and so we want to reject
the false nulls but not the true ones. As in (5.71), we order the P values and
compare them to jα/m. Let J denote the largest j for which the inequality
holds. Then we reject the first J hypotheses and do not reject the remaining
ones. If the inequality is never satisfied, then the Benjamini-Hochberg and
Simes procedures yield the same results.

In this section, we have given a very brief introduction to testing multiple
hypotheses. We have assumed that little or nothing is known about the joint
distribution of the test statistics. If we knew that distribution, then we could
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in principle do better than any of the procedures discussed above. This sug-
gests that bootstrap-based procedures may be attractive, and these will be
discussed in Chapter 7.

5.8 The Power of Hypothesis Tests

To be useful, hypothesis tests must be able to discriminate between the null
hypothesis and the alternative. Thus, as we saw in Section 5.2, the distribu-
tion of a useful test statistic under the null is different from its distribution
when the DGP does not belong to the null. Whenever a DGP places most of
the probability mass of the test statistic in the rejection region of a test, the
test has high power, that is, a high probability of rejecting the null.

For a variety of reasons, it is important to know something about the power
of the tests we employ. For example, if it expensive to obtain the data, as it
might well be in an experimental setting, it will often make sense to verify
in advance that the sample will be large enough for the tests that we are
proposing to perform to have enough power to discriminate between the null
and alternative hypotheses. If a test fails to reject the null, this tells us more
if the test had high power against plausible alternatives than if the test had
low power. In practice, more than one test of a given null hypothesis is usually
available. Of two equally reliable tests, if one has more power than the other
against the alternatives in which we are interested, then we would surely prefer
to employ the more powerful one.

In Section 5.4, we saw that an F statistic is a ratio of the squared norms of
two vectors, each divided by its appropriate number of degrees of freedom.
In the notation of that section, these vectors are PM1X2y for the numerator
and MXy for the denominator. If the null and alternative hypotheses are
classical normal linear models, as we assume throughout this subsection, then,
under the null, both the numerator and the denominator of this ratio are
independent χ2 variables, divided by their respective degrees of freedom; see
expression (5.31). Under the alternative hypothesis, the distribution of the
denominator is unchanged, because, under either hypothesis, MXy = MXu.
Consequently, the difference in distribution under the null and the alternative
that gives the test its power must come from the numerator alone.

From equation (5.30), r/σ2 times the numerator of the F statistic Fβ2 is

1

σ2
y⊤M1X2(X2

⊤M1X2)
−1X2

⊤M1y. (5.72)

The vector X2
⊤M1y is normal under both the null and the alternative. Its

expectation is X2
⊤M1X2β2, which vanishes under the null when β2 = 0, and

its covariance matrix is σ2X2
⊤M1X2. We can use these facts to determine the

distribution of the quadratic form (5.72). To do so, we must introduce the
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noncentral chi-squared distribution, which is a generalization of the ordinary,
or central, chi-squared distribution.

We saw in Section 5.3 that, if the m--vector z is distributed as N(0, I), then
∥z∥2 = z⊤z is distributed as (central) chi-squared with m degrees of freedom.
Similarly, if x ∼ N(0,Ω), then x⊤Ω−1x ∼ χ2(m). If instead z ∼ N(µ, I), then
z⊤z has the noncentral chi-squared distribution with m degrees of freedom and
noncentrality parameter, or NCP, Λ ≡ µ⊤µ. This distribution is written as
χ2(m,Λ). It is easy to see that its expectation is m + Λ; see Exercise 5.22.
Likewise, if x ∼ N(µ,Ω), then x⊤Ω−1x ∼ χ2(m,µ⊤Ω−1µ). Although we will
not prove it, the distribution depends on µ and Ω only through the quadratic
form µ⊤Ω−1µ. If we set µ = 0, we see that the χ2(m, 0) distribution is just
the central χ2(m) distribution.

Under either the null or the alternative hypothesis, therefore, the distribution
of expression (5.72) is noncentral chi-squared, with r degrees of freedom, and
with noncentrality parameter given by

Λ ≡ 1

σ2
β2

⊤X2
⊤M1X2(X2

⊤M1X2)
−1X2

⊤M1X2β2

=
1

σ2
β2

⊤X2
⊤M1X2β2. (5.73)

Under the null, Λ = 0. Under either hypothesis, the distribution of the
denominator of the F statistic, divided by σ2, is central chi-squared with n−k
degrees of freedom, and it is independent of the numerator. The F statistic
therefore has a distribution that we can write as

χ2(r, Λ)/r

χ2(n− k)/(n− k)
,

with numerator and denominator mutually independent. This distribution is
called the noncentral F distribution, with r and n− k degrees of freedom and
noncentrality parameter Λ. In any given testing situation, r and n − k are
given, and so the difference between the distributions of the F statistic under
the null and under the alternative depends only on the NCP Λ.

To illustrate this fact, we limit our attention to expression (5.72), that is, r/σ2

times the numerator of the F statistic, which is distributed as χ2(r, Λ). As Λ
increases, the distribution moves to the right and becomes more spread out.
This happens because, under the alternative, expression (5.72) is equal to

1

σ2
u⊤M1X2(X2

⊤M1X2)
−1X2

⊤M1u

+
2

σ2
u⊤M1X2β2 +

1

σ2
β2

⊤X2
⊤M1X2β2.

The first term here has the central χ2(r) distribution. The third term is
the noncentrality parameter Λ. The second term is a random scalar which
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Figure 5.8 Densities of noncentral χ2 distributions

is normally distributed with expectation zero and has variance equal to four
times the NCP. The third term is what causes the χ2(r, Λ) distribution to
move to the right as Λ increases, and the second term is what causes it to
become more spread out.

The way in which the noncentral χ2 distribution depends on Λ is illustrated
in Figure 5.8, which shows the density of the χ2(3, Λ) distribution for non-
centrality parameters of 0, 2, 5, 10, and 20. The .05 critical value for the
central χ2(3) distribution, which is 7.81, is also shown. If a test statistic has
the noncentral χ2(3, Λ) distribution, the probability that the null hypothesis
is rejected at the .05 level is the probability mass to the right of 7.81. It is
evident from the figure that this probability is small for small values of the
NCP and large for large ones.

In Figure 5.8, the number of degrees of freedom r is held constant as Λ is
increased. If, instead, we held Λ constant, the density functions would move
to the right as r was increased, as they do in Figure 5.4 for the special case
with Λ = 0. Thus, at any given level, the critical value of a χ2 or F test
increases as r increases. It has been shown by Das Gupta and Perlman (1974)
that this rightward shift of the critical value has a greater effect than the
rightward shift of the density for any positive Λ. Specifically, Das Gupta and
Perlman show that, for a given NCP, the power of a χ2 or F test at any given
level is strictly decreasing in r, as well as being strictly increasing in Λ, as we
indicated in the previous paragraph.
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The square of a t statistic for a single restriction is just the F test for that
restriction, and so the above analysis applies equally well to t tests. Things
can be made a little simpler, however. From equation (5.22), the t statistic
tβ2 is 1/s times

x2
⊤M1y

(x2
⊤M1x2)1/2

. (5.74)

The numerator of this expression, x2
⊤M1y, is normally distributed under

both the null and the alternative, with variance σ2x2
⊤M1x2 and expectation

x2
⊤M1x2β2. Thus 1/σ times expression (5.74) is normal with variance 1 and

expectation
λ ≡ 1−σ(x2

⊤M1x2)
1/2β2. (5.75)

It follows that tβ2 has a distribution which can be written as

N(λ, 1)(
χ2(n− k)/(n− k)

)1/2 ,
with independent numerator and denominator. This distribution is known as
the noncentral t distribution, with n−k degrees of freedom and noncentrality
parameter λ; it is written as t(n − k, λ). Note that λ2 = Λ, where Λ is the
NCP of the corresponding F statistic. Except for very small sample sizes,
the t(n − k, λ) distribution is quite similar to the N(λ, 1) distribution. It is
also very much like an ordinary, or central, t distribution with its expectation
shifted from the origin to (5.75), but it has a bit more variance, because of
the stochastic denominator.

When we know the distribution of a test statistic under the alternative hypo-
thesis, we can determine the power of a test at any given level as a function of
the parameters of that hypothesis. This function is called the power function
of the test. The distribution of tβ2 under the alternative depends only on the
NCP λ. For a given regressor matrix X and sample size n, λ in turn depends
on the parameters only through the ratio β2/σ; see (5.75). Therefore, the
power of the t test depends only on this ratio. According to assumption (5.47),
as n → ∞, n−1X⊤X tends to a nonstochastic limiting matrix SX⊤X . Thus
both the factor (x2

⊤M1x2)
1/2 and λ itself are evidently O(n1/2).

Figure 5.9 shows power functions for tests at the .05 level for a very simple
model, in which x2, the only regressor, is a constant. Power is plotted as a
function of β2/σ for three sample sizes: n = 25, n = 100, and n = 400. Since
the test is exact, all the power functions are equal to .05 when β2 = 0. Power
then increases as β2 moves away from 0. As we would expect, the power when
n = 400 exceeds the power when n = 100, which in turn exceeds the power
when n = 25, for every value of β2 ̸= 0. It is clear that, as n → ∞, the power
function converges to the shape of a T, with the foot of the vertical segment at
.05 and the horizontal segment at 1.0. Thus, asymptotically, the test rejects
the null with probability 1 whenever it is false. In finite samples, however, we
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Figure 5.9 Power functions for t tests at the .05 level

can see from the figure that a false hypothesis is very unlikely to be rejected
if n1/2β2/σ is sufficiently small.

Because t tests in the classical normal linear regression model are exact, the
case shown in Figure 5.9 is an ideal one. Tests that are valid only asymptot-
ically may have power functions that look quite different from the ones in the
figure. Power may be greater or less than .05 when the null hypothesis holds,
depending on whether the test overrejects or underrejects, and it may well be
minimized at a parameter value that does not correspond to the null. Instead
of being a symmetric inverted bell shape, the power function may be quite
asymmetrical, and in some cases power may not even tend to unity as the
parameter under test becomes infinitely far from the null hypothesis. Readers
are asked to investigate a less than ideal case in Exercise 5.24.

5.9 Pretesting

In regression analysis, interest often centers on certain explanatory variables
only. The other explanatory variables are generally included solely to avoid
possible misspecification. Consider the linear regression model (4.65), which
was discussed in Section 4.8 and is rewritten here for convenience:

y = Xβ +Zγ + u, u ∼ IID(0, σ2I). (5.76)
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Here β is a k--vector, γ is an r--vector, and the regressors in X and Z are
assumed, for simplicity, to be exogenous, so that, in all that follows, we condi-
tion on them. The parameters of interest are the k elements of β. We would
like to estimate them as well as possible, but we do not care about γ. Instead,
we would like to choose between the unrestricted estimator β̂ obtained by run-
ning the regression (5.76) and the restricted estimator β̃ from the regression
of y on X alone, setting γ equal to zero.

Except in the very special case in which the matrices X and Z are orthogonal,
the restricted estimator β̃ is more efficient than the unrestricted estimator β̂.
However, because the estimator β̃ is biased if γ ̸= 0, its mean squared error
matrix is larger than its covariance matrix in that case; recall equation (4.76).

Since β̃ is more efficient than β̂ when γ is zero, it seems natural to test the
hypothesis that γ = 0 and use the latter estimator when the test rejects and
the former when it does not. This test is called a preliminary test, or pretest
for short. Such a procedure implicitly defines a new estimator, which is called
a pretest estimator. Formally, we can write

β́ = I(Fγ=0 > cα)β̂ + I(Fγ=0 ≤ cα)β̃, (5.77)

where Fγ=0 is the F statistic for the hypothesis that γ = 0, and cα is the
critical value for an F test with r and n− k− r degrees of freedom at level α.
Thus β́ = β̂ when the pretest rejects, and β́ = β̃ when the pretest does not
reject.

Equation (5.77) for the pretest estimator can be written in a simpler form as

β́ = λ̂β̂ + (1− λ̂)β̃ = β̃ + λ̂(β̂ − β̃), (5.78)

where λ̂ = 1 when Fγ=0 > cα and λ̂ = 0 when Fγ=0 ≤ cα. In this form, β́
looks like a weighted average of β̂ and β̃, but with random weights that can
only equal 0 or 1.

The MSE Matrix of the Pretest Estimator

Because the outcome of the pretest is random, the MSE matrix of the pretest
estimator is not simply a weighted average of the variance of the unbiased
estimator β̂ and the MSE matrix for β̃. The problem was first analyzed by
Magnus and Durbin (1999) and then by Danilov and Magnus (2004) under
the assumptions of the classical normal linear model, according to which the
disturbances are normally distributed.

Let the regression (5.76) represent the DGP, which is thereby assumed to have
true parameters β, γ, and σ2. Then we have

β̃ = (X⊤X)−1X⊤y = β +Qγ + (X⊤X)−1X⊤u, (5.79)
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where the k × r matrix Q is equal to (X⊤X)−1X⊤Z. From the estimating
equations for the restricted and unrestricted regressions, we see that

X⊤(y −Xβ̃) = 0 and

X⊤(y −Xβ̂ −Zγ̂) = 0,

where γ̂ is the OLS estimator from the unrestricted regression. By subtracting
one of these equations from the other, we find that

X⊤(Xβ̂ −Xβ̃ +Zγ̂) = 0,

and, on premultiplying by (X⊤X)−1 and using (5.79), we conclude that

β̂ = β̃ −Qγ̂ = β −Q(γ̂ − γ) + (X⊤X)−1X⊤u. (5.80)

Then, from (5.78), (5.79), and (5.80),

β́ − β = −Q(λ̂γ̂ − γ) + (X⊤X)−1X⊤u. (5.81)

The MSE matrix for the pretest estimator β́ is therefore the second-moment
matrix of the right-hand side of equation (5.81), that is,

E
(
(β́ − β)(β́ − β)⊤

)
= E

[(
−Q(λ̂γ̂ − γ) + (X⊤X)−1X⊤u

)(
u⊤X(X⊤X)−1 − (λ̂γ̂ − γ)⊤Q⊤)]

= σ2(X⊤X)−1 +QE
[
(λ̂γ̂ − γ)(λ̂γ̂ − γ)⊤

]
Q⊤. (5.82)

The last step here follows exactly when, as we supposed, the disturbances are
normal. In that case, PXu is independent of MXu, since the fact that these
vectors are uncorrelated implies that they are independent. It follows that
X⊤u = X⊤PXu is independent of γ̂, since γ̂ − γ = (Z⊤MXZ)−1Z⊤MXu,
and also of the variance estimator s2 from the unrestricted model, which is
the only other random element in the F statistic, and so in λ̂. Thus, since
E(X⊤u) = 0, the expectations of the cross terms in the middle line of (5.82)
vanish.

If we regard λ̂γ̂ as a biased estimator of γ, then (5.82) can be interpreted as

MSE(β́) = σ2(X⊤X)−1 +QMSE(λ̂γ̂)Q⊤. (5.83)

Properties of Pretest Estimators

The result (5.83) allows us to compare the MSE of the pretest estimator β́
with the MSEs of the restricted and unrestricted estimators. This comparison
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Figure 5.10 MSEs of Several Estimators

turns out to be quite illuminating. For simplicity, we confine our attention to
the model

y = βx+ γz + u, u ∼ NID(0, σ2I), (5.84)

in which there is just one parameter of interest and one restriction, and MSE
is therefore a scalar rather than a matrix. We would get very similar results
if there were several parameters of interest and/or several restrictions. We
assume that the two regressors are bivariate normal with correlation ρ = 0.5.
The potential reduction in variance from using the restricted estimator β̃ or
the pretest estimator β́ rather than the unrestricted estimator β̂ is evidently
increasing in |ρ|, but so is the potential bias.

Figure 5.10 shows the MSE for five different estimators of β as functions of γ
in the model (5.84). The horizontal line is the MSE of the unrestricted OLS

estimator, β̂. It is the only unbiased estimator here, and therefore it is the
only one for which the MSE does not depend on γ.

The MSE of the restricted estimator β̃ is lower than MSE(β̂) when γ is suffi-
ciently small. However, as γ increases, MSE(β̃) increases in proportion to γ2

(in other words, in proportion to the NCP), rapidly becoming so large that
it is impossible to show it on the figure. If ρ had been larger, MSE(β̃) would
have increased even more rapidly.

The other three estimators are all pretest estimators. They differ only in the
level of the pretest, which is .10, .05, or .01, and they are therefore denoted
β́.10, β́.05, and β́.01. The three MSE functions have similar shapes, but they
become substantially more extreme as the level of the pretest becomes smaller.
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For small values of γ, the pretest estimators are more efficient than β̂ but less
efficient than β̃. For very large values of γ, the pretest estimators perform
essentially the same as β̂, presumably because the pretests always reject.

There is a large region in the middle of the figure where the pretest estimators
perform better than β̃ but less well than β̂. The increase in MSE, especially
for β́.01, is very substantial over a wide range of values of γ. For each of
the pretest estimators, there is also a fairly small region near the point where
MSE(β̃) crosses MSE(β̂) for which that pretest estimator performs worse than

either β̃ or β̂.

Figure 5.10 makes it clear that the level of the pretest is important. When
the level is relatively high, the potential gain in efficiency for small values
of γ is smaller, but the potential increase in MSE due to bias for intermediate
values is very much smaller. Thus there is absolutely no reason to use a
“conventional” significance level like .05 when pretesting, and it is probably
safer to use a higher level.

5.10 Final Remarks

This chapter has introduced a number of important concepts. Later, we will
encounter many types of hypothesis test, sometimes exact but more commonly
asymptotic. Some of the asymptotic tests work well in finite samples, but
others emphatically do not. In Chapter 7, we will introduce the concept of
bootstrap tests, which often work very much better than asymptotic tests
when exact tests are not available.

Although hypothesis testing plays a central role in classical econometrics, it
is not the only method by which econometricians attempt to make inferences
from parameter estimates about the true values of parameters. In the next
chapter, we turn our attention to the other principal method, namely, the
construction of confidence intervals and confidence regions.

5.11 Appendix: Linear Combinations of Normal Variables

An important property of the normal distribution, used in our discussion in
Section 5.2 and essential to the derivation of the multivariate normal distri-
bution in Section 5.3, is that any linear combination of independent normally
distributed random variables is itself normally distributed. To see this, it
is enough to show it for independent standard normal variables, because,
by (5.10), all normal variables can be generated as linear combinations of
standard normal ones plus constants.

The proof given here of this property makes use of the concept of the moment-
generating function or MGF of a distribution. We make no further use of the
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concept in this book, and so readers may safely skip this Appendix if they are
willing to take the result on trust, or else consult the rather clumsy, but more
elementary, proof in ETM. If X is a scalar random variable, the moment-
generating function of its distribution is defined to be mX(t) ≡ E(etX). It
can be shown – see for instance Billingsley (1995) – that the MGF of a r.v. X
uniquely determines its distribution. The MGF of the standard normal dis-
tribution is calculated as follows: Let Z ∼ N(0, 1), then

E(etZ) =
1√
2π

∫ ∞

−∞
etze−z2/2 dz.

The exponent of the exponential in the integrand can be written as

− 1−
2
z2 + tz = − 1−

2
(z2 − 2tz) = − 1−

2

(
(z − t)2 − t2

)
,

and so, on changing the integration variable to y = z− t, w see that the MGF
is

et
2/2 1√

2π

∫ ∞

−∞
e−y2/2 dy = et

2/2.

A r.v. X that has the N(µ, σ2) distribution can be represented as µ + σZ,
with Z ∼ N(0, 1). It is clear that the MGF of X is

E(etX) = etµE(eσtZ) = exp(µt+ σ2t2/2).

Consider now the linear combination W ≡
∑m

i=1 aiZi of independent stan-
dard normal variables Zi, i = 1, . . . ,m. It is immediate that EW = 0 and
Var(W ) ≡ σ2

W =
∑m

i=1 a
2
i . The MGF of W is

mW (t) = E(etW ) = E
(
exp(

m∑
i=1

taiZi)
)
= E

( m∏
i=1

exp(taiZi)
)
.

Since the Zi are mutually independent, the expectation of the product is the
product of the expectations:

mW (t) =
m∏
i=1

E
(
exp(taiZi)

)
=

m∏
i=1

exp 1−
2
t2a2i = exp 1−

2
(t2

m∑
i=1

a2i ).

The rightmost expression above is the MGF of the normal distribution with
expectation zero and variance σ2

W , from which it follows that W is normally
distributed. It is easy to show that if an expectation µ is added to W , then
W has the N(µ, σ2

W ) distribution.
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5.12 Exercises

5.1 Suppose that the random variable z has the N(0, 1) density. If z is a test statis-
tic used in an equal-tail test, the corresponding P value, according to (5.08),
is p(z) ≡ 2(1− Φ(|z|)). Show that Fp(·), the CDF of p(z), is the CDF of the
uniform distribution on [0, 1]. In other words, show that

Fp(x) = x for all x ∈ [0, 1] .

5.2 Extend Exercise 2.6 to show that the third and fourth moments of the stan-
dard normal distribution are 0 and 3, respectively. Use these results in order
to calculate the centered and uncentered third and fourth moments of the
N(µ, σ2) distribution.

5.3 Let the density of the random variable x be f(x). Show that the density of
the random variable w ≡ tx, where t > 0, is (1/t)f(w/t). Next let the joint
density of the set of random variables xi, i = 1, . . . ,m, be f(x1, . . . , xm). For
i = 1, . . . ,m, let wi = tixi, ti > 0. Show that the joint density of the wi is

f(w1, . . . , wm) =
1∏m

i=1 ti
f
(
w1

t1
, . . . ,

wm

tm

)
.

⋆5.4 Consider the random variables x1 and x2, which are bivariate normal with
x1 ∼ N(0, σ21), x2 ∼ N(0, σ22), and correlation ρ. Show that the expectation
of x1 conditional on x2 is ρ(σ1/σ2)x2 and that the variance of x1 conditional
on x2 is σ21(1− ρ2). How are these results modified if the expectations of x1
and x2 are µ1 and µ2, respectively?

5.5 Suppose that, as in the previous question, the random variables x1 and x2 are
bivariate normal, with expectations 0, variances σ21 and σ22 , and correlation ρ.
Show that f(x1, x2), the joint density of x1 and x2, is given by

1

2π

1

(1− ρ2)1/2σ1σ2
exp

(
−1

2(1− ρ2)

(
x21
σ21

− 2ρ
x1x2
σ1σ2

+
x22
σ22

))
. (5.85)

Then use this result to show that x1 and x2 are statistically independent
if ρ = 0.

⋆5.6 Let the random variables x1 and x2 be distributed as bivariate normal, with
expectations µ1 and µ2, variances σ

2
1 and σ22 , and covariance σ12. Using the

result of Exercise 5.5, write down the joint density of x1 and x2 in terms of
the parameters just specified. Then find the marginal density of x1.

What is the density of x2 conditional on x1? Show that the expectation of
x2 conditional on x1 can be written as E(x2 |x1) = β1 + β2x1, and solve
for the parameters β1 and β2 as functions of the parameters of the bivariate
distribution. How are these parameters related to the least-squares estimates
that would be obtained if we regressed realizations of x2 on a constant and
realizations of x1?

5.7 (For readers comfortable with moment-generating functions) The multivariate
moment-generating function of an m-vector x of random variables is defined
as a function of the m-vector t as follows:

mW (t) = E(exp t⊤x).
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Show that the MGF of the multivariate normal distribution N(µ,Ω), where

µ is an m-vector and Ω an m×m matrix, is exp
1−
2
t⊤Ω t.

5.8 Consider the linear regression model

yt = β1 + β2xt1 + β3xt2 + ut.

Rewrite this model so that the restriction β2 − β3 = 1 becomes a single zero
restriction.

⋆5.9 Consider the linear regression model y = Xβ + u, where there are n obser-
vations and k regressors. Suppose that this model is potentially subject to r
restrictions which can be written as Rβ = r, where R is an r× k matrix and
r is an r --vector. Rewrite the model so that the restrictions become r zero
restrictions.

⋆5.10 Show that the t statistic (5.22) is (n− k)1/2 times the cotangent of the angle
between the n--vectors M1y and M1x2.

Now consider the regressions

y = X1β1 + β2x2 + u, and

x2 = X1γ1 + γ2y + v.
(5.86)

What is the relationship between the t statistic for β2 = 0 in the first of these
regressions and the t statistic for γ2 = 0 in the second?

5.11 Show that the OLS estimates β̃1 from the restricted model (5.26) can be
obtained from those of the unrestricted model (5.25) by the formula

β̃1 = β̂1 + (X1
⊤X1)

−1X1
⊤X2 β̂2.

Hint: Equation (5.35) is useful for this exercise.

5.12 Consider regressions (5.40) and (5.39), which are numerically equivalent.
Drop the normality assumption and assume that the disturbances are merely
IID. Show that the SSR from these regressions is equal to the sum of the
SSRs from the two subsample regressions:

y1 = X1β1 + u1, u1 ∼ IID(0, σ2I), and

y2 = X2β2 + u2, u2 ∼ IID(0, σ2I).

5.13 When performing a Chow test, one may find that one of the subsamples is
smaller than k, the number of regressors. Without loss of generality, assume
that n2 < k. Show that, in this case, the F statistic becomes

(RSSR− SSR1)/n2

SSR1/(n1 − k)
,

and that the numerator and denominator really have the degrees of freedom
used in this formula.

5.14 Prove that the F statistic (5.30) for β2 = 0 in equation (5.25) is independent,
under the null hypothesis, of the vector of restricted estimates β̃1 when the
disturbances are normally, identically, and independently distributed.
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5.15 Show that the square of the t statistic (5.22) is a special case of the Wald
statistic (5.66). Recall that this statistic is testing the hypothesis that β2 = 0
in the linear regression model (5.18).

5.16 Write the restrictions that are being tested by the F statistic (5.30) in the
form of equations (5.65), and show that r times the F statistic is a special
case of the Wald statistic (5.66).

5.17 The file house-price-data.txt contains 546 observations. Regress the logarithm
of the house price on a constant, the logarithm of lot size, and the other ten
explanatory variables, as in Exercise 2.23.

One of the explanatory variables is the number of storeys, which can take on
the values 1, 2, 3, and 4. A more general specification would allow the effect
on log price of each number of storeys to be different. Test the original model
against this more general one using an F test. Report the test statistic, the
degrees of freedom, and the P value.

Test the same hypothesis again, this time using a Wald test. Write out the
vectors of restrictions and their covariance matrix, both of which appear in
equation (5.66), explicitly. Once again, report the test statistic, the degrees
of freedom, and the P value.

5.18 Consider the linear regression model

y = Xβ + u, u ∼ N(0, σ2I), E(u |X) = 0,

where X is an n × k matrix. If σ0 denotes the true value of σ, how is the
quantity y⊤MXy/σ20 distributed? Use this result to derive a test of the null
hypothesis that σ = σ0. Is this a one-tailed test or a two-tailed test?

⋆5.19 P values for two-tailed tests based on statistics that have asymmetric distri-
butions are not calculated as in Section 5.2. Let the CDF of the statistic τ
be denoted as F , where F (−x) ̸= 1 − F (x) for general x. Suppose that, for
any level α, the critical values c−α and c+α are defined, analogously to (5.06),
by the equations

F (c−α ) = α/2 and F (c+α ) = 1− α/2.

Show that the marginal significance level, or P value, associated with a real-
ized statistic τ̂ is 2min(F (τ̂), 1− F (τ̂)).

5.20 The file house-price-data.txt contains 546 observations. Regress the logarithm
of the house price on a constant, the logarithm of lot size, and the other ten
explanatory variables, as in Exercise 5.17. Obtain a sensible estimate of σ,
the standard deviation of the disturbances. Then test the hypothesis that
σ = 0.20 at the .05 level. Report a P value for the test. Hint: See Exercises
5.18 and 4.19.

Now test the hypothesis that σ ≤ 0.20 at the .05 level. Report a P value for
the test. Comment on the results of the two tests.

5.21 Suppose that z is a test statistic distributed as N(0, 1) under the null hypo-
thesis, and as N(λ, 1) under the alternative, where λ depends on the DGP
that generates the data. If cα is defined by (5.07), show that the power of
the two-tailed test at level α based on z is equal to

Φ(λ− cα) + Φ(−cα − λ).
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Plot this power function for λ in the interval [−5, 5] for α = .05 and α = .01.

5.22 Show that, if the m--vector z ∼ N(µ, I), the expectation of the noncentral
chi-squared variable z⊤z is m+ µ⊤µ.

5.23 Consider the linear regression model with n observations,

y = β1 + β2d+ u, u ∼ NID(0, σ2I). (5.87)

The only regressor here is a dummy variable, with each element equal to 1
for n1 observations and equal to 0 for the remaining n− n1 observations.

First, find the standard error of β̂2 as a function of n, n1, and σ. Then find
the probability that a test at the .05 level will reject the null hypothesis that
β2 = 0 as a function of the standard error and β2. Using these results, what
is the smallest sample size for which you could reject the null hypothesis that
β2 = 0 with probability at least 0.9 when σ = 1 and the true value of β2 is
0.5? Assume that n1 is chosen optimally given n; see Exercise 4.11.

Again assuming that n1 is chosen optimally, graph the smallest sample size
for which you could reject the null hypothesis that β2 = 0 in equation (5.87)
with probability at least 0.9 when σ = 1 against the true value of β2 for
β2 = 0.1, 0.2, . . . , 1.0. Use a logarithmic scale for the vertical axis.

5.24 Consider the exact test for σ = σ0 in the classical normal linear model (5.17)
that was derived in Exercise 5.18, and suppose that k = 3. Plot the power
function for this test at the .05 level for the null hypothesis that σ = 1 over
the interval 0.5 < σ < 2.0 for three values of the sample size, namely, n = 13,
n = 23, and n = 43. Hint: This exercise does not require any simulations,
but it does require you to calculate the cumulative χ2 distribution function
many times and its inverse a few times.

5.25 Consider the linear regression model

y = X1β1 +X2β2 + u, u ∼ IID(0, σ2I),

where X1 and X2 denote, respectively, n × k1 and n × k2 matrices of pre-
determined regressors, with k = k1 + k2. Write down the asymptotic results
for β̂1 that are analogous to equations (5.55) and (5.56).

5.26 The file earnings-data.txt contains 46,302 observations on 32 variables taken
from the Current Population Survey. Each observation is for a woman who
lived and worked in California in the specified year. The variables are:

earn = reported weekly earnings in current dollars

age = age in years

ed1 = did not finish high school

ed2 = high school graduate

ed3 = some college or associate’s degree

ed4 = four-year college degree

ed5 = at least one postgraduate degree

year = calendar year (1992 to 2015)

y92 . . . y15 = year dummy variables constructed from year

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



196 Hypothesis Testing in Linear Regression Models

Regress the log of earnings on a constant, age, age2/100, the four highest
education dummies, and year. What was the effect of dividing age2 by 100?
Why was this a sensible thing to do?

Add as many of the year dummy variables to this regression as you can. How
many can you add? Does it matter which ones you add? Do the coefficient
and standard errors suggest that these regressors are needed?

Test the hypothesis that the coefficients on these year dummy variables are
all equal to zero.

5.27 Using the data in the file earnings-data.txt, run a regression that has exactly
the same explanatory power as the second regression in Exercise 5.26 but
which does not contain a constant term and does not include the year variable.
Explain the relationship between the coefficients on the variable y15 in the
two regressions.

5.28 Reformulate the regression of Exercise 5.27 so that one of the coefficients
measures the change in log earnings from obtaining a postgraduate degree.
Test the hypothesis that this difference is 0.20.

5.29 Create two dummy variables, young and old. The first of these is 1 if age ≤ 35,
and the second is 1 if age ≥ 60. Add the two dummies to the regression of
Exercise 5.27, and perform both an F test and a Wald test of the hypothesis
that neither of them actually belongs in the regression. Report P values for
both tests. How do you interpret the results of these tests?

5.30 The regression of Exercise 5.27 implies that the expectation of log earnings
first increases and then decreases with age. At what age is this expectation
maximized? Test the hypothesis that the age at which it is maximized is
actually 50. Hint: See Section 4.5.
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Chapter 6

Confidence Sets and

Sandwich Covariance Matrices

6.1 Introduction

Hypothesis testing, which was the subject of the previous chapter, is the
foundation for all inference in classical econometrics. It can be used to find
out whether restrictions imposed by economic theory are compatible with the
data, and whether various aspects of the specification of a model appear to
be correct. However, once we are confident that a model is correctly specified
and incorporates whatever restrictions are appropriate, we often want to make
inferences about the values of some of the parameters that appear in the
model. Although this can be done by performing a battery of hypothesis tests,
it is usually more convenient to construct confidence sets for the individual
parameters of specific interest.

In order to construct a confidence set, we need a suitable family of tests for
a set of point null hypotheses. A different test statistic must be calculated
for each different null hypothesis that we consider, but usually there is just
one type of statistic that can be used to test all the different null hypotheses.
For instance, if we wish to test the hypothesis that a scalar parameter θ in a
regression model equals 0, we can use a t test. But we can also use a t test
for the hypothesis that θ = θ0 for any specified real number θ0. Thus, in this
case, we have a family of t statistics indexed by θ0.

Given a family of tests capable of testing a set of hypotheses about a (scalar)
parameter θ, all with the same level α, we can use these tests to construct a
confidence set for the parameter. By definition, a confidence set is a subset of
the real line that contains all values θ0 for which the hypothesis that θ = θ0
is not rejected by the appropriate test in the family. For level α, a confidence
set so obtained is said to be a 1−α confidence set, or to be at confidence level
1− α. For a scalar parameter, a confidence set is normally an interval of the
real line, hence the term confidence interval. In applied work, .95 confidence
intervals are particularly popular, followed by .99 and .90 ones.

Unlike the parameters we are trying to make inferences about, confidence sets
are random. Every different sample that we draw from the same DGP yields
a different confidence set. The probability that the random set includes, or
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198 Confidence Sets and Sandwich Covariance Matrices

covers, the true value of the parameter is called the coverage probability, or
just the coverage, of the set. Suppose that all the tests in the family have
exactly level α, that is, they reject their corresponding null hypotheses with
probability exactly equal to α when the hypothesis is true. Let the value of θ
under the true DGP be θ0. Then θ0 is contained in the confidence set if and
only if the hypothesis that θ = θ0 is not rejected. The probability of this
event, and so the coverage probability, is exactly 1 − α.

Confidence intervals may be either exact or approximate. When the exact
distribution of the test statistics used to construct a confidence interval is
known, the coverage is equal to the confidence level, and the interval is exact.
Otherwise, we have to be content with approximate confidence intervals, which
may be based either on asymptotic theory or on the bootstrap. In the next
section, we discuss both exact confidence intervals and approximate ones based
on asymptotic theory. In Chapter 7, after we have introduced bootstrap
hypothesis tests, we will discuss bootstrap confidence intervals.

When we are interested in two or more parameters jointly, it can be more in-
formative to construct a confidence region instead of, or in addition to, several
confidence intervals. The confidence region for a set of k model parameters,
such as the components of a k--vector θ, is a k--dimensional subset of Ek, often
the k --dimensional analog of an ellipse. The region is constructed in such a
way that, for every point represented by the k--vector θ0 in the confidence
region, the joint hypothesis that θ = θ0 is not rejected by the appropriate
member of a family of tests at level α. Confidence regions constructed in this
way cover the true values of the parameter vector 100(1 − α)% of the time,
either exactly or approximately. In Section 6.3, we show how to construct
confidence regions and explain the relationship between confidence regions
and confidence intervals.

In earlier chapters, we assumed that the disturbances in linear regression
models are independently and identically distributed. This assumption yields
a simple form for the true covariance matrix of a vector of OLS parameter
estimates, expression (4.38), and a simple way of estimating this matrix. How-
ever, it is excessively restrictive in many cases. In Sections 6.4, 6.5, and 6.6,
we relax the IID assumption. In Section 6.4, we develop methods for obtain-
ing heteroskedasticity-robust standard errors that can be used even when
the form of the heteroskedasticity is unknown. These simple and widely-used
methods are based on “sandwich” covariance matrix estimators.

In Section 6.5, we further weaken the assumptions needed to estimate the co-
variance matrix of a vector of OLS estimates by allowing for autocorrelation
of the disturbances, thereby obtaining heteroskedasticity and autocorrelation
consistent, or HAC, covariance matrix estimators. Then, in Section 6.6, we
allow the disturbances to be dependent within “clusters” of observations. This
yields methods for obtaining cluster-robust standard errors. In Section 6.7,
we then discuss a widely-used class of empirical regression models, called
difference in differences, for which it is very commonly assumed that the dis-
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turbances are clustered. Finally, in Section 6.8, we discuss the delta method,
a procedure for obtaining standard errors, estimated covariance matrices, and
approximate confidence intervals for nonlinear functions of estimated para-
meters.

6.2 Exact and Asymptotic Confidence Intervals

A confidence interval for some scalar parameter θ consists of all values θ0 for
which the hypothesis θ = θ0 cannot be rejected at some specified level α.
Thus, as we will see in a moment, we can construct a confidence interval
by “inverting” a test statistic. If the finite-sample distribution of the test
statistic is known, we obtain an exact confidence interval. If, as is more
commonly the case, only the asymptotic distribution of the test statistic is
known, we obtain an asymptotic confidence interval, which may or may not
be reasonably accurate in finite samples. Whenever a test statistic based
on asymptotic theory has poor finite-sample properties, a confidence interval
based on that statistic has poor coverage: In other words, the interval does not
cover the true parameter value with the specified probability. In such cases,
it may well be worthwhile to seek other test statistics that yield different
confidence intervals with better coverage.

To begin with, suppose that we wish to base a confidence interval for the
parameter θ on a family of test statistics that have a distribution or asymptotic
distribution like the F or the χ2 distribution under their respective nulls.
Statistics of this type are always positive, and tests based on them reject
their null hypotheses when the statistics are sufficiently large. Such tests are
often equivalent to two-tailed tests based on statistics distributed as standard
normal or Student’s t. Let us denote the test statistic for the hypothesis that
θ = θ0 by the random variable τ(y, θ0). Here y denotes the sample used to
compute the particular realization of the statistic. It is the random element
in the statistic, since τ(·) is just a deterministic function of its arguments.

For each θ0, the test consists of comparing the realized τ(y, θ0) with the level-α
critical value of the distribution of the statistic under the null. If the critical
value is cα, then any value θ0 belongs to the confidence set if and only if

τ(y, θ0) ≤ cα. (6.01)

If θ0 happens to be the parameter for the true DGP, then by the definition
of cα we have that

Pr
(
τ(y, θ0) ≤ cα

)
= 1− α. (6.02)

Thus the true θ0 is included in the (random) confidence set with probability
1 − α, so that the confidence level is equal to the coverage. But if cα is a
critical value for the asymptotic distribution of τ(y, θ0), rather than for the
exact distribution, then (6.02) is only approximately true.
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For concreteness, let us suppose that

τ(y, θ0) ≡
(
θ̂ − θ0
sθ

)2
, (6.03)

where θ̂ is an estimate of θ, and sθ is the corresponding standard error, that
is, an estimate of the standard deviation of θ̂. If θ̂ is an OLS estimate of
a regression coefficient, then τ(y, θ0) is the square of the t statistic for the
hypothesis that θ = θ0. Under the conditions of the classical normal linear
model, discussed in Section 5.4, the test statistic (6.03) would be distributed
as F (1, n−k) under the null hypothesis. Therefore, the critical value cα would
be the level-α critical value of the F (1, n−k) distribution. More generally, we
will refer to any statistic of the form (θ̂ − θ)/sθ as an asymptotic t statistic.

The values of θ on the boundary of the confidence set are the solutions of the
equation

τ(y, θ) = cα (6.04)

for θ. Since the statistic (6.03) is a quadratic function of θ0, this equation has
two solutions. One of these solutions is the upper limit, θu, and the other is
the lower limit, θl, of an interval, which is in fact the confidence interval that
we are trying to construct, because it is clear that, for values of θ inside the
interval, the inequality (6.01) is satisfied.

By using the formula (6.03) for the left-hand side of equation (6.04), taking
the square root of both sides, and multiplying by sθ, we obtain

|θ̂ − θ| = sθ c
1/2
α . (6.05)

As expected, there are two solutions to equation (6.05). These are

θl = θ̂ − sθ c
1/2
α and θu = θ̂ + sθ c

1/2
α ,

and so the 1− α confidence interval for θ is[
θ̂ − sθ c

1/2
α , θ̂ + sθ c

1/2
α

]
. (6.06)

Quantiles

When we speak of critical values, we are implicitly making use of the concept
of a quantile of the distribution that the test statistic follows under the null
hypothesis. If F (x) denotes the CDF of a random variable X, and if the
density f(x) ≡ F ′(x) exists and is strictly positive on the entire range of
possible values for X, then qα, the α quantile of F, for 0 ≤ α ≤ 1, satisfies
the equation F (qα) = α. The assumption of a strictly positive density means
that F is strictly increasing over its range. Therefore, the inverse function
F−1 exists, and qα = F−1(α). For this reason, F−1 is sometimes called the
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Figure 6.1 The quantile function of the standard normal distribution

quantile function. If F is not strictly increasing, or if the density does not
exist, which, as we saw in Section 2.2, is the case for a discrete distribution, the
α quantile does not necessarily exist, and is not necessarily uniquely defined,
for all values of α.

The .5 quantile of a distribution is often called the median. For α = .25, .5,
and .75, the corresponding quantiles are called quartiles; for α = .2, .4, .6,
and .8, they are called quintiles; for α = i/10 with i an integer between 1
and 9, they are called deciles; for α = i/20 with 1 ≤ i ≤ 19, they are called
vigintiles; and, for α = i/100 with 1 ≤ i ≤ 99, they are called centiles, or,
more frequently, percentiles. The quantile function of the standard normal
distribution is shown in Figure 6.1. All three quartiles, the first and ninth
deciles, and the .025 and .975 quantiles are shown in the figure.

Asymptotic Confidence Intervals

The interval (6.06) is exact only in the very restrictive circumstances of the
classical normal linear model. If it is just an asymptotic interval, investigators
may prefer to use the critical value given by the χ2(1) distribution. For
α = .05, the critical value for the χ2(1) distribution is the 0.95 quantile of the
distribution, which is 3.8415, the square root of which is 1.9600. Thus the
confidence interval given by (6.06) becomes[

θ̂ − 1.96sθ, θ̂ + 1.96sθ
]
. (6.07)
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Figure 6.2 A symmetric confidence interval

This interval is shown in Figure 6.2, which illustrates the manner in which
it is constructed. The value of the test statistic is on the vertical axis of the
figure. The upper and lower limits of the interval occur at the values of θ
where the test statistic (6.03) is equal to cα, which in this case is 3.8415.

We would have obtained exactly the same confidence interval as (6.06) if we
had started with the asymptotic t statistic (θ̂ − θ0)/sθ and used the N(0, 1)
distribution to perform a two-tailed test. For such a test, there are two critical
values. If we wish to have the same probability mass in each tail, these are
the α/2 and the 1 − α/2 quantiles of the distribution. It is conventional to
denote these quantiles of the standard normal distribution by zα/2 and z1−α/2,
respectively. Note that zα/2 is negative, since α/2 < 1/2, and the median of
the N(0, 1) distribution is 0. By the symmetry of the normal distribution, it
is easy to see that zα/2 = −z1−α/2.

Equation (6.04), which has two solutions for a χ2 test or an F test, is replaced
by two equations, each with just one solution, as follows:

τ(y, θ) = ±c.

Here τ(y, θ) denotes the (signed) t statistic rather than the χ2(1) statistic
used in (6.04), and the positive number c can be defined either as z1−α/2 or
as −zα/2. The resulting confidence interval [θl, θu] can thus be written in
two different ways:[

θ̂ + sθ zα/2, θ̂ − sθ zα/2
]

and
[
θ̂ − sθ z1−α/2, θ̂ + sθ z1−α/2

]
. (6.08)

When α = .05, we once again obtain the interval (6.07), since z.025 = −1.96
and z.975 = 1.96.
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Pivots

In order to explain why a confidence interval based on exact critical values
has correct coverage, we need to introduce an important concept. A random
variable with the property that its distribution is the same for all DGPs in
a model M is said to be pivotal, or to be a pivot, for the model M. The
distribution is allowed to depend on the sample size, and perhaps on the
observed values of exogenous variables. However, for any given sample size
and set of exogenous variables, it must be invariant across all DGPs in M.

A random function τ(y, θ) is said to be a pivotal function forM, or just pivotal,
if, when it is evaluated at the true value θ0 corresponding to some DGP in M,
the result is a random variable whose distribution does not depend on what
that DGP is. Pivotal functions of more than one model parameter are defined
in exactly the same way. The function would merely be asymptotically pivotal
if the asymptotic distribution were invariant to the choice of DGP but not
the finite-sample distribution.

It is possible to construct an exact confidence interval based on a function
τ(y, θ) only if this function is pivotal for the model M under consideration.
Suppose that τ(y, θ) is an exact pivot. Then, the true θ0 belongs to the
confidence interval if and only if the inequality (6.01) holds, which, by (6.02),
is an event of probability 1 − α.

Even if it is not an exact pivot, the function τ(y, θ) must be asymptotically
pivotal, since otherwise the critical value cα would depend asymptotically on
the unknown DGP in M, and we could not construct a confidence interval with
the correct coverage, even asymptotically. Of course, if cα is only approximate,
then the coverage of the interval will differ from 1 − α to a greater or lesser
extent, in a manner that, in general, depends on the unknown true DGP.

The t and F statistics considered in Section 5.4 are pivots for the classical
normal linear model subject to the null hypothesis under test. This is because,
under that null model, they have their namesake distributions independently
of the values of other regression parameters or the variance of the disturbances.
Similarly, if θ̂ is an OLS estimator of a parameter of the classical normal
linear model, the test statistic (6.03), or its signed squared root, which is just
the conventional t statistic for the null hypothesis that θ = θ0, is a pivotal
function for the classical normal linear model. There are, however, very few
exact pivots or pivotal functions outside the context of the classical normal
linear model.

Asymmetric Confidence Intervals

The confidence interval (6.06), which is the same as the interval (6.08), is a
symmetric one, because θl is as far below θ̂ as θu is above it. Although many
confidence intervals are symmetric, not all of them share this property. The
symmetry of (6.06) is a consequence of the symmetry of the standard normal
distribution and of the form of the test statistic (6.03).
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It is possible to construct confidence intervals based on two-tailed tests even
when the distribution of the test statistic is not symmetric. This evidently
leads to an asymmetric confidence interval. For a chosen level α, we wish to
reject whenever the statistic is too far into either the right-hand or the left-
hand tail of the distribution. Unfortunately, there are many ways to interpret
“too far” in this context. The simplest is probably to define the rejection
region in such a way that there is a probability mass of α/2 in each tail. This
is called an equal-tail confidence interval. Two critical values are needed for
each level, a lower one, c−α , which is the α/2 quantile of the distribution, and
an upper one, c+α , which is the 1−α/2 quantile. A realized statistic τ̂ leads to
rejection at level α if either τ̂ < c−α or τ̂ > c+α . Readers are asked to construct
such an interval in Exercise 6.13.

It is also possible to construct confidence intervals based on one-tailed tests.
Such an interval is open all the way out to infinity in one direction. Suppose
that, for each θ0, the null θ ≤ θ0 is tested against the alternative θ > θ0. If the
true parameter value is finite, we never want to reject the null for any θ0 that
substantially exceeds the true value. Consequently, the confidence interval
is open out to plus infinity. Formally, the null is rejected only if the signed
t statistic is algebraically greater than the appropriate critical value. For the
N(0, 1) distribution, this is z1−α for level α. The null hypothesis θ ≤ θ0 is
not rejected if τ(y, θ0) ≤ z1−α, that is, if θ̂ − θ0 ≤ sθz1−α, or, equivalently,
θ0 ≥ θ̂ − sθz1−α. The interval over which θ0 satisfies this inequality is just[

θ̂ − sθz1−α, +∞
]

(6.09)

Similarly, if the null hypothesis were θ ≥ θ0, the one-tailed interval would be[
−∞, θ̂ − sθzα

]
. (6.10)

Confidence Intervals for Regression Coefficients

In Section 5.4, we saw that, for the classical normal linear model, exact tests
of linear restrictions on the parameters of the regression function are available,
based on the t and F distributions. This implies that we can construct exact
confidence intervals. Consider the classical normal linear model (5.18), in
which the parameter vector β has been partitioned as [β1

.... β2], where β1 is
a (k − 1)--vector and β2 is a scalar. The t statistic for the hypothesis that
β2 = β20 for any particular value β20 can be written as

β̂2 − β20

s2
, (6.11)

where s2 is the usual OLS standard error for β̂2.
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Any DGP in the model (5.18) satisfies β2 = β20 for some β20. With the
correct value of β20, the t statistic (6.11) has the t(n− k) distribution, and so

Pr

(
tα/2 ≤ β̂2 − β20

s2
≤ t1−α/2

)
= 1− α, (6.12)

where tα/2 and t1−α/2 denote the α/2 and 1 − α/2 quantiles of the t(n − k)
distribution, respectively. We can use equation (6.12) to find a 1−α confidence
interval for β2. The left-hand side of the equation is equal to

Pr
(
s2 tα/2 ≤ β̂2 − β20 ≤ s2 t1−α/2

)
= Pr

(
−s2 tα/2 ≥ β20 − β̂2 ≥ −s2 t1−α/2

)
= Pr

(
β̂2 − s2 tα/2 ≥ β20 ≥ β̂2 − s2 t1−α/2

)
.

Therefore, the confidence interval we are seeking is[
β̂2 − s2 t1−α/2, β̂2 − s2 tα/2

]
. (6.13)

At first glance, this interval may look a bit odd, because the upper limit is
obtained by subtracting something from β̂2. What is subtracted is negative,
however, because tα/2 < 0, since it is in the lower tail of the t distribution.
Thus the interval does in fact contain the point estimate β̂2.

It may still seem strange that the lower and upper limits of (6.13) depend,
respectively, on the upper-tail and lower-tail quantiles of the t(n − k) distri-
bution. This actually makes perfect sense, however, as can be seen by looking
at the infinite confidence interval (6.09) based on a one-tailed test. There,
since the null is that θ ≤ θ0, the confidence interval must be open out to +∞,
and so only the lower limit of the confidence interval is finite. But the null
is rejected when the test statistic is in the upper tail of its distribution, and
so it must be the upper-tail quantile that determines the only finite limit
of the confidence interval, namely, the lower limit. Readers are strongly ad-
vised to take some time to think this point through, since most people find it
strongly counter-intuitive when they first encounter it, and they can accept
it only after a period of reflection. The phenomenon is perfectly general for
linear regression models, and is by no means a particular property of an exact
confidence interval for the classical normal linear model.

It is easy to rewrite the confidence interval (6.13) so that it depends only on
the positive, upper-tail, quantile, t1−α/2. Because Student’s t distribution is
symmetric, the interval (6.13) is the same as the interval[

β̂2 − s2 t1−α/2, β̂2 + s2 t1−α/2

]
; (6.14)

compare the two ways of writing the confidence interval (6.08). For con-
creteness, suppose that α = .05 and n − k = 32. In this special case,
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t1−α/2 = t.975 = 2.037. Thus the .95 confidence interval based on (6.14)
extends from 2.037 standard errors below β̂2 to 2.037 standard errors above
it. This interval is slightly wider than the interval (6.07), which is based on
asymptotic theory.

We obtained the interval (6.14) by starting from the t statistic (6.11) and using
Student’s t distribution. As readers are asked to demonstrate in Exercise 6.2,
we would have obtained precisely the same interval if we had started instead
from the square of (6.11) and used the F distribution.

6.3 Confidence Regions

When we are interested in making inferences about the values of two or more
parameters, it can be quite misleading to look at the confidence intervals
for each of the parameters individually. By using confidence intervals, we are
implicitly basing our inferences on the marginal distributions of the parameter
estimates. However, if the estimates are not independent, the product of the
marginal distributions may be very different from the joint distribution. In
such cases, it makes sense to construct a confidence region.

The confidence intervals we discussed in the preceding section are all obtained
by inverting t tests, whether exact or asymptotic, based on families of statistics
of the form (θ̂ − θ0)/sθ, possibly squared. If we wish instead to construct a
confidence region, we must invert joint tests for several parameters. These
are usually tests based on statistics that follow the F or χ2 distributions, at
least asymptotically.

A t statistic depends explicitly on a parameter estimate and its standard error.
Similarly, many tests for several parameters depend on a vector of parameter
estimates and an estimate of their covariance matrix. Even many statistics
that appear not to do so, such as F statistics, actually do implicitly, as we
will see shortly. Suppose that we are interested in θ2, a subvector of the
parameter vector θ. We have a k2--vector of parameter estimates θ̂2, of which
the covariance matrix Var(θ̂2) can be estimated by V̂ar(θ̂2). Then, in many
circumstances, the Wald statistic

(θ̂2 − θ20)
⊤(V̂ar(θ̂2))−1

(θ̂2 − θ20) (6.15)

can be used to test the joint null hypothesis that θ2 = θ20. The test statistic
(6.15) is evidently a special case of the Wald statistic (5.66).

Exact Confidence Regions for Regression Parameters

Suppose that we want to construct a confidence region for the elements of the
vector β2 in the classical normal linear model (5.25), which we rewrite here
for ease of exposition:

y = X1β1 +X2β2 + u, u ∼ N(0, σ2I), (6.16)
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where β1 and β2 are a k1--vector and a k2--vector, respectively. The F statistic
that can be used to test the hypothesis that β2 = 0 is given in (5.30). If we
wish instead to test β2 = β20, then we can write (6.16) as

y −X2β20 = X1β1 +X2γ + u, u ∼ N(0, σ2I), (6.17)

where γ = β2 − β20, and test the hypothesis that γ = 0. It is not hard to
show that the F statistic for this hypothesis takes the form

(β̂2 − β20)
⊤X2

⊤M1X2(β̂2 − β20)/k2

y⊤MXy/(n− k)
, (6.18)

where k = k1 + k2; see Exercise 6.6.

It is easy to see that, when multiplied by k2, the F statistic (6.18) is in
the form of the Wald statistic (6.15). For the purposes of inference on β2,
regression (6.16) is equivalent to the FWL regression

M1y = M1X2β2 + residuals,

from which it follows that Var(β̂2) = σ2(X2
⊤M1X2)

−1. The denominator of
expression (6.18) is just s2, the OLS estimate of σ2 from regression (6.16).
Thus we see that k2 times the F statistic (6.18) can be written in the form of
the Wald statistic (6.15), with

V̂ar
(
β̂2

)
= s2

(
X2

⊤M1X2

)−1

yielding a consistent estimator of the variance of β̂2; compare equation (4.64).

Under the assumptions of the classical normal linear model, the F statistic
(6.18) follows the F (k2, n − k) distribution when the null hypothesis is true.
Therefore, we can use it to construct an exact confidence region. If cα denotes
the 1− α quantile of the F (k2, n− k) distribution, then the 1− α confidence
region is the set of all β20 for which

(β̂2 − β20)
⊤X2

⊤M1X2(β̂2 − β20) ≤ cαk2s
2. (6.19)

Because the left-hand side of this inequality is quadratic in β20 and the matrix
X2

⊤M1X2 is positive definite, the confidence region is the interior of an ellipse
for k2 = 2 and the interior of a k2--dimensional ellipsoid for k2 > 2.

Confidence Ellipses and Confidence Intervals

Figure 6.3 illustrates what a confidence ellipse can look like when there are
just two components in the vector β2, which we denote by β1 and β2, and the
parameter estimates are negatively correlated. The ellipse, which defines a
.95 confidence region, is centered at the parameter estimates (β̂1, β̂2), with its
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Figure 6.3 Confidence ellipses and confidence intervals

major axis oriented from upper left to lower right. Confidence intervals for β1

and β2 are also shown. The .95 confidence interval for β1 is the line segment
AB, and the .95 confidence interval for β2 is the line segment EF. We would
make quite different inferences if we considered AB and EF, and the rectangle
they define, demarcated in Figure 6.3 by the lines drawn with long dashes,
rather than the confidence ellipse. There are many points, such as (β′′

1 , β
′′
2 ),

that lie outside the confidence ellipse but inside the two confidence intervals.
At the same time, there are some points, like (β′

1, β
′
2), that are contained in

the ellipse but lie outside one or both of the confidence intervals.

In the framework of the classical normal linear model, the estimates β̂1 and β̂2

are bivariate normal. The t statistics used to test hypotheses about just one
of β1 or β2 are based on the marginal univariate normal distributions of β̂1

and β̂2, respectively, but the F statistics used to test hypotheses about both
parameters at once are based on the joint bivariate normal distribution of the
two estimators. If β̂1 and β̂2 are not independent, as is the case in Figure 6.3,
then information about one of the parameters also provides information about
the other. Only the confidence region, based on the joint distribution, allows
this to be taken into account.

An example may be helpful at this point. Suppose that we are trying to
model daily electricity demand during the summer months in an area where
air conditioning is prevalent. Since the use of air conditioners, and hence
electricity demand, is related to both temperature and humidity, we might

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

6.3 Confidence Regions 209

want to use measures of both of them as explanatory variables. In many
parts of the world, summer temperatures and humidity are strongly positively
correlated. Therefore, if we include both variables in a regression, they may
be quite collinear. If so, as we saw in Section 4.5, the OLS estimates must be
relatively imprecise. This lack of precision implies that confidence intervals for
the coefficients of both temperature and humidity are relatively long, and that
confidence regions for both parameters jointly are long and narrow. However,
it does not necessarily imply that the area of a confidence region is particularly
large. This is precisely the situation that is illustrated in Figure 6.3. Think
of β1 as the coefficient on temperature and β2 as the coefficient on humidity.

In Exercise 6.7, readers are asked to show that, when there are two explana-
tory variables in a linear regression model, the correlation between the OLS
estimates of the parameters associated with these variables is the negative of
the correlation between the variables themselves. Thus, in the example we
have been discussing, a positive correlation between temperature and humid-
ity leads to a negative correlation between the estimates of the temperature
and humidity parameters, as shown in Figure 6.3. A point like (β′′

1 , β
′′
2 ) is

excluded from the confidence region because the variation in electricity de-
mand cannot be accounted for if both coefficients are small. But β′′

1 cannot be
excluded from the confidence interval for β1 alone, because β′′

1 , which assigns
a small effect to the temperature, is perfectly compatible with the data if a
large effect is assigned to the humidity, that is, if β2 is substantially greater
than β′′

2 . At the same time, even though β′
1 is outside the confidence interval

for β1, the point (β
′
1, β

′
2) is inside the confidence region, because the very high

value of β′
2 is enough to compensate for the very low value of β′

1.

The relation between a confidence region for two parameters and confidence
intervals for each of the parameters individually is a subtle one. It is tempting
to think that the ends of the intervals should be given by the extreme points
of the confidence ellipse. This would imply, for example, that the confidence
interval for β1 in the figure is given by the line segment CD. Even without
the insight afforded by the temperature-humidity example, however, we can
see that this must be incorrect.

The inequality (6.19) defines the confidence region, for given parameter esti-
mates β̂1 and β̂2, as a set of values in the space of the vector β20. If instead
we think of (6.19) as defining a region in the space of β̂2 with β20 the true
parameter vector, then we obtain a region of exactly the same size and shape
as the confidence region, because (6.19) is symmetric in β20 and β̂2. We
can assign a probability of 1 − α to the event that β̂2 belongs to the new
region, because the inequality (6.19) states that the F statistic is less than its
1− α quantile, an event of which the probability is 1 − α, by definition.

An exactly similar argument can be made for the confidence interval for β1.
In the two-dimensional framework of Figure 6.3, the entire infinitely high
rectangle bounded by the vertical lines through the points A and B has the
same size and shape as an area with probability 1 − α, since we are willing
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to allow β2 to take on any real value. Because the infinite rectangle and the
confidence ellipse must contain the same probability mass, neither can contain
the other. Therefore, the ellipse must protrude outside the region defined by
the one-dimensional confidence interval.

It can be seen from the inequality (6.19) that the orientation of a confidence
ellipse and the relative lengths of its axes are determined by V̂ar(β̂2). When
the two parameter estimates are positively correlated, the ellipse is oriented
from lower left to upper right. When they are negatively correlated, it is
oriented from upper left to lower right, as in Figure 6.3. When the correlation
is zero, the axes of the ellipse are parallel to the coordinate axes. The variances
of the two parameter estimates determine the height and width of the ellipse.
If the variances are equal and the correlation is zero, then the confidence
ellipse is a circle.

Asymptotic Confidence Regions

When test statistics like (6.18), with known finite-sample distributions, are
not available, the easiest way to construct an approximate confidence region is
to base it on a Wald statistic like (6.15), which can be used with any k2--vector
of parameter estimates θ̂2 that is root-n consistent and asymptotically normal
and has a covariance matrix that can be consistently estimated. If cα denotes
the 1−α quantile of the χ2(k2) distribution and V̂ar(θ̂2) denotes the estimated
covariance matrix, then an approximate 1 − α confidence region is the set of
all θ20 such that

(θ̂2 − θ20)
⊤(V̂ar(θ̂2))−1

(θ̂2 − θ20) ≤ cα. (6.20)

Like the exact confidence region defined by (6.19), this asymptotic confidence
region is elliptical or ellipsoidal.

6.4 Heteroskedasticity-Robust Inference

All the testing procedures used in this chapter and the preceding one make use
of estimated covariance matrices or standard errors derived from them. If we
are to make reliable inferences about the values of parameters, these estimates
need to be reliable. In our discussion of how to estimate the covariance matrix
of the OLS parameter vector β̂ in Sections 4.4 and 4.7, we made the rather
strong assumption that the disturbances of the regression model are IID. This
assumption is needed to show that s2(X⊤X)−1, the usual estimator of the
covariance matrix of β̂, is consistent in the sense of equation (5.57). However,
even without the IID assumption, it is possible to obtain a consistent estimator
of the covariance matrix of β̂.

In this section, we relax the IID assumption by allowing the disturbances to be
independent but not identically distributed. We focus on the linear regression
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model with exogenous regressors,

y = Xβ + u, E(u) = 0, E(uu⊤) = Ω, (6.21)

where Ω, the disturbance covariance matrix, is an n × n matrix with tth

diagonal element equal to ω2
t and all the off-diagonal elements equal to 0.

Since X is assumed to be exogenous, the expectations in (6.21) can be treated
as conditional on X. Conditional on X, then, the disturbances in (6.21) are
uncorrelated and have mean 0, but they do not have the same variance for
all observations. These disturbances are said to be heteroskedastic, or to
exhibit heteroskedasticity, a subject of which we spoke briefly in Section 2.3.
If, instead, all the disturbances do have the same variance, then, as one might
expect, they are said to be homoskedastic, or to exhibit homoskedasticity.
Here we assume that the investigator knows nothing about the ω2

t . In other
words, the form of the heteroskedasticity is completely unknown.

The assumption in (6.21) that X is exogenous is fairly strong, but it is often
reasonable for cross-section data, as we discussed in Section 4.2. We make it
largely for simplicity, since we would obtain essentially the same asymptotic
results if we replaced it with the weaker assumption that E(ut |Xt) = 0,
so that X is predetermined. When the data are generated by a DGP that
belongs to (6.21) with β = β0, the exogeneity assumption implies that β̂ is
unbiased; recall equation (4.12), which in no way depends on assumptions
about the covariance matrix of the disturbances.

Whatever the form of the disturbance covariance matrix Ω, the covariance
matrix of the OLS estimator β̂ is equal to

E
(
(β̂ − β0)(β̂ − β0)

⊤) = (X⊤X)−1X⊤E(uu⊤)X(X⊤X)−1

= (X⊤X)−1X⊤ΩX(X⊤X)−1. (6.22)

This form of covariance matrix is often called a sandwich covariance matrix,
for the obvious reason that the matrix X⊤ΩX is sandwiched between the
two instances of the matrix (X⊤X)−1. The covariance matrix of an inefficient
estimator very often takes this sandwich form.

It is easy to see intuitively why the OLS estimator is inefficient whenever there
is heteroskedasticity. Observations with low variance presumably convey more
information about the parameters than observations with high variance, and
so the former should be given greater weight in an efficient estimator. Instead,
OLS gives every observation the same weight.

If we knew the ω2
t , we could easily evaluate the sandwich covariance matrix

(6.22). In fact, as we will see in Chapter 9, we could do even better and
actually obtain efficient estimates of β. But it is assumed that we do not
know the ω2

t . Moreover, since there are n of them, one for each observation,
we cannot hope to estimate the ω2

t consistently without making additional
assumptions. Thus, at first glance, the situation appears hopeless. However,
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even though we cannot evaluate the matrix (6.22), we can estimate it without
having to attempt the impossible task of estimating Ω consistently.

For the purposes of asymptotic theory, we wish to consider the covariance
matrix, not of β̂, but rather of n1/2(β̂ − β0). This is just the limit of n times
the matrix (6.22). By distributing factors of n in such a way that we can take
limits of each of the factors in (6.22), we find that the asymptotic covariance
matrix of n1/2(β̂ − β0) is(

lim
n→∞

1−
n
X⊤X

)−1(
lim
n→∞

1−
n
X⊤ΩX

)(
lim
n→∞

1−
n
X⊤X

)−1

. (6.23)

Under assumption (5.47), the factor (limn−1X⊤X)−1, which appears twice in
(6.23) as the bread in the sandwich,1 tends to a finite, deterministic, positive
definite matrix S−1

X⊤X
. To estimate the limit, we can simply use the matrix

(n−1X⊤X)−1 itself.

What is not so trivial is to estimate the middle factor, lim(n−1X⊤ΩX), which
is the filling in the sandwich. In a very famous paper, White (1980) showed
that, under certain conditions, including the existence of the limit, this matrix
can be estimated consistently by

1−
n
X⊤Ω̂X, (6.24)

where Ω̂ is an inconsistent estimator of Ω. As we will see, there are several
alternative versions of Ω̂. The simplest version, and the one suggested in
White (1980), is

Ω̂ = diag(û2
t ),

that is, a diagonal matrix with tthdiagonal element equal to û2
t , the t

th squared
OLS residual.

The matrix lim(n−1X⊤ΩX), which is the middle factor of (6.23), is a k × k
symmetric matrix. Therefore, it has exactly 1

2 (k
2+k) distinct elements. Since

this number is independent of the sample size, the matrix can be estimated
consistently. Its ij th element is

lim
n→∞

(
1−
n

n∑
t=1

ω2
t xtixtj

)
. (6.25)

This is to be estimated by the ij th element of (6.24), which, for the simplest
version of Ω̂, is

1−
n

n∑
t=1

û2
t xtixtj . (6.26)

1 It is a moot point whether to call this factor an ordinary limit, as we do here, or
a probability limit, as we do in Section 5.5. The difference reflects the fact that,
there, X is generated by some sort of DGP, usually stochastic, while here, we
do everything conditional on X. We would, of course, need probability limits
if X were merely predetermined rather than exogenous.
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Because β̂ is consistent for β0, ût is consistent for ut, and û2
t is therefore

consistent for u2
t . Thus, asymptotically, expression (6.26) is equal to

1−
n

n∑
t=1

u2
t xtixtj =

1−
n

n∑
t=1

(ω2
t + vt)xtixtj

= 1−
n

n∑
t=1

ω2
t xtixtj +

1−
n

n∑
t=1

vtxtixtj ,

(6.27)

where vt is defined to equal u2
t minus its mean of ω2

t . Under suitable assump-
tions about the xti and the ω2

t , we can apply a law of large numbers to the
second term in the second line of (6.27); see White (1980, 2000) for details.
Since vt has mean 0 by construction, this term converges to 0, while the first
term converges to expression (6.25).

The above argument shows that the left-hand side of equation (6.27) tends in
probability to the limit (6.25). Because the former is asymptotically equivalent
to expression (6.26), that expression also tends in probability to (6.25). Con-
sequently, we can use the matrix (6.24), of which a typical element is (6.26),
to estimate lim(n−1X⊤ΩX) consistently, and the matrix

(n−1X⊤X)−1n−1X⊤Ω̂X(n−1X⊤X)−1 (6.28)

to estimate expression (6.23) consistently. Of course, in practice, we ignore
the factors of n−1 and use the matrix

V̂arh(β̂) ≡ (X⊤X)−1X⊤Ω̂X(X⊤X)−1 (6.29)

directly to estimate the covariance matrix of β̂. Expression (6.29) depends
on Ω̂ only through X⊤Ω̂X, which is a symmetric k × k matrix. Notice that
we can compute the latter directly by calculating k(k + 1)/2 quantities like
(6.26) without the factor of n−1.

It is not very difficult to modify the arguments of Section 5.5 so that they
apply to the model (6.21). Equations (5.55) and (5.56) of Theorem 5.3 would
then be replaced by

n1/2(β̂ − β0)
d−→ N

(
0,S−1

X⊤X

(
lim
n→∞

1−
n
X⊤ΩX

)
S−1
X⊤X

)
(6.30)

and
lim
n→∞

1−
n
V̂arh(β̂) = S−1

X⊤X

(
lim
n→∞

1−
n
X⊤ΩX

)
S−1
X⊤X

. (6.31)

We conclude that the OLS estimator β̂ for the model (6.21) is root-n consistent
and asymptotically normal, with (6.29) providing a consistent estimator of its
covariance matrix.
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The sandwich estimator (6.29) that we have just derived is an example of
a heteroskedasticity-consistent covariance matrix estimator, or HCCME for
short. It was introduced to econometrics byWhite (1980), although there were
some precursors in the statistics literature, notably Eicker (1963, 1967), Huber
(1967), and Hinkley (1977). By taking square roots of the diagonal elements
of (6.29), we can obtain standard errors that are asymptotically valid in the
presence of heteroskedasticity of unknown form. These heteroskedasticity-
robust standard errors are often enormously useful.

Alternative Forms of HCCME

The original HCCME (6.29) of White (1980), which is often called HC0, simply
uses squared residuals to estimate the diagonal elements of the matrix Ω.
However, it is not a very good covariance matrix estimator. The reason is
that, as we saw in Section 4.7, least-squares residuals tend to be too small.
There are several better estimators that inflate the squared residuals slightly
so as to offset this tendency. Three well-known methods for obtaining better
estimates of the ω2

t are:

HC1: Use û2
t in Ω̂ and then multiply the entire matrix (6.29) by the scalar

n/(n−k), thus incorporating a standard degrees-of-freedom correction.

HC2: Use û2
t/(1− ht) in Ω̂, where ht ≡ Xt(X

⊤X)−1Xt
⊤ is the tth diagonal

element of the “hat” matrix PX that projects orthogonally on to the
space spanned by the columns of X. Recall the result (4.58) that, when
the variance of all the ut is σ2, the expectation of û2

t is σ2(1− ht).
Therefore, the ratio of û2

t to 1 − ht would have expectation σ2 if the
disturbances were homoskedastic.

HC3: Use û2
t/(1− ht)

2 in Ω̂. This is a slightly simplified version of what one
gets by employing a statistical technique called the jackknife. Dividing
by (1−ht)

2 may seem to be overcorrecting the residuals. However, when
the disturbances are heteroskedastic, observations with large variances
tend to influence the estimates a lot, and they therefore tend to have
residuals that are very much too small. Thus, this estimator may be
attractive if large variances are associated with large values of ht.

With minor modifications, the argument used in the preceding subsection for
HC0 shows that all of these procedures give the correct answer asymptotically,
but none of them can be expected to do so in finite samples. In fact, inferences
based on any HCCME, especially HC0 and HC1, may be seriously inaccurate
even when the sample size is moderately large if some observations have much
higher leverage than others.

The HC1 and HC2 covariance matrices, and the original jackknife version of
HC3, were discussed in MacKinnon and White (1985), which found limited
evidence that the jackknife seemed to work best. Later simulations in Long
and Ervin (2000) also support the use of HC3. However, theoretical work
in Chesher (1989) and Chesher and Austin (1991) gives more ambiguous re-
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sults and suggests that HC2 may sometimes outperform HC3. Simulations
in MacKinnon (2012), which also reviews a number of other procedures for
heteroskedasticity-robust inference, confirm this prediction. It appears that
the best procedure to use depends on the X matrix and on the form of the
heteroskedasticity.

In Chapter 7, we will introduce bootstrap methods that are suitable for use
with the model (6.21). By combining these with appropriate covariance matrix
estimators, we can often obtain substantially more accurate inferences than
simply using an HCCME, especially for samples that are small or involve a
few observations with high leverage; see MacKinnon (2012).

When Does Heteroskedasticity Matter?

Even when the disturbances are heteroskedastic, there are cases in which
we do not necessarily have to use an HCCME. Consider the ij th element of
n−1X⊤ΩX, which is

1−
n

n∑
t=1

ω2
t xtixtj . (6.32)

If the limit as n → ∞ of the average of the ω2
t , t = 1, . . . , n, exists and is

denoted σ2, then expression (6.32) can be rewritten as

σ2 1−
n

n∑
t=1

xtixtj +
1−
n

n∑
t=1

(ω2
t − σ2)xtixtj .

The first term here is just the ij th element of σ2n−1X⊤X. Should it be the
case that

lim
n→∞

1−
n

n∑
t=1

(ω2
t − σ2)xtixtj = 0 (6.33)

for i, j = 1, . . . , k, then we find that

lim
n→∞

1−
n
X⊤ΩX = σ2 lim

n→∞
1−
n
X⊤X. (6.34)

In this special case, we can replace the middle term of (6.23) by the right-
hand side of (6.34), and we find that the asymptotic covariance matrix of
n1/2(β̂ − β0) is just(

lim
n→∞

1−
n
X⊤X

)−1

σ2
(

lim
n→∞

1−
n
X⊤X

)(
lim
n→∞

1−
n
X⊤X

)−1

= σ2S−1
X⊤X

.

The usual OLS estimate of σ2 is s2 =
(
1/(n− k)

)∑n
t=1 û

2
t and, if we assume

that we can apply a law of large numbers, the probability limit of this is

lim
n→∞

1−
n

n∑
t=1

ω2
t = σ2, (6.35)
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by definition. Thus we see that, in this special case, the usual OLS covariance
matrix estimator (4.64) is valid asymptotically. This important result was
originally shown in White (1980).

Equation (6.33) always holds when we are estimating the expectation of the
dependent variable by a sample mean. In that case, X = ι, a vector with
typical element ιt = 1, and

1−
n

n∑
t=1

ω2
t xtixtj =

1−
n

n∑
t=1

ω2
t ι

2
t = 1−

n

n∑
t=1

ω2
t → σ2 as n → ∞.

This shows that we do not have to worry about heteroskedasticity when cal-
culating the standard error of a sample mean. Of course, equation (6.33) also
holds when the disturbances are homoskedastic. In that case, the σ2 given
by (6.35) is just the variance of each of the disturbances.

Although equation (6.33) holds only in certain special cases, it does make one
thing clear. Any form of heteroskedasticity affects the efficiency of the OLS
parameter estimator, but only heteroskedasticity that is related to the squares
and cross-products of the xti affects the validity of the usual OLS covariance
matrix estimator.

6.5 HAC Covariance Matrix Estimators

The assumption that the matrixΩ is diagonal is what makes it possible to esti-
mate the matrix n−1X⊤ΩX consistently and obtain an HCCME, even though
Ω itself cannot be estimated consistently. However, valid covariance matrix
estimators can sometimes be obtained under weaker assumptions about Ω.
In this and the next section, we investigate some possibilities.

The matrix n−1X⊤ΩX can sometimes be estimated consistently when the
disturbances of a regression model using time-series data are correlated across
time periods. As we mentioned in Section 2.3, such disturbances are said to
display serial correlation or autocorrelation. Serial correlation is frequently
encountered in models estimated using time-series data. Often, observations
that are close to each other are strongly correlated, but observations that are
far apart are uncorrelated or nearly so. In this situation, only the elements of
Ω that are on or close to the principal diagonal are large. When this is the
case, we may be able to obtain an estimate of the covariance matrix of the
parameter estimates that is heteroskedasticity and autocorrelation consistent,
or HAC. Computing a HAC covariance matrix estimator is essentially similar
to computing an HCCME, but it is somewhat more complicated2.

2 For no good reason, terminology has developed in such a way that HCCME
functions as a noun, while HAC functions as an adjective.
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The asymptotic covariance matrix of the vector n−1/2X⊤(y−Xβ) of (scaled)
estimating functions, evaluated at β = β0, is defined as follows:

Σ ≡ plim
n→∞

1−
n
X⊤(y −Xβ0)(y −Xβ0)

⊤X = plim
n→∞

1−
n
X⊤ΩX. (6.36)

A HAC estimator of Σ is a matrix Σ̂ constructed so that Σ̂ consistently es-
timates Σ when the disturbances ut display any pattern of heteroskedasticity
and/or autocorrelation that satisfies certain, generally quite weak, conditions.
In order to derive such an estimator, we begin by rewriting the definition of
Σ in an alternative way:

Σ = lim
n→∞

1−
n

n∑
t=1

n∑
s=1

E
(
utusXt

⊤Xs

)
, (6.37)

in which we assume that a law of large numbers can be used to justify replacing
the probability limit in (6.36) by the expectations in (6.37).

For regression models with heteroskedasticity but no autocorrelation, only
the terms with t = s contribute to (6.37). Therefore, for such models, we
can estimate Σ consistently by simply ignoring the expectation operator and
replacing the disturbances ut by least-squares residuals ût, possibly with a
modification designed to offset the tendency for such residuals to be too small.
The obvious way to estimate (6.37) when there may be serial correlation is
again simply to drop the expectations operator and replace utus by ûtûs,
where ût denotes the t

thOLS residual. Unfortunately, this approach does not
work. To see why not, we need to rewrite (6.37) in yet another way. Let us
define the autocovariance matrices of the Xt

⊤ut as follows:

Γ (j) ≡


1−
n

n∑
t=j+1

E(utut−jXt
⊤Xt−j) for j ≥ 0,

1−
n

n∑
t=−j+1

E(ut+jutX
⊤
t+jXt) for j < 0.

(6.38)

Because there are k estimating functions, these are k×k matrices. It is easy to
check that Γ (j) = Γ⊤(−j). Then, in terms of the matrices Γ (j), expression
(6.37) becomes

Σ = lim
n→∞

n−1∑
j=−n+1

Γ (j) = lim
n→∞

(
Γ (0) +

n−1∑
j=1

(
Γ (j) + Γ⊤(j)

))
. (6.39)

Therefore, in order to estimate Σ, we apparently need to estimate all of the
autocovariance matrices for j = 0, . . . , n− 1.
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If ût denotes a typical OLS residual, the sample autocovariance matrix of
order j, Γ̂ (j), is just the appropriate expression in (6.38), without the expec-
tation operator, and with the random variables ut and ut−j replaced by ût

and ût−j , respectively. For any j ≥ 0, this is

Γ̂ (j) = 1−
n

n∑
t=j+1

ûtût−jXt
⊤Xt−j . (6.40)

Unfortunately, the sample autocovariance matrix Γ̂ (j) of order j is not a con-
sistent estimator of the true autocovariance matrix for arbitrary j. Suppose,
for instance, that j = n−2. Then, from (6.40), we see that Γ̂ (j) has only two
terms, and no conceivable law of large numbers can apply to only two terms.
In fact, Γ̂ (n− 2) must tend to zero as n → ∞ because of the factor of n−1 in
its definition.

The solution to this problem is to restrict our attention to models for which
the actual autocovariances mimic the behavior of the sample autocovariances,
and for which therefore the actual autocovariance of order j tends to zero as
j → ∞. A great many stochastic processes generate disturbances for which
the Γ (j) do have this property. In such cases, we can drop most of the
sample autocovariance matrices that appear in the sample analog of (6.39) by
eliminating ones for which |j| is greater than some chosen threshold, say p.
This yields the following estimator for Σ:

Σ̂HW = Γ̂ (0) +

p∑
j=1

(
Γ̂ (j) + Γ̂⊤(j)

)
, (6.41)

We refer to this estimator as the Hansen-White estimator, because it was
originally proposed by Hansen (1982) and White and Domowitz (1984); see
also White (2000).

For the purposes of asymptotic theory, it is necessary to let the parameter p,
which is called the lag truncation parameter, go to infinity in (6.41) at some
suitable rate as the sample size goes to infinity. A typical rate would be n1/4.
This ensures that, for large enough n, all the nonzero Γ (j) are estimated
consistently. Unfortunately, this type of result does not say how large p should
be in practice. In most cases, we have a given, finite, sample size, and we need
to choose a specific value of p.

The Hansen-White estimator (6.41) suffers from one very serious deficiency:
In finite samples, it need not be positive definite or even positive semidefinite.
If one happens to encounter a data set that yields a nondefinite Σ̂HW, then,
since a covariance matrix must be positive definite, (6.41) is unusable. Luckily,
there are numerous ways out of this difficulty. The one that is most widely
used was suggested by Newey and West (1987). The Newey-West estimator
they propose is

Σ̂NW = Γ̂ (0) +

p∑
j=1

(
1− j

p+ 1

)(
Γ̂ (j) + Γ̂⊤(j)

)
, (6.42)
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in which each sample autocovariance matrix Γ̂ (j) is multiplied by a weight
1− j/(p+ 1) that decreases linearly as j increases. The weight is p/(p+ 1) for
j = 1, and it then decreases by steps of 1/(p+ 1) down to a value of 1/(p+ 1)
for j = p. This estimator evidently tends to underestimate the autocovariance
matrices, especially for larger values of j. Therefore, p should almost certainly
be larger for (6.42) than for (6.41). As with the Hansen-White estimator, p
must increase as n does, and the appropriate rate is n1/3. A procedure for
selecting p automatically was proposed by Newey and West (1994), but it is
too complicated to discuss here.

Both the Hansen-White and the Newey-West HAC estimators of Σ can be
written in the form

Σ̂ = 1−
n
X⊤Ω̂X (6.43)

for an appropriate choice of Ω̂. This fact follows from the observation that
there exist n × n matrices U(j) such that the Γ̂ (j) can be expressed in the
form n−1X⊤U(j)X, as readers are asked to check in Exercise 6.14.

The Newey-West estimator is by no means the only HAC estimator that is
guaranteed to be positive definite. Andrews (1991) provides a detailed treat-
ment of HAC estimation, suggests some alternatives to the Newey-West esti-
mator, and shows that, in some circumstances, they may perform better than
it does in finite samples.

6.6 Cluster-Robust Inference

In many areas of applied econometrics, data are collected at the individual
level, but each observation is associated with a higher-level entity, such as a
city, state, province, or country, a classroom or school, a hospital, or perhaps
a time period. We can think of all the observations associated with each
of these higher-level entities as forming a cluster. In many cases, it seems
plausible that the disturbances for a regression model using data of this type
may be correlated within the clusters.

One way to deal with clustering is to write the linear regression model as

y ≡


y1

y2
...
yG

 = Xβ + u ≡


X1

X2
...

XG

β +


u1

u2
...

uG

, (6.44)

where the data are divided into G clusters, indexed by g. The g th cluster has
ng observations, and the entire sample has n =

∑G
g=1 ng observations. The

matrix X and the vectors y and u have n rows, the matrix X has k columns,
and the parameter vector β has k elements. For this model, it is customary to
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assume that the disturbances are uncorrelated across clusters but potentially
correlated and heteroskedastic within clusters, so that

E(ugug
⊤) = Ωg, g = 1, . . . , G. (6.45)

The ng × ng covariance matrices Ωg are assumed to be unknown. Thus the
covariance matrix Ω of the entire vector u is assumed to be block diagonal,
with the matrices Ωg forming the diagonal blocks.

Ordinary least squares estimation of equation (6.44) yields OLS estimates β̂
and residuals û. The covariance matrix of β̂ is, of course, a sandwich:

(X⊤X)−1X⊤ΩX(X⊤X)−1

= (X⊤X)−1

(
G∑

g=1

Xg
⊤ΩgXg

)
(X⊤X)−1. (6.46)

Notice that the matrix in the middle of the sandwich is actually the sum of
G matrices, one for each cluster.

Why Clustering Matters

Before we discuss how to estimate the covariance matrix (6.46), it is important
to appreciate the fact that this matrix can be very different from the classical
covariance matrix σ2(X⊤X)−1 and the sandwich covariance matrix (6.22)
when Ω is block-diagonal. Just how different it is depends on the regressors,
the cluster sizes, and the intra-cluster correlations. When some or all of the
clusters contain many observations, the diagonal elements of (6.46) can be
very much larger than those of conventional covariance matrices, even when
the intra-cluster correlations are very small.

The simplest and most popular way to model intra-cluster correlation is to
use the error components model

ugi = vg + εgi, vg ∼ IID(0, σ2
v), εgi ∼ IID(0, σ2

ε), (6.47)

for i = 1, . . . , ng, g = 1, . . . , G. Here vg is a random variable that affects every
observation in cluster g and no observation in any other cluster, while εgi is
an idiosyncratic shock that affects only the single observation gi. This model
implies that

Var(ugi) = σ2
v + σ2

ε and Cov(ugi, ugj) = σ2
v ,

so that

ρ ≡ Cov(ugi, ugj)

Var(ugi)
=

σ2
v

σ2
v + σ2

ε

for all g and i ̸= j.

Thus all the intra-cluster correlations are the same and equal to ρ.
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There has been a good deal of analysis of this special case; see Kloek (1981)
and Moulton (1986, 1990). Suppose for simplicity that the model contains
only a constant and one regressor, with coefficient β2, where the value of the
regressor is fixed within each cluster. If ng is the same for every cluster, then
it can be shown that

Var(β̂2)

Varc(β̂2)
= 1 + (ng − 1)ρ, (6.48)

where Var(β̂2) is the true variance of β̂2 based on the matrix (6.46), and
Varc(β̂2) is the incorrect variance based on the conventional OLS covariance
matrix σ2(X⊤X)−1; see Angrist and Pischke (2008, Chapter 8). The square
root of the right-hand side of equation (6.48) is sometimes called the Moulton
factor. A very simple, but not very accurate, way to “correct” conventional
standard errors is to multiply them by an estimate of the Moulton factor.

More generally, the ratio of the correct variance to the conventional one looks
like (6.48), but with ng − 1 replaced by a function of the cluster sizes and the
intra-cluster correlations of the regressors. For a given sample size and set of
regressors, the ratio is greatest when all the ng are the same.

It is clear from (6.48) that the true variance of β̂2 can be very much greater
than the incorrect, conventional one when ng is large, even if ρ is quite small.
For example, if ρ = 0.05, the true variance will be twice the conventional one
when ng = 21, four times the conventional one when ng = 61, and 25 times the
conventional one when ng = 481. In practice, clusters often have thousands or
even tens of thousands of observations, so that conventional standard errors
may easily understate the true ones by factors of ten or more.

One obvious way to solve this problem is to include group fixed effects. This
will explain the vg, leaving only the εgi. However, group fixed effects cannot
be included if any of the regressors of interest does not vary within clusters. In
that case, the fixed effects will explain all the variation in those regressors, so
that we cannot identify the coefficient(s) we are interested in. Unfortunately,
this is a very common situation. It occurs whenever certain regressors, such
as labor market conditions, tax rates, local prices or wages, or measures of
local amenities, are measured at the group level. It also occurs whenever we
are interested in the effects of laws or policies that affect entire groups. This
was precisely the situation that motivated the analysis of Kloek (1981).

Even when it is possible to include group fixed effects, they very often do not
solve the problem. In most applied problems, there is no reason to believe
that intra-cluster correlations arise solely from an error components model like
(6.47). They probably arise for a variety of reasons, including misspecification
of the regression function and features of the way the data are collected,
and they are almost certainly far more complicated than a model like (6.47)
implies. Strong evidence that fixed effects do not fully account for intra-cluster
correlations in large samples of individual data has been provided by Bertrand,
Duflo, and Mullanaithan (2004) and MacKinnon and Webb (2016). Thus it
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appears that we should estimate the covariance matrix (6.46) whenever data
appear to be clustered, whether or not the regression includes fixed effects. A
very general analysis of the consequences of correlated disturbances is provided
by Andrews (2005).

Cluster-Robust Covariance Matrix Estimation

It is natural to estimate the covariance matrix (6.46) by generalizing the
concept of an HCCME. This idea seems to have been proposed first in Liang
and Zeger (1986). For historical reasons, such an estimator is generally called
a cluster-robust variance estimator, or CRVE, rather than a CCCME, as
might seem more logical.

The simplest and most widely-used CRVE is

CV1 :
G(n− 1)

(G− 1)(n− k)
(X⊤X)−1

(
G∑

g=1

Xg
⊤ûgûg

⊤Xg

)
(X⊤X)−1, (6.49)

where ûg is the vector of OLS residuals for cluster g. Notice that each of
the k× k matrices within the summation has rank one, because it is equal to
the column vector Xg

⊤ûg times its transpose. This implies that the rank of
the CRVE itself cannot exceed G, making it impossible to test more than G
restrictions at once. When ng = 1 for all g, so that G = n, expression (6.49)
reduces to the familiar HC1 matrix.

The degrees-of-freedom adjustment in (6.49) may seem odd. That is because it
is really the product of two adjustments, one based on the sample size and the
number of regressors, and one based on the number of clusters. It is customary
to base inferences on the t distribution with G−1 degrees of freedom, because
it turns out what matters for a reasonable asymptotic analysis is the number
of clusters, not the number of observations. Intuitively, each of the terms
in the summation in (6.49) contributes one degree of freedom, and a t test
uses up one degree of freedom, leaving us with G − 1 of them.3 When G is
small and n is large, critical values based on the t(G− 1) distribution can be
substantially larger than ones based on the t(n− k) distribution, potentially
leading to different inferences.

The fact that the summation in expression (6.49) has only G terms also sug-
gests that, if CV1 is to estimate the true covariance matrix (6.46) consistently,
the asymptotic construction should be such that the number of clusters G
tends to infinity with the sample size. That is indeed the case; see Carter,
Schnepel, and Steigerwald (2015). In fact, if the sample size goes to infinity
while G remains fixed, β̂ is not even consistent; see Andrews (2005).

3 For more formal analyses of this issue, see Donald and Lang (2007) and Bester,
Conley, and Hansen (2011).
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As its name implies, the estimator CV1 is analogous to HC1. There are also
CRVEs that are analogous to HC2 and HC3. Recall that the latter involve
transforming the OLS residuals before using them to compute the filling in
the sandwich. In the CRVE case, the transformations involve the residual
vectors for each of the clusters. First, define the ng × ng matrices

Mgg ≡ Ing −Xg(X
⊤X)−1Xg

⊤, g = 1, . . . , G. (6.50)

These are the diagonal blocks of the MX matrix that correspond to each
of the G clusters. They are not themselves orthogonal projection matrices,
and are in fact positive definite provided that the columns of Xg are linearly
independent. The CV2 matrix uses the transformed residuals

u̇g ≡ M−1/2
gg ûg,

where M
−1/2
gg denotes the inverse of the symmetric square root of the matrix

Mgg, and the CV3 matrix uses the transformed residuals

üg ≡ M−1
gg ûg.

The CV2 and CV3 matrices have essentially the same form as (6.49), with u̇g

and üg replacing ûg, except that the scalar factor at the beginning is omit-
ted because transforming the residuals has already scaled them up.4 These
estimators evidently reduce to HC2 and HC3 when each cluster has just one
element. There is a good deal of evidence that confidence intervals based
on CV2 and CV3 have better coverage properties than ones based on CV1,
although ones based on CV3 are sometimes prone to overcover.

Inference based on the CV1 covariance matrix (6.49) seems to work well if
several key conditions are satisfied. First, clustering must be performed at
the appropriate level. This is not always easy to achieve; see Cameron and
Miller (2015). Second, the number of clusters must be reasonably large. For
clusters of roughly equal sizes, 50 or so is probably sufficient, but a much
larger number may be needed if cluster sizes vary a lot; see MacKinnon and
Webb (2016). Third, the disturbances must be approximately homoskedastic
across clusters.

When at least one of the conditions for reliable inference just given is violated,
it is dangerous to use t statistics and confidence intervals based on the CV1

covariance matrix (6.49). Using CV2 or CV3, if that is feasible, will probably
work at least somewhat better than using CV1, but often not well enough.
Conceptually, the simplest way to make better inferences is probably to use
bootstrap methods, which will be discussed in Chapter 7.

The literature on cluster-robust inference has grown rapidly since the turn of
the century. For a much more detailed treatment of this literature than we
have space for, see Cameron and Miller (2015).

4 CV2 was first proposed in Bell and McCaffrey (2002) and has been studied
by Imbens and Kolesár (2016). Both it and CV3 have been investigated by
MacKinnon (2015) and Young (2015).
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6.7 Difference in Differences

Suppose that a new policy comes into effect in one or more jurisdictions
(such as countries, states, provinces, or cities) at one or more points in time.
Economists may be interested in seeing what effect, if any, the policy had
on some variable of interest. The problem is to disentangle the effects of the
policy change from other changes across time or across jurisdictions. One
method that is commonly used is a type of linear regression called difference
in differences, or DiD for short.5

Let us index jurisdictions by g and time periods by t, so that ygti denotes the
dependent variable for the ith unit (for example, an individual, a household,
or a firm) within jurisdiction g at time t. If E(ygti) could vary arbitrarily
across both jurisdictions and time periods, there would be no way to identify
the effects of the policy. Therefore, we assume that, in the absence of the
policy,

ygti = ηg + λt + ugti, (6.51)

where ηg is a jurisdiction fixed effect, λt is a time fixed effect, and ugti is
an idiosyncratic shock. This assumption is by no means innocuous, since
it imposes a common jurisdiction fixed effect ηg on all time periods and a
common time fixed effect, or common trend, λt on all jurisdictions. Suppose
further that the only effect of the policy is to shift E(ygti) by a constant δ,
so that equation (6.51) would include an additional term for any observation
where the policy is active.

Initially, suppose there are only two jurisdictions, denoted a and b, and two
time periods, denoted 1 and 2. If the policy is imposed in jurisdiction b in
period 2 only, then we have four equations, one for each jurisdiction in each
time period:

ya1i = ηa + λ1 + ua1i, ya2i = ηa + λ2 + ua2i,

yb1i = ηb + λ1 + ub1i, yb2i = ηb + λ2 + δ + ub2i.
(6.52)

Let ȳgt and ūgt denote the average values of the ygti and the ugti, respectively,
for g = a, b and t = 1, 2. Then equations (6.52) and our assumption about
the effect of the policy imply that

ȳa2 − ȳa1 = λ2 − λ1 + (ūa2 − ūa1),

and
ȳb2 − ȳb1 = δ + λ2 − λ1 + (ūb2 − ūb1).

Therefore,

(ȳb2 − ȳb1)− (ȳa2 − ȳa1) = δ + (ūb2 − ūb1)− (ūa2 − ūa1). (6.53)

5 For a more detailed discussion of the DiD methodology, see Angrist and Pischke
(2008, Chapter 5).
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The quantity on the left of this equation is the difference between two first
differences, ȳb2− ȳb1 and ȳa2− ȳa1. The quantity on the right is the parameter
we want to estimate, δ, plus a linear combination of the disturbances. Notice
that the parameters λ1 and λ2 have vanished. The difference in differences
on the left of equation (6.53) is something that we can calculate. If we have
a large enough sample, the variance of the disturbance term on the right of
equation (6.53) should be small enough that the quantity on the left provides
a reasonable estimate of δ.

Instead of actually computing the difference in differences on the left-hand
side of equation (6.53), we can simply estimate a regression model. Define
Db
gti as a dummy variable that equals 1 if g = b and 0 otherwise, and D2

gti

as a dummy variable that equals 1 if t = 2 and 0 otherwise. Then equations
(6.52) can be combined into just one equation:

ygti = β1 + β2D
b
gti + β3D

2
gti + δDb

gtiD
2
gti + ugti. (6.54)

The first three coefficients here are related to the coefficients in equations
(6.52) as follows:

β1 = ηa + λ1, β2 = ηb − ηa, β3 = λ2 − λ1.

The coefficient of interest is, of course, δ, which measures the effect of the
treatment on jurisdiction b in period 2.

Clustering by Jurisdiction

Although there are studies that use the difference-in-differences methodology
with just two jurisdictions and two time periods (Card and Krueger (1994)
is a pioneering one), it is impossible to allow for clustered disturbances in
that case. If we are to make valid inferences that allow for clustering at
the jurisdiction level, it is essential to have at least a moderate number of
jurisdictions, in a reasonable fraction of which the policy is imposed. We say
that the jurisdictions in which the policy is imposed are treated.

In the general case, there are G ≥ 2 jurisdictions that we wish to consider as
clusters, of which G1 are treated in at least some of the T time periods and
G0 are never treated. Instead of regression (6.54), we can then estimate a
regression of the form

ygti = β1 +
G∑

j=2

βjDJj
gti +

T−1∑
k=1

βG+kDTk
gti + δTRgti + ugti, (6.55)

where the DJj
gti are jurisdiction dummies that equal 1 when g = j, the DTk

gti

are time dummies that equal 1 when t = k, and TRgti is a treatment dummy
that equals 1 when jurisdiction g is treated in time period t. Thus the treat-
ment dummy TRgti equals 1 for the treated observations in the G1 treated
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clusters. It equals 0 for the remaining observations in those clusters and
for all observations in the G0 untreated clusters. Of course, equation (6.55)
could also include additional explanatory variables, provided they vary at the
individual level.

It would be impossible to estimate equation (6.55) if any jurisdiction were
treated in every period, because there would be perfect collinearity between
at least one of the jurisdiction dummies and the treatment dummy. Thus if
every jurisdiction were either treated in every period or not treated in every
period, all of the jurisdiction dummies would have to be dropped. We could
still estimate an equation like (6.55) with fewer parameters, but we could not
identify the parameter δ separately from the the jurisdiction fixed effects ηg.
Thus, even though equation (6.55) is not explicitly written in terms of a
difference in differences, the basic idea of DiD is still embodied in it, because
we can identify the parameter δ only if some jurisdictions are treated in some
periods and not treated in others.

When computing test statistics or confidence intervals based on equations like
(6.55), it is obligatory to use a cluster-robust covariance matrix. In principle,
one could cluster either by jurisdictions or by jurisdiction-period pairs. In
most cases, it seems to be best to cluster at the jurisdiction level; see Bertrand,
Duflo, and Mullanaithan (2004) and Cameron and Miller (2015). However, if
this leads to the number of treated clusters being small, there is a serious risk
of severe errors of inference; see MacKinnon and Webb (2016).

6.8 The Delta Method

Econometricians often want to perform inference on nonlinear functions of
model parameters. This requires them to estimate the standard error of a
nonlinear function of parameter estimates or, more generally, the covariance
matrix of a vector of such functions. One popular way to do so is called the
delta method. It is based on an asymptotic approximation.

For simplicity, let us start with the case of a single parameter. Suppose that we
have estimated a scalar parameter θ, which might be one of the coefficients of a
linear regression model, and that we are interested in the parameter γ ≡ g(θ),
where g(·) is a monotonic function that is continuously differentiable. In this
situation, the obvious way to estimate γ is to use γ̂ = g(θ̂). Since θ̂ is a random
variable, so is γ̂. The problem is to estimate the variance of γ̂.

Since γ̂ is a function of θ̂, it seems logical that Var(γ̂) should be a function of
Var(θ̂). If g(θ) is an affine function, then we already know how to calculate
Var(γ̂); recall the result (4.44). The idea of the delta method is simply to find
a linear approximation to g(θ) and then apply (4.44) to this approximation.
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Figure 6.4 Taylor’s Theorem

Taylor’s Theorem

It is frequently necessary in econometrics to obtain linear approximations
to nonlinear functions. The mathematical tool most commonly used for this
purpose is Taylor’s Theorem. In its simplest form, Taylor’s Theorem applies to
functions of a scalar argument that are differentiable at least once on some real
interval [a, b ], with the derivative a continuous function on [a, b ]. Figure 6.4
shows the graph of such a function, f(x), for x ∈ [a, b ].

The coordinates of A are (a, f(a)), and those of B are (b, f(b)). Thus the
slope of the line AB is

(
f(b)− f(a)

)
/(b− a). What drives the theorem is the

observation that there must always be a value between a and b, like c in the
figure, at which the derivative f ′(c) is equal to the slope of AB. This is a
consequence of the continuity of the derivative. If it were not continuous, and
the graph of f(x) had a corner, the slope might always be greater than f ′(c)
on one side of the corner, and always be smaller on the other. But if f ′(x) is
continuous on [a, b ], then there must exist c such that

f ′(c) =
f(b)− f(a)

b− a
.

This can be rewritten as f(b) = f(a) + (b− a)f ′(c). If we let h = b− a, then,
since c lies between a and b, it must be the case that c = a+ λh, for some λ
between 0 and 1. Thus we obtain

f(a+ h) = f(a) + hf ′(a+ λh). (6.56)
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Equation (6.56), which is the simplest expression of Taylor’s Theorem, is also
known as the Mean Value Theorem.

Although equation (6.56) is an exact relationship, it involves the quantity λ,
which is unknown. It is more usual just to set λ = 0, so as to obtain a linear
approximation to the function f(x) for x in the neighborhood of a. This
approximation, called a first-order Taylor expansion around a, is

f(a+ h) ∼= f(a) + hf ′(a), (6.57)

where the symbol “∼=” means “is approximately equal to.” The right-hand
side of this equation is an affine function of h.

Taylor’s Theorem can be extended in order to provide approximations that
are quadratic or cubic functions, or polynomials of any desired order. The
exact statement of the theorem, with terms proportional to powers of h up
to hp, is

f(a+ h) = f(a) +

p−1∑
i=1

hi

i!
f (i)(a) +

hp

p!
f (p)(a+ λh).

Here f (i) is the ith derivative of f , and once more 0 < λ < 1. The approx-
imate version of the theorem sets λ = 0 and gives rise to a pth-order Taylor
expansion around a. A commonly-encountered example of the latter is the
second-order Taylor expansion

f(a+ h) ∼= f(a) + hf ′(a) + 1−
2
h2f ′′(a).

Both versions of Taylor’s Theorem require as a regularity condition that f(x)
should have a pth derivative that is continuous on [a, a+ h].

There are also multivariate versions of Taylor’s Theorem, and we will need
them from time to time. If f(x) is now a scalar-valued function of the
m--vector x, then, for p = 1, the Mean Value Theorem states that, if h is
also an m--vector,

f(x+ h) ∼= f(x) +
m∑
j=1

hjfj(x+ λh), (6.58)

where hj is the j th component of h, fj is the partial derivative of f with
respect to its j th argument, and, as before, 0 < λ < 1.

The Delta Method for a Scalar Parameter

If we assume that the estimator θ̂ is root-n consistent and asymptotically
normal, then

n1/2(θ̂ − θ0)
a∼ N

(
0, V ∞(θ̂)

)
, (6.59)

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

6.8 The Delta Method 229

where θ0 denotes the true value of θ. Here we use V ∞(θ̂) as a shorthand way
of writing the asymptotic variance of n1/2(θ̂ − θ0).

In order to find the asymptotic distribution of γ̂ = g(θ̂), we perform a first-
order Taylor expansion of g(θ̂) around θ0. Using (6.57), we obtain

γ̂ ∼= g(θ0) + g′(θ0)(θ̂ − θ0), (6.60)

where g′(θ0) is the first derivative of g(θ), evaluated at θ0. Given the root-
n consistency of θ̂, (6.60) can be rearranged into an asymptotic equality.
Two deterministic quantities are said to be asymptotically equal if they tend
to the same limits as n → ∞. Similarly, two random quantities are said
to be asymptotically equal if the difference between them tends to zero in
probability. As usual, we need a power of n to make things work correctly.
Here, we multiply both sides of (6.60) by n1/2. If we denote g(θ0), which is
the true value of γ, by γ0, then (6.60) becomes

n1/2(γ̂ − γ0)
a
= g′0n

1/2(θ̂ − θ0), (6.61)

where the symbol
a
= is used for asymptotic equality, and g′0 ≡ g′(θ0). In

Exercise 6.19, readers are asked to check that, if we perform a second-order
Taylor expansion instead of a first-order one, the last term of the expansion
vanishes asymptotically. This justifies (6.61) as an asymptotic equality.

Equation (6.61) shows that n1/2(γ̂−γ0) is asymptotically normal with mean 0,
since the right-hand side of (6.61) is just g′0 times a quantity that is asymp-
totically normal with mean 0; recall (6.59). The variance of n1/2(γ̂ − γ0) is
clearly (g′0)

2V ∞(θ̂), and so we conclude that

n1/2(γ̂ − γ0)
a∼ N

(
0, (g′0)

2V ∞(θ̂)
)
. (6.62)

This shows that γ̂ is root-n consistent and asymptotically normal when θ̂ is.

The result (6.62) leads immediately to a practical procedure for estimating
the standard error of γ̂. If the standard error of θ̂ is sθ, then the standard
error of γ̂ is

sγ ≡
∣∣g′(θ̂)∣∣ sθ. (6.63)

This procedure can be based on any asymptotically valid estimator of the
standard deviation of θ̂. For example, if θ were one of the coefficients of a
linear regression model, then sθ could be the square root of the corresponding
diagonal element of the usual estimated OLS covariance matrix, or it could
be the square root of the corresponding diagonal element of an estimated
HCCME, CRVE, or HAC estimator.

In practice, the delta method is usually very easy to use. For example, consider
the case in which γ = θ2. Then g′(θ) = 2θ, and the formula (6.63) tells us
that sγ = 2|θ̂|sθ. Notice that sγ depends on θ̂, something that is not true for
any of the standard errors we have discussed previously.
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Confidence Intervals and the Delta Method

Although the result (6.63) is simple and practical, it reveals some of the lim-
itations of asymptotic theory. Whenever the relationship between θ̂ and γ̂
is nonlinear, it is impossible that both estimators should be normally dis-
tributed in finite samples. Suppose that θ̂ really did happen to be normally
distributed. Then, unless g(·) were linear, γ̂ could not possibly be normally,
or even symmetrically, distributed. Similarly, if γ̂ were normally distributed,
θ̂ could not be. Moreover, as the example at the end of the last subsection
showed, sγ generally depends on θ̂. This implies that the numerator of a t sta-
tistic for γ is not independent of the denominator. However, independence
was essential to the result, in Section 5.4, that the t statistic actually follows
the Student’s t distribution.

The preceding arguments suggest that confidence intervals and test statis-
tics based on asymptotic theory may often not be reliable in finite samples.
Asymptotic normality of the parameter estimates is an essential underpinning
of all asymptotic tests and confidence intervals or regions. When the finite-
sample distributions of estimates are far from the limiting normal distribution,
one cannot expect any asymptotic procedure to perform well.

Despite these caveats, we may still wish to construct an asymptotic confidence
interval for γ based on the second interval in (6.08). The result is[

γ̂ − sγz1−α/2, γ̂ + sγz1−α/2

]
, (6.64)

where sγ is the delta method estimate (6.63), and z1−α/2 is the 1 − α/2
quantile of the standard normal distribution. This confidence interval can
be expected to work well whenever the finite-sample distribution of γ̂ is well
approximated by the normal distribution and sγ is a reliable estimator of its
standard deviation.

Using (6.64) is not the only way to obtain an asymptotic confidence interval
for γ, however. Another approach, which usually leads to an asymmetric
interval, is to transform the asymptotic confidence interval for the underlying
parameter θ. The latter interval, which is similar to the second interval in
(6.08), is [

θ̂ − sθz1−α/2, θ̂ + sθz1−α/2

]
.

Transforming the endpoints of this interval by the function g(·) gives the
following interval for γ:[

g(θ̂ − sθz1−α/2), g(θ̂ + sθz1−α/2)
]
. (6.65)

This formula assumes that g′(θ) > 0. If g′(θ) < 0, the two ends of the interval
would have to be interchanged.

Whenever g(θ) is a nonlinear function, the confidence interval (6.65) must be
asymmetric. This is illustrated in Figure 6.5. The lower horizontal line shows
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Figure 6.5 Two confidence intervals for γ ≡ θ2

θ̂ and a symmetric confidence interval for θ based on the standard error sθ.
The upper horizontal line shows γ̂ = θ̂2 and two different confidence intervals.
The one with limits γ̂l and γ̂u is obtained by transforming the ends of the
interval for θ using (6.65), as the dashed lines in the figure show. The one
with limits γ̂∆

l and γ̂∆
u is based on the delta method using the result that, in

this case, sγ = 2θ̂sθ. The interval based on (6.65) can be expected to work

better than the delta-method interval if the finite-sample distribution of θ̂ is
well approximated by the normal distribution and sθ is a reliable estimator
of the standard deviation of θ̂.

The Vector Case

The result (6.62) can easily be extended to the case in which both θ and γ are
vectors. Suppose that the former is a k --vector and the latter is an l --vector,
with l ≤ k. The relation between θ and γ is γ ≡ g(θ), where g(θ) is an
l --vector of monotonic functions that are continuously differentiable. The
vector version of (6.59) is

n1/2(θ̂ − θ0)
a∼ N

(
0,V ∞(θ̂)

)
, (6.66)

where V ∞(θ̂) is the asymptotic covariance matrix of the vector n1/2(θ̂ − θ0).
Using the result (6.66) and a first-order Taylor expansion of g(θ) around θ0,
it can be shown that the vector analog of (6.62) is

n1/2(γ̂ − γ0)
a∼ N

(
0,G0V

∞(θ̂)G0
⊤), (6.67)

where G0 is an l × k matrix with typical element ∂gi(θ)/∂θj , called the Ja-
cobian matrix, evaluated at θ0; see Exercise 6.21. The asymptotic covariance
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matrix that appears in (6.67) is an l× l matrix. It has full rank l if V ∞(θ̂) is
nonsingular and the matrix of derivatives G0 has full rank l.

In practice, the covariance matrix of γ̂ may be estimated by the matrix

V̂ar(γ̂) ≡ Ĝ V̂ar(θ̂)Ĝ⊤, (6.68)

where V̂ar(θ̂) is the estimated covariance matrix of θ̂, and Ĝ ≡ G(θ̂). This
result, which is similar to (4.44), can be very useful. However, like all results
based on asymptotic theory, it should be used with caution. As in the scalar
case discussed above, the vector γ̂ cannot possibly be normally distributed if
the vector θ̂ is normally distributed when g(·) is not an affine function.

6.9 Final Remarks

In this chapter, we have introduced the key concepts of confidence intervals.
The idea is first to construct a family of test statistics for the null hypotheses
that the parameter of interest is equal to a particular value. The limits of the
confidence interval are then obtained by solving the equation that sets the
statistic equal to the critical values given by some appropriate distribution.
The critical values may be quantiles of a finite-sample distribution, such as
Student’s t distribution, quantiles of an asymptotic distribution, such as the
standard normal distribution, or (as we will see in Chapter 7) quantiles of a
bootstrap EDF. We also briefly discussed some procedures for constructing
confidence regions.

All of the methods for constructing confidence intervals and regions that we
have discussed require standard errors or, more generally, estimated covar-
iance matrices. The second half of the chapter therefore deals with ways
to estimate these under weaker assumptions than were made in Chapter 4.
Much of this material is applicable to estimation methods other than OLS.
Procedures for the estimation of covariance matrices in the presence of het-
eroskedasticity of unknown form, similar to those discussed in Section 6.4,
are useful in the context of many different methods of estimation. So are
procedures for the estimation of covariance matrices in the presence of auto-
correlation or clustering, similar to those discussed in sections 5 and 6. The
delta method, which was discussed in Section 6.8, is even more general, since
it can be used whenever one parameter, or vector of parameters, is a nonlinear
function of another.
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6.10 Exercises

6.1 Find the .025, .05, .10, and .20 quantiles of the standard normal distribution
using a statistics package or some other computer program. Use these to
obtain whatever quantiles of the χ2(1) distribution you can.

6.2 Starting from the square of the t statistic (6.11), and using the F (1, n − k)
distribution, obtain a .99 confidence interval for the parameter β2 in the
classical normal linear model (5.18). Then show that you would have obtained
the same interval by using (6.11) itself and the t(n− k) distribution.

6.3 The file group-earnings-data.txt contains sorted data on four variables for
4,266 individuals. One of the variables is income, y, and the other three are
dummy variables, d1, d2, and d3, which correspond to different age ranges.
Regress y on all three dummy variables. Then use the regression output
to construct a .95 asymptotic confidence interval for the mean income of
individuals who belong to age group 3.

6.4 Using the same data as Exercise 6.3, regress y on a constant for individuals
in age group 3 only. Use the regression output to construct a .95 asymptotic
confidence interval for the mean income of group 3 individuals. Explain why
this confidence interval is not the same as the one you constructed previously.

6.5 Generate 999 realizations of a random variable that follows the χ2(2) distri-
bution, and find the .95 and .99 “quantiles” of the EDF, that is the 950 th

and 990th entries in the sorted list of the realizations. Compare these with
the .95 and .99 quantiles of the χ2(2) distribution.

6.6 Show that the F statistic for the null hypothesis that β2 = β20 in the model
(6.16), or, equivalently, for the null hypothesis that γ2 = 0 in (6.17), can be
written as (6.18). Interpret the numerator of expression (6.18) as a random
variable constructed from the multivariate normal vector β̂2.

⋆6.7 Consider a regression model with just two explanatory variables, x1 and x2,
both of which are centered:

y = β1x1 + β2x2 + u. (6.69)

Let ρ̂ denote the sample correlation of x1 and x2. Since both regressors are
centered, the sample correlation is

ρ̂ ≡
∑n

t=1 xt1xt2(
(
∑n

t=1 x
2
t1)(
∑n

t=1 x
2
t2)
)1/2 ,

where xt1 and xt2 are typical elements of x1 and x2, respectively. This can
be interpreted as the correlation of the joint EDF of x1 and x2.

Show that, under the assumptions of the classical normal linear model, the
correlation between the OLS estimates β̂1 and β̂2 is equal to −ρ̂. Which, if
any, of the assumptions of this model can be relaxed without changing this
result?

6.8 Consider the .95 level confidence region for the parameters β1 and β2 of the
regression model (6.69). In the two-dimensional space S(x1,x2) generated by
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the two regressors, consider the set of points of the form β10x1+β20x2, where
(β10, β20) belongs to the confidence region. Show that this set is a circular
disk with center at the OLS estimates (x1β̂1 + x2β̂2). What is the radius of
the disk?

6.9 Using the data in the file group-earnings-data.txt, regress y on all three
dummy variables, and compute a heteroskedasticity-consistent standard error
for the coefficient of d3. Using these results, construct a .95 asymptotic confi-
dence interval for the mean income of individuals that belong to age group 3.
Compare this interval with the ones you constructed in Exercises 5.3 and 5.4.

⋆6.10 Consider the linear regression model

y = Xβ + u, E(uu⊤) = Ω,

where the number of observations, n, is equal to 3m. The first three rows of
the matrix X are [

1 4
1 8
1 15

]
,

and every subsequent group of three rows is identical to this first group. The
covariance matrix Ω is diagonal, with typical diagonal element equal to ω2x2t2,

where ω > 0, and xt2 is the tth element of the second column of X.

What is the variance of β̂2, the OLS estimate of β2? What is the prob-
ability limit, as n → ∞, of the ratio of the conventional estimate of this
variance, which incorrectly assumes homoskedasticity, to a heteroskedasticity-
consistent estimate based on (6.29)?

6.11 Consider the linear regression model

y = δ1d1 + δ2d2 + u, E(u) = 0, E(uu⊤) = Ω, (6.70)

which is similar to regression (4.83). The two regressors are dummy variables,
with every element of d2 equal to 1 minus the corresponding element of d1.
The vector d1 has n1 elements equal to 1, and the vector d2 has n2 = n−n1
elements equal to 1. The covariance matrix Ω is a diagonal matrix. The
square root of the tth diagonal element is ωt, which can take on just two
values that depend on the values of the regressors:

ωt = σ if dt1 = 1 and ωt = λσ if dt2 = 1.

As in Exercise 3.11, the parameter of interest is γ ≡ δ2 − δ1.

First, find the true standard error of γ̂ as a function of n1, n2, σ, and λ. Then
show that, when n→ ∞ and n1/n tends to a constant ϕ as that happens, the
square root of the appropriate element of an HC0 covariance matrix provides
a valid standard error for γ̂.

6.12 Generate N simulated data sets, where N is between 1000 and 1,000,000,
depending on the capacity of your computer, from each of the following two
data generating processes:

DGP 1: yt = β1 + β2xt2 + β3xt3 + ut, ut ∼ N(0, 1)

DGP 2: yt = β1 + β2xt2 + β3xt3 + ut, ut ∼ N(0, σ2t ), σ
2
t = E(yt)

2.
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There are 50 observations, β = [1
.... 1

.... 1], and the data on the exogenous
variables may be found in the file mw-data.txt. These data were originally
used by MacKinnon and White (1985).

For each of the two DGPs and each of the N simulated data sets, construct
.95 confidence intervals for β1 and β2 using the usual OLS covariance matrix
and the HCCMEs HC0, HC1, HC2, and HC3. The OLS interval should be
based on the Student’s t distribution with 47 degrees of freedom, and the
others should be based on the N(0, 1) distribution. Report the proportion of
the time that each of these confidence intervals included the true values of
the parameters.

On the basis of these very limited results, which covariance matrix estimator
would you recommend using in practice?

6.13 The file house-price-data.txt contains 546 observations. Regress the logarithm
of the house price on a constant, the logarithm of lot size, and the other
ten explanatory variables, as in Exercise 1.23. Then obtain .95 confidence
intervals for σ and σ2. Which of these intervals is closer to being symmetric?
Hint: See Exercise 4.18.

Another way to form a confidence interval for σ is to make use of the fact
that, under normality, the variance of s is approximately equal to s2/2n.
Form a second confidence interval for σ based on this result. How are the two
intervals related?

⋆6.14 Give the explicit form of the n × n matrix U(j) for which Γ̂ (j), defined
in (6.40), takes the form n−1W⊤U(j)W.

6.15 This question uses data from the file house-price-data.txt, which contains 546
observations. Regress the logarithm of the house price on a constant, the
logarithm of lot size, and the other ten explanatory variables, as in Exer-
cise 4.17. One of the explanatory variables is the number of storeys, which
can take on the values 1, 2, 3, and 4. Construct a heteroskedasticity-robust
.99 confidence interval for the difference in the expectation of the log price
between a 3-storey house and a 2-storey house.

Now estimate a more general model, as in Exercise 4.17, in which the effect
on log price of each number of storeys is allowed to differ. Using this more
general model, construct a heteroskedasticity-robust .99 confidence interval
for the difference in the expectation of the log price between a 3-storey house
and a 2-storey house. Comment on the differences between the two intervals.

6.16 The file earnings-data.txt contains 46,302 observations on 32 variables taken
from the Current Population Survey. Each observation is for a woman who
lived and worked in California in the specified year. For a list of variables,
see Exercise 4.26.

Regress the log of earnings on age, age2/100, the four highest education
dummy variables, and all of the year dummies, with no constant term. There
should be 30 regressors. Report the coefficients on the age and education
variables together with three estimated standard errors. One of the standard
errors should be based on the assumption of IID disturbances, one should be
based on the assumption that the disturbances are uncorrelated but possibly
heteroskedastic, and one should be based on the assumption that they are
clustered by age. What do you conclude about the validity of the three sets
of standard errors?
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6.17 According to the estimates you obtained in Exercise 6.16, by what percentage
(on average) do earnings for women with an advanced degree exceed those
for women with a four-year university degree? Using cluster-robust standard
errors, construct two .95 confidence intervals for this percentage increase.
One of them should be based on the delta method, and the other should be
obtained by transforming the ends of an interval based directly on one or
more estimated coefficients.

6.18 This question also uses the data in earnings-data.txt. As in Exercise 4.29,
create two dummy variables, young and old. The first of these is 1 if age ≤ 35,
and the second is 1 if age ≥ 60. Add the two dummies to the regression of
Exercise 6.16, and perform a Wald test, based on a CRVE, of the hypothesis
that neither of them actually belongs in the regression. Report two P values,
one based on the χ2 distribution and one based on the F distribution.

6.19 Write down a second-order Taylor expansion of the nonlinear function g(θ̂)
around θ0, where θ̂ is an OLS estimator and θ0 is the true value of the
parameter θ. Explain why the last term is asymptotically negligible relative
to the second term.

6.20 In Exercise 4.30, readers were asked to find the age at which the expectations
of log earnings is maximized according to the regression model estimated in
that exercise and also in Exercise 6.16. Using the delta method, construct
two .95 confidence intervals for this age, one based on an HCCME and one
based on a CRVE.

6.21 Using a multivariate first-order Taylor expansion, show that, if γ = g(θ), the
asymptotic covariance matrix of the l --vector n1/2(γ̂ − γ0) is given by the
l × l matrix G0V

∞(θ̂)G0
⊤. Here θ is a k --vector with k ≥ l, G0 is an l × k

matrix with typical element ∂gi(θ)/∂θj , evaluated at θ0, and V ∞(θ̂) is the
k × k asymptotic covariance matrix of n1/2(θ̂ − θ0).

6.22 Suppose that γ = exp(β) and β̂ = 1.324, with a standard error of 0.2432.
Calculate γ̂ = exp(β̂) and its standard error.

Construct two different .99 confidence intervals for γ. One should be based
on (6.64), and the other should be based on (6.65).
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The Bootstrap

7.1 Introduction

When we introduced the concept of a test statistic in Section 5.2, we specified
that it should have a known distribution under the null hypothesis. This
is a very strong requirement. In the context of linear regression models, it
is generally valid only for the classical normal linear model, in which the
regressors are exogenous and the disturbances are normally, independently,
and identically distributed.

Traditionally, the way to make inferences for less restrictive models has been
to rely on asymptotic theory. In Section 5.6, we relaxed certain assumptions
and developed large-sample test statistics for which the distribution is known
only approximately. Then, in Chapter 6, we discussed several ways to estimate
standard errors under assumptions that are weaker than the usual assumption
of IID disturbances. These included heteroskedasticity-robust standard errors
in Section 6.4, HAC standard errors in Section 6.5, cluster-robust standard
errors in Section 6.6, and standard errors for nonlinear functions of parameter
estimates in Section 6.8. In all of these cases, t statistics and Wald statis-
tics follow distributions that are known only asymptotically. This leads to
tests and confidence intervals that are not exact in finite samples and may
sometimes be very misleading.

With the remarkable increase in computing power over the past few decades,
another way to make inferences when the finite-sample distribution of a test
statistic is unknown has become very popular. Instead of comparing the test
statistic with its asymptotic distribution, we compare it with the empirical
distribution function, or EDF, of a large number of simulated test statistics;
recall the definition of an EDF in equation (5.42). Such tests are usually
referred to as bootstrap tests, and each of the simulated test statistics is com-
puted using a randomly generated bootstrap sample. Ideally, these bootstrap
samples closely resemble the actual sample. In many cases, bootstrap tests
turn out to be more reliable in finite samples than asymptotic tests.

In this chapter, we discuss bootstrap methods in some detail. The term
bootstrap, which was introduced in Efron (1979), is taken from the phrase
“to pull oneself up by one’s own bootstraps.” Although the link between this
improbable activity and simulated samples is tenuous at best, the term is by

237



238 The Bootstrap

now firmly established in statistics and econometrics. Some authors simply
refer to the bootstrap, as if it were a single procedure. Such a terminology is
extremely misleading, since there is actually an enormous number of ways to
generate bootstrap samples and a great many ways to make inferences based
on bootstrap samples.

Much of the chapter deals with bootstrap testing, but we also discuss boot-
strap confidence intervals in some detail. In the next section, we introduce
some basic concepts of computer simulation. In Section 7.3, we introduce the
key ideas of Monte Carlo tests and bootstrap tests. In Section 7.4, we discuss
ways to generate bootstrap data for regression models with IID disturbances.
The so-called Golden Rules of Bootstrapping are presented in Section 7.5,
along with a generic algorithm for performing bootstrap tests. In Section 7.6,
we discuss ways to generate bootstrap data for regression models with het-
eroskedastic disturbances, and, in Section 7.7, we consider autocorrelation. In
Section 7.8, we discuss bootstrap confidence intervals and bootstrap standard
errors.

7.2 Basic Concepts of Computer Simulation

The idea of using a linear regression model to obtain simulated data was intro-
duced in Section 2.3. First, it is necessary to choose a DGP contained in the
model of interest. In keeping with the definition of a DGP as a unique recipe
for simulation, this means that all parameters, all probability distributions, all
exogenous variables, and the sample size must be uniquely specified in order
to define a DGP. Once that is done, then, as we saw in Section 2.3 for a lin-
ear regression model, we have a simple algorithm for generating a simulated
sample from the DGP. An essential element of the algorithm is generating
random disturbances by use of a random number generator. Before going any
further, some background on such things is in order.

Random Number Generators

A random number generator, or RNG, is a program for generating random
numbers. Most such programs generate numbers that appear to be draw-
ings from the uniform U(0, 1) distribution, which can then be transformed
into drawings from other distributions. There is a very large literature on
RNGs. Useful references include Knuth (1998, Chapter 3), Gentle (1998),
and L’Ecuyer (2012).

Random number generators have been a topic of active research for many
decades. In the early days of computing, it was a scandal that an RNG
called RANDU was used for much numerical computation, although Knuth
described it as “truly horrible”. Things are better now. Since computers
are finite machines, any RNG has a period, that is, the number of seem-
ingly independent random numbers it can generate before cycling back to the
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numbers it generated at first. The periods of RANDU and of many of its
successors are much too small for the large-scale simulation experiments reg-
ularly performed nowadays. The sort of RNG most recommended at present
is the Mersenne twister of Matsumoto and Nishimura (1998). The most com-
monly used Mersenne twister has a period of 219937 − 1, which is adequate
for most purposes. The name comes from Marin Mersenne, a 17th-century
French cleric, who studied the numbers now called Mersenne primes, which
are prime numbers equal to an integer power of 2, minus 1. The thoroughly
non-obvious principle that underlies this sort of RNG can, if needed, be used
in order to create RNGs of still longer periods.

The raw output of an RNG is a sequence of numbers that have most of the
properties of a genuinely IID sequence drawn from the U(0, 1) distribution.
We refer to the elements of the sequence as random numbers. There are
several ways to use random numbers to generate drawings from a normal dis-
tribution. The simplest, but not the fastest, is to use the fact that, if Y is
distributed as U(0, 1), then Φ−1(Y ) is distributed as N(0, 1); this follows from
the result of Exercise 7.6. Most of the random number generators available
in econometrics software packages use faster algorithms to generate drawings
from the standard normal distribution, usually in a way entirely transpar-
ent to the user, who merely has to ask for so many independent drawings
from N(0, 1). Drawings from N(µ, σ2) can then be obtained by use of the
formula (5.10).

In the valuable book by Devroye (1986), recipes are given for generating real-
izations from a wide class of distributions. For the distributions we encoun-
tered in Section 5.3, t, F , χ2, etc, the definitions given in that section can be
used directly to generate random variables from those distributions.

For many of the bootstrap methods to be discussed in later sections, we
need to generate random positive integers between 1 and some upper limit,
say M, rather than drawings from either the uniform or the standard normal
distribution. If Y is once more a random number, all we need to do is compute
J = ⌈YM⌉, where the ceiling function ⌈·⌉ denotes the smallest integer no
smaller than its argument, and then J is the random integer we require.
When YM ≤ 1, J = 1. When 1 < YM ≤ 2, J = 2, and so on. Thus J takes
any particular integer value between 1 and M with probability 1/M .

All good econometrics and statistics packages incorporate high-quality rou-
tines to generate random numbers. Econometricians who want to generate a
number of simulated samples can simply call the RNG, and possibly provide
a seed. The seed serves to initialize the sequence of random numbers. Most
packages will pick a seed based on the system clock if one is not provided, so
that different sequences of random numbers will be generated each time the
RNG is called. In some cases, however, it is desirable (or even essential) to use
the same sequence of random numbers repeatedly. This can be accomplished
by providing the same seed every time the RNG is called.
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7.3 Bootstrap Testing

One of the most important uses of bootstrap methods is to perform hypothesis
tests when exact tests are not available. There are generally good reasons to
expect a bootstrap test to provide more reliable inferences than an asymptotic
test based on the same test statistic. Moreover, in some cases, bootstrap
tests are readily available when asymptotic tests are difficult or impossible to
compute.

A hypothesis, null or alternative, can always be represented by a model M,
that is, the set of those DGPs that satisfy the requirements of the correspond-
ing hypothesis. For instance, the null and alternative hypotheses (5.26) and
(5.25) associated with an F test of several restrictions are both classical nor-
mal linear models. The most fundamental sort of null hypothesis that we can
test is a simple hypothesis. Such a hypothesis is represented by a model that
contains one and only one DGP. Unsurprisiingly, simple hypotheses are very
rare in econometrics. The usual case is that of a compound hypothesis, which
is represented by a model that contains more than one DGP. This can cause
serious problems. Except in certain special cases, such as the exact tests in
the classical normal linear model that we investigated in Section 5.4, a test
statistic has different distributions under the different DGPs contained in the
model. When this is so and we do not know just which DGP in the model
generated our data, we cannot know the distribution of the test statistic.

In Section 6.2, we introduced the concept of a pivotal random variable. Such a
random variable has the property that its distribution is the same for all DGPs
in a model M. When the distribution of a test statistic is known exactly under
the null hypothesis, it must be pivotal with respect to the null-hypothesis
model. But a test statistic can be pivotal without having a distribution that
the investigator knows; we will discuss some examples below.

The principle of the bootstrap is that, when we want to use some function
or functional of an unknown DGP, we use an estimate of that DGP, called
a bootstrap DGP, in its place. Bootstrap tests attempt to get around the
problem of statistics that are not pivotal by using the data to estimate the
unknown DGP on which the distribution of the test statistic depends. How
well this works depends on how sensitive the distribution is to the unknown
parameters or other unknown features of the DGP and on how well the boot-
strap DGP mimics the true DGP.

When we relaxed the assumptions of the classical normal linear model in Sec-
tion 5.6, we obtained test statistics with unknown finite-sample distributions
that depend on the distribution of the disturbances and perhaps on the para-
meters of the regression function. They are therefore not pivotal statistics.
However, their asymptotic distributions are independent of such things, and
are thus invariant across all the DGPs of the model that represents the null
hypothesis. As we saw in Section 6.2, such statistics are said to be asymptot-
ically pivotal.
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Simulated P Values

The key idea of bootstrap testing is to use a bootstrap DGP to generate a
(usually large) number of bootstrap samples, each of which is used to compute
a bootstrap test statistic, say τ∗b , for b = 1, . . . , B. The τ∗b are then used to
calculate a bootstrap P value for the actual test statistic τ̂ . A bootstrap
P value is a particular type of simulated P value for which the simulated test
statistics are obtained from bootstrap samples. In principle, and occasionally
in practice, we may wish to obtain simulated test statistics in some other way.

The theoretical justification for using simulation to estimate P values is the
Fundamental Theorem of Statistics, which we discussed in Section 5.5. It
tells us that the empirical distribution of a set of independent drawings of
a random variable generated by some DGP converges to the CDF of the
random variable under that DGP. This is just as true of simulated drawings
generated by the computer as for random variables generated by a natural
random mechanism. Thus, if we knew that a certain test statistic was pivotal
but did not know how it was distributed, we could select any DGP in the
null model and generate simulated samples from it. For each of these, we
could then compute the test statistic. If the simulated samples are mutually
independent, the set of simulated test statistics thus generated constitutes a
set of independent drawings from the distribution of the test statistic, and
their EDF is a consistent estimate of the CDF of that distribution.

Suppose that we have computed a test statistic τ̂ which can be thought of
as a realization of a random variable τ . We wish to test a null hypothesis
represented by a model M for which τ is pivotal. In practice, τ̂ might be a
t statistic, an F statistic, or some other type of test statistic. We want to
reject the null whenever τ̂ is sufficiently large, as would be the case for an
F statistic, a t statistic when the rejection region is in the upper tail, or a
squared t statistic. If we denote by F the CDF of the distribution of τ under
the null hypothesis, then the P value for a test based on τ̂ is

p(τ̂) ≡ 1− F (τ̂). (7.01)

Since τ̂ is computed directly from our original data, this P value can be
estimated if we can estimate the CDF F evaluated at τ̂ .

In order to estimate a P value by simulation, we choose some DGP in M,
and draw B samples of size n from it. How to choose B will be discussed in
the next subsection; B is typically rather large, and B = 999 may often be a
reasonable choice. We let y∗

b , b = 1, . . . , B, denote the simulated samples.

Using each of the y∗
b , we compute a simulated test statistic τ∗b , in exactly

the same way that τ̂ was computed from the original data y. We can then
construct the EDF of the τ∗b by the equivalent of equation (5.42):

F̂ ∗(x) =
1

B

B∑
b=1

I(τ∗b ≤ x). (7.02)
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Our estimate of the true P value (7.01) is therefore

p̂∗(τ̂) = 1− F̂ ∗(τ̂) = 1− 1

B

B∑
b=1

I(τ∗b ≤ τ̂) =
1

B

B∑
b=1

I(τ∗b > τ̂). (7.03)

The third equality in equations (7.03) can be understood by noting that the
rightmost expression is the proportion of simulations for which τ∗b is greater
than τ̂ , while the second expression from the right is one the minus the pro-
portion for which τ∗b is less than or equal to τ̂ . These last two expressions are
evidently equal.

We can see that p̂∗(τ̂), like every P value, must lie between 0 and 1. For
example, if B = 999, and 36 of the τ∗b were greater than τ̂ , we would have
p̂∗(τ̂) = 36/999 = .036. In this case, since p̂∗(τ̂) is less than .05, we would
reject the null hypothesis at the .05 level. Since the EDF converges to the
CDF of the τ∗b , it follows that, if B were infinitely large, this procedure would
yield an exact test, and the outcome of the test would be the same as if we
computed the P value analytically using the CDF of τ . In fact, as we will see
shortly, this procedure yields an exact test even for finite values of B, provided
B is chosen in a certain way.

The simulated P value (7.03) is one-tailed. It is appropriate for a test that
rejects whenever the test statistic is sufficiently extreme in the upper tail, such
as a Wald test. However, it is not appropriate for a test that rejects in both
tails, such as a t test. There are two ways to compute simulated P values for
such tests, and they can sometimes yield very different results.

If we are willing to assume that τ is symmetrically distributed around zero,
then we can use the symmetric simulated P value

p̂∗s (τ̂) =
1

B

B∑
b=1

I
(
|τ∗b | > |τ̂ |

)
, (7.04)

which effectively converts a two-tailed test into a one-tailed test. If we are
not willing to make this assumption, which can be seriously incorrect for a
test statistic that is based on a biased parameter estimate, we can instead use
the equal-tail simulated P value

p̂∗et(τ̂) = 2min

(
1

B

B∑
b=1

I(τ∗b ≤ τ̂),
1

B

B∑
b=1

I(τ∗b > τ̂)

)
. (7.05)

Here we actually perform two tests, one against values in the lower tail of
the distribution and the other against values in the upper tail. We take the
minimum because it corresponds to whichever tail of the EDF τ̂ actually lies
in. The factor of 2 is necessary to take account of the fact that we did this.
Without it, p̂∗et would lie between 0 and 0.5.
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If the mean of the τ∗b is far from zero, the values of p̂∗s and p̂∗et may be very
different. When there is no reason to believe that τ is not symmetrically
distributed around zero, and the two P values are similar, it probably makes
sense to rely on p̂∗s . However, when they differ substantially, it is much better
to rely on p̂∗et; see Exercise 7.1.

Equation (7.04) is intended to be applied to test statistics that can take either
sign, such as t statistics. For test statistics that are always positive, such as
ones that are asymptotically χ2, it usually makes no sense to use this equation.
Instead, equation (7.03) is usually applicable. We would use an equal-tail
P value only if we wanted to reject for small values of the test statistic as well
as for large ones.

Equations (7.03), (7.04), and (7.05) imply that the results of a bootstrap test
are invariant to monotonically increasing transformations of the test statistic.
Applying the same transformation to all the test statistics does not affect the
rank of τ̂ in the sorted list of τ̂ and the τ∗b , and therefore it does not affect
the bootstrap P value. For example, it is easy to see from equation (7.04)
that we would obtain exactly the same results if we replaced |τ̂ | and |τ∗b | by
τ̂2 and τ∗2b .

Monte Carlo Tests

The sort of test we have just described, which is based on simulating a pivotal
test statistic, is called a Monte Carlo test. This sort of test was first proposed
by Dwass (1957); Dufour and Khalaf (2001) provides a more detailed intro-
duction. Simulation experiments in general are often referred to as Monte
Carlo experiments, because they involve generating random numbers, as do
the games played in casinos. Around the time that computer simulations first
became possible, the most famous casino was the one in Monte Carlo. If com-
puters had been developed just a little later, we would probably be talking
now of Las Vegas tests and Las Vegas experiments.

We have seen that, for a Monte Carlo test, the simulated P value p∗(τ̂) con-
verges to the true P value p(τ̂) as B → ∞, and a test based on p(τ̂) is exact.
This is a consequence of the Fundamental Theorem of Statistics and the fact
that τ is pivotal. Perhaps more surprisingly, a Monte Carlo test can always be
made exact without B becoming large, provided B is chosen so that it satisfies
a certain condition. This condition is simply that, if we wish to perform a
test at level α, then B should be chosen to satisfy the condition that α(B+1)
is an integer. If α = .05, the values of B that satisfy this condition are 19, 39,
59, and so on. If α = .01, they are 99, 199, 299, and so on.

It is illuminating to see why B should be chosen in this way. Imagine that we
sort the original test statistic τ̂ and the B bootstrap statistics τ∗b , b = 1, . . . , B,
from largest to smallest. If τ is pivotal, then, under the null hypothesis, these
are all independent drawings from the same distribution. Thus the rank r
of τ̂ in the sorted set can have B + 1 possible values, r = 0, 1, . . . , B, all of
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them equally likely under the null hypothesis. Here, r is defined in such a way
that there are exactly r simulations for which τ∗b > τ̂ . Thus, if r = 0, τ̂ is
the largest value in the set, and if r = B, it is the smallest. The estimated
P value p̂∗(τ̂) is just r/B.

The Monte Carlo test rejects if r/B < α, that is, if r < αB. Under the null,
the probability that this inequality is satisfied is the proportion of the B + 1
possible values of r that satisfy it. We may use the floor function, and denote
by ⌊αB⌋ the largest integer that is no greater than αB. It is then easy to
see that there are exactly ⌊αB⌋ + 1 values of r such that r < αB, namely,
0, 1, . . . , ⌊αB⌋. Thus the probability of rejection is (⌊αB⌋+1)/(B +1). If we
equate this probability to α, we find that

α(B + 1) = ⌊αB⌋+ 1.

Since the right-hand side above is the sum of two integers, a necessary con-
dition for this equality to hold is that α(B + 1) is a positive integer. It is
also a sufficient condition, as can see as follows. Let α(B + 1) = k, a positive
integer. Then αB = k − α, and, since 0 ≤ α < 1, ⌊αB⌋ = k − 1. We saw
that the rejection probability in this case is (⌊αB⌋ + 1)/(B + 1), and this is
k/(B + 1) = α, by the definition of k. Therefore, the probability of Type I
error is precisely α if and only if α(B + 1) is a positive integer.

By a similar argument, it can be shown that (α/2)(B+1) must be an integer
if we are to obtain an exact test based on an equal-tail P value computed
with equation (7.05).

Although this reasoning is rigorous only if τ is an exact pivot, experience shows
that bootstrap P values based on nonpivotal statistics are less misleading if
α(B + 1) is an integer.

As a concrete example, suppose that α = .05 and B = 99. Then there are 5
out of 100 values of r, namely, r = 0, 1, . . . , 4, that would lead us to reject the
null hypothesis. Since these are equally likely if the test statistic is pivotal,
we make a Type I error precisely 5% of the time, and the test is exact. But
suppose instead that B = 89. Since the same 5 values of r would still lead us
to reject the null, we would now do so with probability 5/90 = .0556.

Bootstrap P Values

Although pivotal test statistics do arise from time to time, most test statis-
tics in econometrics are not pivotal. The vast majority of them are, however,
asymptotically pivotal. If a test statistic has a known asymptotic distribution
that does not depend on anything unobservable, as do t and F statistics under
the relatively weak assumptions of Section 5.5, then it is certainly asymptot-
ically pivotal. Even if it does not follow a known asymptotic distribution, a
test statistic may be asymptotically pivotal.

A statistic that is not an exact pivot cannot be used for a Monte Carlo test.
However, approximate P values for statistics that are only asymptotically piv-
otal, or even nonpivotal, can be obtained by use of the bootstrap. This method
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can be a valuable alternative to the large sample tests based on asymptotic
theory that we discussed in previous sections.

The difference between a Monte Carlo test and a bootstrap test is that for
the former, the DGP is assumed to be known, whereas, for the latter, it is
necessary to estimate a bootstrap DGP from which to draw the simulated
samples. Unless the null hypothesis under test is a simple hypothesis, the
DGP that generated the original data is unknown, and so it cannot be used
to generate simulated data. The bootstrap DGP is an estimate of the unknown
true DGP. The hope is that, if the bootstrap DGP is close, in some sense,
to the true one, then data generated by the bootstrap DGP will be similar to
data that would have been generated by the true DGP, if it were known. If
so, then a simulated P value obtained by use of the bootstrap DGP is close
enough to the true P value to allow accurate inference.

Even for models as simple as the linear regression model, there are many
ways to specify the bootstrap DGP. The key requirement is that it should
satisfy the restrictions of the null hypothesis. If this is assured, then how well a
bootstrap test performs in finite samples depends on how good an estimate the
bootstrap DGP is of the process that would have generated the test statistic
if the null hypothesis were true. In the next subsection, we discuss bootstrap
DGPs for regression models.

7.4 Bootstrap DGPs for Regression Models

If the null and alternative hypotheses are regression models, the simplest
approach is to estimate the model that corresponds to the null hypothesis
and then use the estimates thus obtained to generate the bootstrap samples,
under the assumption that the disturbances are normally distributed. We
considered examples of such procedures in Section 2.3 and in Exercise 2.26.

Since bootstrapping is quite unnecessary in the context of the classical normal
linear model, we will take for our example a linear regression model with
normal disturbances, and all but one of the regressors exogenous, the other
being the lagged dependent variable:

yt = Xtβ +Ztγ + δyt−1 + ut, ut ∼ NID(0, σ2), (7.06)

where Xt and β each have k1 − 1 elements, Zt and γ each have k2 elements,
and the null hypothesis is that γ = 0. Thus the model that represents the
null is

yt = Xtβ + δyt−1 + ut, ut ∼ NID(0, σ2). (7.07)

The observations are assumed to be indexed in such a way that y0 is observed,
along with n observations on yt, Xt, and Zt for t = 1, . . . , n. By estimating
the models (7.06) and (7.07) by OLS, we can compute the F statistic for
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γ = 0, which we will call τ̂ . Because the regression function contains a lagged
dependent variable, however, the F test based on τ̂ is not exact.

The model (7.07) is a fully specified parametric model, which means that
each set of parameter values for β, δ, and σ2 defines just one DGP. The
simplest type of bootstrap DGP for fully specified models is given by the
parametric bootstrap. The first step in constructing a parametric bootstrap
DGP is to estimate (7.07) by OLS, yielding the restricted estimates β̃, δ̃, and
s̃2 ≡ SSR(β̃, δ̃)/(n− k1). Then the bootstrap DGP is given by

y∗t = Xtβ̃ + δ̃y∗t−1 + u∗
t , u∗

t ∼ NID(0, s̃2), (7.08)

which is just the element of the model (7.07) characterized by the parameter
estimates under the null, with stars to indicate that the data are simulated.
Notice that y∗t−1 rather than yt−1 appears on the right-hand side of equation
(7.08). This means that each bootstrap sample is constructed recursively,
observation by observation:

y∗1 = X1β̃ + δ̃y0 + u∗
1

y∗2 = X2β̃ + δ̃y∗1 + u∗
2

...
...

...
...

y∗n = Xnβ̃ + δ̃y∗n−1 + u∗
n.

(7.09)

Every bootstrap sample here is conditional on the observed value of y0. There
are other ways of dealing with pre-sample values of the dependent variable,
but this is certainly the most convenient, and it may, in many circumstances,
be the only method that is feasible.

Of course, the recursion in (7.09) will explode if |δ̃| > 1, and the resulting
bootstrap samples will probably not resemble the actual sample, especially
when n is large. This should rarely be a problem if the model (7.07) is
correctly specified and the true value of δ is substantially less than one in
absolute value, in part because δ̃ is biased towards zero; see Exercises 4.1
and 4.2. Thus, in most cases, we would expect the estimate δ̃ to satisfy the
stationarity condition that |δ̃| < 1. If it does not, we can always replace δ̃ by
a number slightly below unity, such as 0.99.

The rest of the procedure for computing a bootstrap P value is identical to
the one for computing a simulated P value for a Monte Carlo test. For each
of the B bootstrap samples, y∗

b , a bootstrap test statistic τ∗b is computed
from y∗

b in just the same way as τ̂ was computed from the original data, y.
The bootstrap P value p̂∗(τ̂) is then computed by formula (7.03).

A Nonparametric Bootstrap DGP

The parametric bootstrap procedure that we have just described, based on
the DGP (7.08), does not allow us to relax the strong assumption that the
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disturbances are normally distributed. How can we construct a satisfactory
bootstrap DGP if we extend the models (7.06) and (7.07) to admit nonnormal
disturbances? If we knew the true distribution of the disturbances, whether
or not it was normal, we could always generate the u∗ from it. Since we do
not know it, we will have to find some way to estimate this distribution.

Under the null hypothesis, the OLS residual vector ũ for the restricted model
is a consistent estimator of the disturbance vector u. This is an immediate
consequence of the consistency of the OLS estimator itself. In the particular
case of model (7.07), we have for each t that

plim
n→∞

ũt = plim
n→∞

(
yt −Xtβ̃ − δ̃yt−1

)
= yt −Xtβ0 − δ0yt−1 = ut,

where β0 and δ0 are the parameter values for the true DGP. This means that,
if the ut are mutually independent drawings from the disturbance distribution,
then so are the residuals ũt, asymptotically.

From the Fundamental Theorem of Statistics, we know that the empirical
distribution function of the disturbances is a consistent estimator of the un-
known CDF of their distribution. Because the residuals consistently estimate
the disturbances, it follows that the EDF of the residuals is also a consis-
tent estimator of the CDF of the disturbance distribution. Thus, if we draw
bootstrap disturbances from the empirical distribution of the residuals, we
are drawing them from a distribution that tends to the true distribution of
the disturbances as n → ∞. This is completely analogous to using estimated
parameters in the bootstrap DGP that tend to the true parameters as n → ∞.

Drawing simulated disturbances from the empirical distribution of the resid-
uals is called resampling. In order to resample the residuals, all n residuals
are, metaphorically speaking, thrown into a hat and then randomly pulled
out one at a time, with replacement. Thus each bootstrap sample contains
some of the residuals exactly once, some of them more than once, and some
of them not at all. The value of each drawing must be the value of one of the
residuals, with equal probability for each residual. This is precisely what we
mean by the empirical distribution of the residuals.

To resample concretely rather than metaphorically, we can proceed as follows.
First, we draw a random number Y from the U(0, 1) distribution. Then, as
described in Section 7.2, we use Y to construct a positive integer J that takes
on all the values 1, 2, . . . , n with equal probability. The bootstrap disturbance
is then the J th residual. Repeating this procedure n times yields a single
set of bootstrap disturbances drawn from the empirical distribution of the
residuals.

As an example of how resampling works, suppose that n = 10, and the ten
residuals are

6.45, 1.28, −3.48, 2.44, −5.17, −1.67, −2.03, 3.58, 0.74, −2.14.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



248 The Bootstrap

Notice that these numbers sum to zero. Now suppose that, when forming one
of the bootstrap samples, the ten drawings from the set {1, 2, . . . , n} are

7, 3, 8, 3, 10, 2, 9, 9, 2, 3.

The disturbances for this bootstrap sample are then

−2.03, −3.48, 3.58, −3.48, −2.14, 1.28, 0.74, 0.74, 1.28, −3.48.

Some of the residuals appear just once in this particular sample, some of them
(numbers 2, 3, and 9) appear more than once, and some of them (numbers 1,
4, 5, and 6) do not appear at all. On average, however, each of the residuals
appears once in each of the bootstrap samples.

If we adopt this resampling procedure, we can write the bootstrap DGP as

y∗t = Xtβ̃ + δ̃y∗t−1 + u∗
t , u∗

t ∼ EDF(ũ), (7.10)

where EDF(ũ) denotes the distribution that assigns probability 1/n to each
of the elements of the residual vector ũ. The DGP (7.10) is one form of what
is usually called a nonparametric bootstrap, although, since it still uses the
parameter estimates β̃ and δ̃, it should really be called semiparametric rather
than nonparametric. A more neutral term that we will favor is resampling
bootstrap. Once bootstrap disturbances have been drawn by resampling,
bootstrap samples can be created by the recursive procedure.

The empirical distribution of the residuals may fail to satisfy some of the
properties that the null hypothesis imposes on the true distribution of the
disturbances, and so the DGP (7.10) may fail to belong to the null hypothe-
sis. One case in which this failure has grave consequences arises when the
regression (7.07) does not contain a constant term, because then the sample
mean of the residuals is not, in general, equal to 0. The expectation of the
EDF of the residuals is simply their sample mean; recall Exercise 2.1. Thus,
if the bootstrap disturbances are drawn from a distribution with nonzero ex-
pectation, the bootstrap DGP lies outside the null hypothesis. It is, of course,
simple to correct this problem. We just need to center the residuals before
throwing them into the hat, by subtracting their mean ū. When we do this,
the bootstrap disturbances are drawn from EDF(ũ− ūι), a distribution that
does indeed have an expectation of 0.

A somewhat similar argument gives rise to an improved bootstrap DGP. If
the sample mean of the restricted residuals is 0, then the variance of their
empirical distribution is the second moment n−1

∑n
t=1 ũ

2
t . Thus, by using

the definition (4.63) of s̃2 in Section 4.6, we see that the variance of the
empirical distribution of the residuals is s̃2(n− k1)/n. Since we do not know
the value of σ2

0 , we cannot draw from a distribution with exactly that variance.
However, as with the parametric bootstrap (7.08), we can at least draw from
a distribution with variance s̃2. This is easy to do by drawing from the EDF
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of the rescaled residuals, which are obtained by multiplying the OLS residuals
by (n/(n − k1))

1/2. If we resample these rescaled residuals, the distribution
of the bootstrap disturbances is

EDF

(( n

n− k1

)1/2
ũ

)
, (7.11)

which has variance s̃2. A somewhat more complicated approach, based on the
result (4.58), is explored in Exercise 7.7.

Although they may seem strange, these resampling procedures often work
astonishingly well, except perhaps when the sample size is very small or the
distribution of the disturbances is very unusual; see Exercise 7.5. If the dis-
tribution of the disturbances displays substantial skewness (that is, a nonzero
third moment) or excess kurtosis (that is, a fourth moment greater than 3σ4

0),
then there is a good chance that the EDF of the recentered and rescaled
residuals does so as well.

Other methods for bootstrapping regression models nonparametrically and
semiparametrically are discussed by Efron and Tibshirani (1993), Davison
and Hinkley (1997), and Horowitz (2001), which also discuss many other
aspects of the bootstrap. A more advanced book, which deals primarily with
the relationship between asymptotic theory and the bootstrap, is Hall (1992).

How Many Bootstraps?

It is important that B should be sufficiently large, since two problems can
arise if it is not. The first problem is that the outcome of the test depends
on the sequence of random numbers used to generate the bootstrap samples.
Different investigators may therefore obtain different results, even though they
are using the same data and testing the same hypothesis. The second problem,
which we will discuss in the next section, is that the ability of a bootstrap test
to reject a false null hypothesis declines as B becomes smaller. As a rule of
thumb, we suggest choosing B = 999. If calculating the τ∗b is inexpensive and
the outcome of the test is at all ambiguous, it may be desirable to use a larger
value, like 9,999. On the other hand, if calculating the τ∗b is very expensive
and the outcome of the test is unambiguous, because p̂∗ is far from α, it may
be safe to use a value as small as 99.

It is not actually necessary to choose B in advance. An alternative approach,
which is a bit more complicated but can save a lot of computer time, has
been proposed by Davidson and MacKinnon (2000). The idea is to calculate
a sequence of estimated P values, based on increasing values of B, and to
stop as soon as the estimate p̂∗ allows us to be very confident that p∗ is either
greater or less than α. For example, we might start with B = 99, then perform
an additional 100 simulations if we cannot be sure whether or not to reject the
null hypothesis, then perform an additional 200 simulations if we still cannot
be sure, and so on. Eventually, we either stop when we are confident that the
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null hypothesis should or should not be rejected, or when B has become so
large that we cannot afford to continue.

7.5 The Golden Rules of Bootstrapping

Although bootstrap tests based on test statistics that are merely asymptot-
ically pivotal are not exact, there are strong theoretical reasons to believe
that they generally perform better than tests based on approximate asymp-
totic distributions. The errors committed by both asymptotic and bootstrap
tests diminish as the sample size n increases, but those committed by boot-
strap tests diminish more rapidly. The fundamental theoretical result on
this point is due to Beran (1988). The results of a number of Monte Carlo
experiments have provided strong support for this proposition. References in-
clude Horowitz (1994), Godfrey (1998), and Davidson and MacKinnon (1999a,
1999b, 2002a).

If a test statistic τ is asymptotically pivotal for a given model M, then its
finite-sample distribution should not vary too much as a function of the spe-
cific DGP, µ say, within that model. Under conventional asymptotic construc-
tions, the distance between the distribution of τ under the DGP µ for sample
size n and that for infinite n tends to zero like some negative power of n,
commonly n−1/2. The concept of “distance” between distributions can be
realised in various ways, some ways being more relevant for bootstrap testing
than others.

Heuristically speaking, if the distance between the finite-sample distribution
for any DGP µ ∈ M and the limiting distribution is of order n−δ for some
δ > 0, then, since the limiting distribution is the same for all µ ∈ M, the
distance between the finite-sample distributions for two DGPs µ1 and µ2 in
M is also of order n−δ. If now the distance between µ1 and µ2 is also small, in
some sense, say of order n−ε, it should be the case that the distance between
the distributions of τ under µ1 and µ2 should be of order n−(δ+ε). In typical
cases, δ = ε = 1/2, so that the distance between the true and bootstrap DGPs
is Op(n

−1), rather than the distance between the true and limiting asymptotic
DGPs. This is an instance of an asymptotic refinement for the bootstrap.

Bootstrap Versus Asymptotic Tests

We can illustrate this by means of an example. Consider the following simple
special case of the linear regression model (7.06)

yt = β1 + β2xt + β3yt−1 + ut, ut ∼ NID(0, σ2), (7.12)

where the null hypothesis is that β3 = 0.9. A Monte Carlo experiment to
investigate the properties of tests of this hypothesis would work as follows.
First, we fix a DGP in the model (7.12) by choosing values for the parameters.
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Figure 7.1 Rejection frequencies for bootstrap and asymptotic tests

Here β3 = 0.9, and so we investigate only what happens under the null hypo-
thesis. For each replication, we generate an artificial data set from our chosen
DGP and compute the ordinary t statistic for β3 = 0.9. We then compute
three P values. The first of these, for the asymptotic test, is computed using
Student’s t distribution with n − 3 degrees of freedom, and the other two
are bootstrap P values from the parametric and resampling bootstraps, with
residuals rescaled using (7.11), for B = 199.1 We perform many replications
and record the frequencies with which tests based on the three P values reject
at the .05 level. Figure 7.1 shows the rejection frequencies based on 500,000
replications for each of 31 sample sizes: n = 10, 12, 14, . . . , 60.

The results of this experiment are striking. The asymptotic test overrejects
quite noticeably, although it gradually improves as n increases. In contrast,
the two bootstrap tests overreject only very slightly. Their rejection frequen-
cies are always very close to the nominal level of .05, and they approach that
level quite quickly as n increases. For the very smallest sample sizes, the
parametric bootstrap seems to outperform the resampling one, but, for most
sample sizes, there is nothing to choose between them.

1 We used B = 199, a smaller value than we would ever recommend using in
practice, in order to reduce the costs of doing the Monte Carlo experiments.
Because experimental errors tend to cancel out across replications, this does
not materially affect the results of the experiments.
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This example is, perhaps, misleading in one respect. For linear regression
models, asymptotic t and F tests generally do not perform as badly as the
asymptotic t test does here. For example, the t test for β3 = 0 in (7.12)
performs much better than the t test for β3 = 0.9; it actually underrejects
moderately in small samples. However, the example is not at all misleading in
suggesting that bootstrap tests often perform extraordinarily well, even when
the corresponding asymptotic test does not perform well at all.

The Golden Rules

Since in testing the bootstrap is used to estimate the distribution of a test
statistic under the null hypothesis, the first golden rule of bootstrapping is:

Golden Rule 1:

The bootstrap DGP must belong to the model M0 that represents the
null hypothesis.

It is not always possible, or, even if it is, it may be difficult to obey this rule in
some cases, as we will see with confidence intervals. In that case, we may use
the common technique of changing the null hypothesis so that the bootstrap
DGP that is to be used does satisfy it.

If, in violation of this rule, the null hypothesis tested by the bootstrap sta-
tistics is not satisfied by the bootstrap DGP, a bootstrap test can be wholly
lacking in power. Test power springs from the fact that a statistic has differ-
ent distributions under the null and the alternative. Bootstrapping under the
alternative confuses these different distributions, and so leads to completely
unreliable inference, even in the asymptotic limit.

Whereas Golden Rule 1 must be satisfied in order to have an asymptotically
justified test, Golden Rule 2 is concerned rather with making the probability of
rejecting a true null with a bootstrap test as close as possible to the significance
level. It is motivated by the argument of Beran discussed earlier.

Golden Rule 2:

Unless the test statistic is pivotal for the null model M0, the bootstrap
DGP should be as good an estimate of the true DGP as possible, under
the assumption that the true DGP belongs to M0.

How this second rule can be followed depends very much on the particular
test being performed, but quite generally it means that we want the bootstrap
DGP to be based on estimates that are efficient under the null hypothesis.

These rules are based on a similar pair of rules set out in Hall and Wilson
(1991).
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The Algorithm

Once the sort of bootstrap DGP has been chosen, the procedure for conducting
a bootstrap test based on simulated bootstrap samples follows the following
algorithm

(i) Compute the test statistic from the original sample; call its realised
value τ̂ .

(ii) Determine the realisations of all other data-dependent things needed to
set up the bootstrap DGP.

(iii) Generate B bootstrap samples, and for each one compute a realisation of
the bootstrap statistic, τ∗b , b = 1, . . . B. It is prudent to choose B so that
α(B + 1) is an integer for all interesting significance levels α, typically
1%, 5%, and 10%.

(iv) Compute the simulated bootstrap P value as the proportion of bootstrap
statistics τ∗b that are more extreme than τ̂ . For a statistic that rejects
for large values, for instance, we have

Pbs =
1

B

B∑
b=1

I(τ∗b > τ̂),

where I(·) is an indicator function, with value 1 if its Boolean argument
is true, and 0 if it is false.

The bootstrap test rejects the null hypothesis at significance level α if Pbs < α.

The Power of Bootstrap Tests

The power of a bootstrap test depends on B, the number of bootstrap samples,
and the reason for this fact is illuminating. If, to any test statistic, we add
random noise independent of the statistic, we inevitably reduce the power of
tests based on that statistic. The bootstrap P value p̂∗(τ̂) defined in (7.03) is
simply an estimate of the ideal bootstrap P value

p∗(τ̂) ≡ Pr(τ > τ̂) = plim
B→∞

p̂∗(τ̂),

where Pr(τ > τ̂) is evaluated under the bootstrap DGP, conditional on the
realized τ̂ . When B is finite, p̂∗ differs from p∗ because of random variation
in the bootstrap samples. This random variation is generated in the com-
puter, and is therefore completely independent of the random variable τ . The
bootstrap testing procedure presented at the end of the preceding subsection
incorporates this random variation, and in so doing it reduces the power of
the test.

Another example of how randomness affects test power is provided by the
tests zβ2 and tβ2 , which were discussed in Section 5.4. Recall that zβ2 fol-
lows the N(0, 1) distribution, because σ is known, and tβ2 follows the t(n− k)

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



254 The Bootstrap

−1.60 −1.20 −0.80 −0.40 0.00 0.40 0.80 1.20 1.60
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

β2/σ

Power


.......................
.....................
....................
...................
..................
..................
..................
.................
..................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
..................
..................
.................
.................
.................
.................
...................
..................
..................
....................
....................
.....................
........................
..................................
..........................................................................................

....................

...................................................................................N(0, 1)

...................................................................................................
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
.......

...

.......... t(9)


.................................
............................
..........................
........................
......................
.......................
.....................
.....................
.....................
.....................
....................
...................
....................
....................
....................
....................
...................
...................
...................
...................
..................
...................
..................
...................
...................
..................
...................
...................
..................
...................
...................
..................
...................
...................
..................
...................
..................
...................
...................
...................
...................
...................
...................
..................
....................
....................
..................
....................
....................
....................
....................
....................
...................
.....................
.....................
.....................
......................
......................
......................
.......................
.........................
..........................
............................
................................
......................................
................................................

...............................................................................
...

......................................................................................................................................................................B = 99

............................................................................................................................................................
.....
....
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
....
....
....
.....
......

..

.................B = 19

Figure 7.2 Power functions for tests at the .05 level

distribution, because σ has to be estimated. As equation (5.23) shows, tβ2 is
equal to zβ2 times the random variable σ/s, which has the same distribution
under the null and alternative hypotheses, and is independent of zβ2 . There-
fore, multiplying zβ2 by σ/s simply adds independent random noise to the
test statistic. This additional randomness requires us to use a larger critical
value, and that in turn causes the test based on tβ2 to be less powerful than
the test based on zβ2 .

Both types of power loss are illustrated in Figure 7.2. It shows power functions
for four tests at the .05 level of the null hypothesis that β2 = 0 in the simple
model used to generate Figure 5.7, but with only 10 observations. All four
tests are exact, as can be seen from the fact that, in all cases, power equals
.05 when β2 = 0. For all values of β2 ̸= 0, there is a clear ordering of the
four curves in Figure 7.2. The highest curve is for the test based on zβ2 ,
which uses the N(0, 1) distribution and is available only when σ is known.
The next three curves are for tests based on tβ2 . The loss of power from using
tβ2 with the t(9) distribution, instead of zβ2 with the N(0, 1) distribution, is
quite noticeable. Of course, 10 is a very small sample size; the loss of power
from not knowing σ would be very much less for more reasonable sample sizes.
There is a further loss of power from using a bootstrap test with finite B. This
further loss is quite modest when B = 99, but it is substantial when B = 19.

Figure 7.2 suggests that the loss of power from using bootstrap tests is gen-
erally modest, except when B is very small. However, readers should be
warned that the loss can be more substantial in other cases. A reasonable
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rule of thumb is that power loss is very rarely a problem when B = 999, and
that it is never a problem when B = 9,999.

7.6 Heteroskedasticity

All the bootstrap DGPs that we have looked at so far are based on models
where either the observations are IID, or else some set of quantities that can be
estimated from the data, like the disturbances of a regression model, are IID,
or at least white noise. Situations in which disturbances are not white noise
were discussed in Chapter 6, in the context of the various sorts of covariance
matrix estimators supposedly robust to the phenomena of heteroskedasticity,
in Section 6.4, autocorrelation, in Section 6.5, and clustering, in Section 6.6.
In any of these circumstances, if the covariance matrix of the disturbances is
known, or can be consistently estimated, then bootstrap disturbances can be
generated so as to be jointly distributed with that covariance matrix. But
this is often not the case. In this section, we will see how the bootstrap can
be used effectively in the presence of heteroskedasticity; in the next, we will
consider autocorrelation. Dealing with clustering will be postponed until the
next chapter.

If the disturbances of a regression are heteroskedastic, with an unknown pat-
tern of heteroskedasticity, there is nothing that is even approximately white
noise. There exist of course test statistics robust to heteroskedasticity of
unknown form, based on one of the numerous variants of the Eicker-White
Heteroskedasticity Consistent Covariance Matrix Estimator (HCCME) dis-
cussed in Section 6.4. Use of an HCCME gives rise to statistics that are
approximately pivotal for models that admit heteroskedasticity of unknown
form.

For bootstrapping, it is very easy to satisfy Golden Rule 1, since either a
parametric bootstrap or a resampling bootstrap of the sort we have described
in Section 7.4 belongs to a null hypothesis model that, since it allows het-
eroskedasticity, must also allow the special case of homoskedasticity. But
Golden Rule 2 poses a more severe challenge.

Pairs Bootstrap

The first suggestion for bootstrapping models with heteroskedasticity bears a
variety of names: among them the (y,X) bootstrap or the pairs bootstrap.
The approach was proposed in Freedman (1981). Instead of resampling the
dependent variable, or residuals, possibly centred or rescaled, one resamples
pairs consisting of an observation of the dependent variable along with the set
of explanatory variables for that same observation. One selects an index s at
random from the set 1, . . . , n, and then an observation of a bootstrap sample
is the pair (ys,Xs), where Xs is a row vector of all the explanatory variables
for observation s.
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This bootstrap implicitly assumes that the pairs (yt,Xt) are IID under the
null hypothesis. Although this is still a restrictive assumption, ruling out
any form of dependence among observations, it does allow for any sort of
heteroskedasticity of yt conditional of Xt. The objects resampled are IID
drawings from the joint distribution of yt and Xt. However, there is no
obvious way by which the pairs bootstrap can be made to satisfy Golden
Rule 1, let alone Rule 2.

In Flachaire (1999), this is partially rectified. It now resamples pairs (ût,Xt),
where the ût are the OLS residuals from estimation of the unrestricted model,
possibly rescaled in various ways. Then, if s is an integer drawn at random
from the set 1, . . . , n, y∗t is generated by

y∗t = Xs1β̃1 + ûs,

where β1 contains the elements of β that are not in β2, and β̃1 is the re-
stricted OLS estimate. Similarly, Xs1 contains the elements of Xs of which
the coefficients are elements of β1. By construction, the vector of the ût is
orthogonal to all of the vectors containing the observations of the explanatory
variables. Thus in the empirical joint distribution of the pairs (ût,Xt), the
first element, û, is uncorrelated with the second element, X. However any
relation between the variance of û and the explanatory variables is preserved,
as with Freedman’s pairs bootstrap. In addition, the new bootstrap DGP now
satisfies the null hypothesis as originally formulated.

Wild Bootstrap

The null model on which any form of pairs bootstrap is based posits the joint
distribution of the dependent variable y and the explanatory variables. If it is
assumed that the explanatory variables are exogenous, conventional practice
is to compute statistics, and their distributions, conditional on them. One way
in which this can be done is to use the so-called wild bootstrap; see Wu (1986),
Liu (1988), Mammen (1993), and Davidson and Flachaire (2008). The rather
odd name of this bootstrap procedure is due to Mammen, who says “We call
this bootstrap procedure wild bootstrap because n different distributions are
estimated by only n observations.”

For a regression model, the wild bootstrap DGP takes the form

y∗t = Xtβ̃ + s∗t ũt

where β̃ is as usual the restricted least-squares estimate of the regression para-
meters, and the ũt are the restricted least-squares residuals. Notice that no
resampling takes place here; both the explanatory variables and the residual
for bootstrap observation t come from observation t of the original sample.
The new random elements introduced are the s∗t , which are IID drawings from
a distribution with expectation 0 and variance 1.
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This bootstrap DGP satisfies Golden Rule 1 easily: since s∗t and ũt are inde-
pendent, the latter having been generated by the real DGP and the former by
the random number generator, the expectation of the bootstrap disturbance
s∗t ũt is 0. Conditional on the residual ũt, the variance of s∗t ũt is ũ2

t . If the
residual is accepted as a proxy for the unobserved disturbance ut, then the
unconditional expectation of ũ2

t is the true variance of ut, and this fact goes a
long way towards satisfying Golden Rule 2. The simplest HCCME, HC0 uses
exactly the same strategy to estimate the latent variances.

For a long time, the most commonly used distribution for the s∗t was the
following two-point distribution,

s∗t =

{
−(

√
5− 1)/2 with probability (

√
5 + 1)/(2

√
5),

(
√
5 + 1)/2 with probability (

√
5− 1)/(2

√
5),

(7.13)

which was suggested by Mammen because, with it, E((s∗t )
3) = 1. If the

true disturbances, and also the explanatory variables, are skewed, Mammen
gives arguments designed to show that this is a desirable property for the
accuracy of bootstrap inference. A simpler two-point distribution, proposed
by Davidson and Flachaire, is the Rademacher distribution

s∗t =

{
−1 with probability 1

2 ,

1 with probability 1
2 .

(7.14)

Use of the Rademacher distribution leaves the absolute value of each residual
unchanged in the bootstrap DGP, while assigning it an arbitrary sign. They
show by a theoretical argument that this procedure is exact, up to the dis-
creteness of the distribution for the special case in which the null hypothesis
involves every one of the parameters in the regression, and show, by means
of simulation experiments, that it yields inference in many cases better than
other choices.

There is a good deal of evidence that the wild bootstrap works reasonably
well for univariate regression models, even when there is quite severe het-
eroskedasticity. See, among others, Gonçalves and Kilian (2004) and Mac-
Kinnon (2006). Even when the disturbances are actually homoskedastic, the
wild bootstrap often appears to perform as well as a comparable residual boot-
strap method. The cost of insuring against heteroskedasticity generally seems
to be very small. There seems to be no reason to use the pairs bootstrap when
the only issue is potential heteroskedasticity.
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7.7 Autocorrelation

The bootstrap DGPs that we have discussed so far are not valid when applied
to models with dependent disturbances having an unknown pattern of depen-
dence. For such models, we wish to specify a bootstrap DGP which generates
correlated disturbances that exhibit approximately the same pattern of de-
pendence as the real disturbances, even though we do not know the process
that actually generated them. There are two main approaches, neither of
which is entirely satisfactory in all cases, unlike the case of the wild bootstrap
for heteroskedasticity.

Block Bootstrap

The first principal method of dealing with dependent data is the block boot-
strap, which was originally proposed by Künsch (1989). This method is by far
the most widely used bootstrap in the presence of autocorrelation of unknown
form. The idea is to divide the quantities that are being resampled, which
might be either rescaled residuals or [y,X] pairs, into blocks of l consecutive
observations, and then resample the blocks. The blocks may be either over-
lapping or non-overlapping. In either case, the choice of block length, l, is
evidently very important. If l is small, the bootstrap samples cannot possibly
mimic non-trivial patterns of dependence in the original data, because these
patterns are broken whenever one block ends and the next begins. However,
if l is large, the bootstrap samples will tend to be excessively influenced by
the random characteristics of the actual sample.

For the block bootstrap to work asymptotically, the block length must increase
as the sample size n increases, but at a slower rate, which varies depending
on what the bootstrap samples are to be used for. In some common cases,
l should be proportional to n1/3, but with a factor of proportionality that
is, in practice, unknown. Unless the sample size is very large, it is generally
impossible to find a value of l for which the bootstrap DGP provides a really
good approximation to the unknown true DGP.

A variation of the block bootstrap is the stationary bootstrap proposed by
Politis and Romano (1994), in which the block length is random rather than
fixed. This procedure is commonly used in practice. However, Lahiri (1999)
provides both theoretical arguments and limited simulation evidence which
suggest that fixed block lengths are better than variable ones and that over-
lapping blocks are better than non-overlapping ones. Thus, at the present
time, the procedure of choice appears to be the moving-block bootstrap, in
which there are n− l+1 blocks, the first containing observations 1 through l,
the second containing observations 2 through l + 1, and the last containing
observations n− l + 1 through n.

It is possible to use block bootstrap methods with dynamic models. Let

Zt ≡ [yt, yt−1,Xt].
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For this model, we could construct n− l + 1 overlapping blocks

Z1 . . .Zl, Z2 . . .Zl+1, . . . . . . ,Zn−l+1 . . .Zn

and resample from them. This is the moving-block analog of the pairs boot-
strap. When there are no exogenous variables and several lagged values of the
dependent variable, the Zt are themselves blocks of observations. Therefore,
this method is sometimes referred to as the block-of-blocks bootstrap. Notice
that, when the block size is 1, the block-of-blocks bootstrap is simply the pairs
bootstrap adapted to dynamic models, as in Gonçalves and Kilian (2004).

Block bootstrap methods are conceptually simple. However, there are many
different versions, most of which we have not discussed, and theoretical anal-
ysis of their properties tends to require advanced techniques. The biggest
problem with block bootstrap methods is that they often do not work very
well. We have already provided an intuitive explanation of why this is the
case. From a theoretical perspective, the problem is that, even when the block
bootstrap offers higher-order accuracy than asymptotic methods, it often does
so to only a modest extent. The improvement is always of higher order in the
independent case, where blocks should be of length 1, than in the dependent
case, where the block size must be greater than 1 and must increase at an
optimal rate with the sample size. See Hall, Horowitz, and Jing (1995) and
Andrews (2004), among others.

There are several valuable, recent surveys of bootstrap methods for time-series
data. These include Bühlmann (2002), Politis (2003), and Härdle, Horowitz,
and Kreiss (2003). Surveys that are older or deal with methods for time-
series data in less depth include Li and Maddala (1996), Davison and Hink-
ley (1997, Chapter 8), Berkowitz and Kilian (2000), Horowitz (2001), and
Horowitz (2003).

Sieve Bootstrap

The second approach is a semiparametric one called the sieve bootstrap. The
idea is to estimate a stationary autoregressive process of order p (AR(p)), and
use this estimated process, perhaps together with resampled residuals from
the estimation of the AR(p) model, to generate bootstrap samples.

An AR(p) process is a generalisation of the AR(1) process we saw in Sec-
tion 4.2. Analogously to (4.14), a variable defined by an AR(p) process satis-
fies the equation

yt = ρ0 +

p∑
i=1

ρiyt−i + ut, ut ∼ IID(0, σ2), (7.15)

where the ρi, i = 0, 1, . . . , p are parameters that have to satisfy a rather
complicated condition that need not trouble us here. We can see that (7.15)
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takes the form of a linear regression model, in which the only regressors are
the constant and a set of p lags of the dependent variable.

Suppose we are concerned with a linear regression model, where the covariance
matrix Ω is no longer assumed to be diagonal. Instead, it is assumed that
Ω can be well approximated by the covariance matrix of a stationary AR(p)
process, which implies that the diagonal elements are all the same.

In this case, the first step is to estimate the regression model, possibly after
imposing restrictions on it, so as to generate a parameter vector β̂ and a
vector of residuals û with typical element ût. The next step is to estimate the
AR(p) model

ût =

p∑
i=1

ρi ût−i + εt (7.16)

for t = p+ 1, . . . , n. Note that, since the residuals sum to zero in most cases,
there is no need for a constant in (7.16). In theory, the order p of this model
should increase at a certain rate as the sample size increases. like the lag
truncation parameter needed for a HAC covariance matrix; see Section 6.5.

Estimation of the AR(p) model yields residuals and an estimate σ̂2
ε of the

variance of the innovations εt, as well as the estimates ρ̂i. We may use these
to set up a variety of possible bootstrap DGPs, all of which take the form

y∗t = Xtβ̂ + u∗
t .

There are two choices to be made, namely, the choice of parameter estimates β̂
and the generating process for the bootstrap disturbances u∗

t . The obvious
choice for β̂ is just the (restricted) OLS estimates.

For observations after the first p, the bootstrap disturbances are generated as
follows:

u∗
t =

p∑
i=1

ρ̂iu
∗
t−i + ε∗t , t = p+ 1, . . . , n,

where the ε∗t can either be drawn from the N(0, σ̂2
ε ) distribution for a para-

metric bootstrap or resampled from the residuals ε̂t, preferably rescaled by
the factor

√
n/(n− p). First, of course, we must generate the first p bootstrap

disturbances, the u∗
t , for t = 1, . . . , p.

The best way to do so is just to set u∗
t = ût for the first p observations of each

bootstrap sample. This is analogous to what we proposed in Section 7.4 for
the bootstrap DGP used in conjunction with a dynamic model: We initialise
with fixed starting values given by the real data.

The sieve bootstrap method has been used to improve the finite-sample prop-
erties of unit root tests by Park (2003) and Chang and Park (2003), but it has
not yet been widely used in econometrics. The fact that it does not allow for
heteroskedasticity is a limitation. Moreover, AR(p) processes do not provide
good approximations to every time-series process that might arise in practice.
For more detailed treatments, see Bühlmann (1997, 2002)), Choi and Hall
(2000), and Park (2002).
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7.8 Bootstrap Confidence Sets

When exact confidence intervals are not available, and they generally are not,
asymptotic ones are normally used. However, just as asymptotic tests do
not always perform well in finite samples, neither do asymptotic confidence
intervals. Since bootstrap P values and tests based on them often outperform
their asymptotic counterparts, it seems natural to base confidence intervals
on bootstrap tests when asymptotic intervals give poor coverage. There are
a great many varieties of bootstrap confidence intervals; for a comprehensive
discussion, see Davison and Hinkley (1997).

When we construct a bootstrap confidence interval, we wish to treat a fam-
ily of tests, each corresponding to its own null hypothesis. Since, when we
perform a bootstrap test, we must use a bootstrap DGP that satisfies the
null hypothesis, it appears that we must use an infinite number of bootstrap
DGPs if we are to consider the full family of tests, each with a different null.
Fortunately, there is a clever trick that lets us avoid this difficulty.

It is, of course, essential for a bootstrap test that the bootstrap DGP should
satisfy the null hypothesis under test. However, when the distribution of the
test statistic does not depend on precisely which null is being tested, the same
bootstrap distribution can be used for a whole family of tests with different
nulls. If a family of test statistics is defined in terms of a pivotal random
function τ(y, θ0), then, by definition, the distribution of this function is inde-
pendent of θ0. Thus we could choose any value of θ0 that the model allows for
the bootstrap DGP, and the distribution of the test statistic, evaluated at θ0,
would always be the same. The important thing is to make sure that τ(·) is
evaluated at the same value of θ0 as the one used to generate the bootstrap
samples. Even if τ(·) is only asymptotically pivotal, the effect of the choice
of θ0 on the distribution of the statistic should be slight if the sample size is
reasonably large.

Suppose that we wish to construct a bootstrap confidence interval based on
the t statistic t̂(θ0) ≡ τ(y, θ0) = (θ̂ − θ0)/sθ. The first step is to compute θ̂
and sθ using the original data y. Then we generate bootstrap samples using a
DGP, which may be either parametric or based on resampling, characterized
by θ̂ and by any other relevant estimates, such as the variance of disturbances,
that may be needed. The resulting bootstrap DGP is thus quite independent
of θ0, but it does depend on the estimate θ̂.

We can now generate B bootstrap samples, y∗
b , b = 1, . . . , B. For each of

these, we compute an estimate θ∗b and its standard error s∗b in exactly the
same way that we computed θ̂ and sθ from the original data, and we then
compute the bootstrap “t statistic”

t∗b ≡ τ(y∗
b , θ̂) =

θ∗b − θ̂

s∗b
. (7.17)
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This is the statistic that tests the null hypothesis that θ = θ̂, because θ̂ is the
true value of θ for the bootstrap DGP. If τ(·) is an exact pivot, the change
of null from θ0 to θ̂ makes no difference. If τ(·) is an asymptotic pivot, there
should usually be only a slight difference for values of θ0 close to θ̂.

The limits of the bootstrap confidence interval depend on the quantiles of the
EDF of the t∗b . We can choose to construct either a symmetric confidence
interval, by estimating a single critical value that applies to both tails, or
an asymmetric one, by estimating two different critical values. When the
distribution of the underlying test statistic τ(y, θ0) is not symmetric, the
latter interval should be more accurate.

P Values and Asymmetric Distributions

The above discussion of asymmetric confidence intervals raises the question of
how to calculate P values for two-tailed tests based on statistics with asym-
metric distributions. This rather tricky matter, which was treated briefly
in Exercise 5.19, will turn out to be important when we discuss bootstrap
confidence intervals in the next section.

If we denote by F the CDF used to calculate critical values or P values, the
P value associated with a statistic τ should be 2F (τ) if τ is in the lower tail,
and 2

(
1−F (τ)

)
if it is in the upper tail, as seen in Exercise 5.19. In complete

generality, we have that the P value is

p(τ) = 2min
(
F (τ), 1− F (τ)

)
. (7.18)

A slight problem arises as to the point of separation between the left and the
right sides of the distribution. This point is in fact the median, q.50, for which
F (q.50) = .50 by definition, so that, if τ < q.50, the P value is 2F (τ), and τ is
consequently in the left-hand tail, while if τ > q.50, it is in the right-hand tail.

Asymmetric Bootstrap Confidence Intervals

Let us denote by F̂ ∗ the EDF of the B bootstrap statistics t∗b . For given θ0,
the bootstrap P value is, from (7.18),

p̂
(
t̂(θ0)

)
= 2min

(
F̂ ∗(t̂(θ0)), 1− F̂ ∗(t̂(θ0))). (7.19)

If this P value is greater than or equal to α, then θ0 belongs to the 1 − α
confidence interval. If F̂ ∗ were the CDF of a continuous distribution, we could
express the confidence interval in terms of the quantiles of this distribution,
just as in (6.13). In the limit as B → ∞, the limiting distribution of the t∗b ,
which we call the ideal bootstrap distribution, is usually continuous, and its
quantiles define the ideal bootstrap confidence interval. However, since the
distribution of the t∗b is always discrete in practice, we must be a little more
careful in our reasoning.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

7.8 Bootstrap Confidence Sets 263

Suppose, to begin with, that t̂(θ0) is on the left side of the distribution. Then
the bootstrap P value (7.19) is

2F̂ ∗(t̂(θ0)) = 2

B

B∑
b=1

I
(
t∗b ≤ t̂(θ0)

)
=

2r(θ0)

B
,

where r(θ0) is the number of bootstrap t statistics that are less than or equal
to t̂(θ0). Thus θ0 belongs to the equal-tail 1 − α confidence interval if and
only if 2r(θ0)/B ≥ α, that is, if r(θ0) ≥ αB/2. Since r(θ0) is an integer, while
αB/2 is not an integer, in general, this inequality is equivalent to r(θ0) ≥ rα/2,
where rα/2 = ⌈αB/2⌉ is the smallest integer not less than αB/2, and ⌈·⌉ is
the ceiling function we introduced in Section 7.2.

First, observe that r(θ0) cannot exceed rα/2 for θ0 sufficiently large. Since
t̂(θ0) = (θ̂ − θ0)/sθ, it follows that t̂(θ0) → −∞ as θ0 → ∞. Accordingly,
r(θ0) → 0 as θ0 → ∞. Therefore, there exists a greatest value of θ0 for which
r(θ0) ≥ rα/2. This value must be the upper limit of the 1 − α bootstrap
confidence interval.

Suppose we sort the t∗b from smallest to largest and denote by c∗α/2 the entry
in the sorted list indexed by rα/2. Then, if t̂(θ0) = c∗α/2, the number of the t∗b
less than or equal to t̂(θ0) is precisely rα/2. But if t̂(θ0) is smaller than c∗α/2 by
however small an amount, this number is strictly less than rα/2. Thus θu, the
upper limit of the confidence interval, is defined implicitly by t̂(θu) = c∗α/2.
Explicitly, we have

θu = θ̂ − sθ c
∗
α/2.

As in the previous chapter, we see that the upper limit of the confidence
interval is determined by the lower tail of the bootstrap distribution.

If the statistic is an exact pivot, then the probability that the true value of θ
is greater than θu is exactly equal to α/2 only if α(B + 1)/2 is an integer.
This follows by exactly the same argument as the one given in Section 7.3
for bootstrap P values. As an example, if α = .05 and B = 999, we see that
α(B + 1)/2 = 25. In addition, since αB/2 = 24.975, we see that rα/2 = 25.
The value of c∗α/2 is therefore the value of the 25 th bootstrap t statistic when
they are sorted in ascending order.

In order to obtain the upper limit of the confidence interval, we began above
with the assumption that t̂(θ0) is on the left side of the distribution. If we
had begun by assuming that t̂(θ0) is on the right side of the distribution, we
would have found that the lower limit of the confidence interval is

θl = θ̂ − sθ c
∗
1−(α/2),

where c∗1−(α/2) is the entry indexed by r1−(α/2) when the t∗b are sorted in
ascending order. For the example with α = .05 and B = 999, this is the
975th entry in the sorted list, since there are precisely 25 integers in the range
975−999, just as there are in the range 1−25.
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The asymmetric equal-tail bootstrap confidence interval can be written as[
θl, θu

]
=
[
θ̂ − sθ c

∗
1−(α/2), θ̂ − sθ c

∗
α/2

]
. (7.20)

This interval bears a striking resemblance to the exact confidence inter-
val (6.13). Clearly, c∗1−(α/2) and c∗α/2, which are approximately the 1− (α/2)
and α/2 quantiles of the EDF of the bootstrap tests, play the same roles as
the 1− (α/2) and α/2 quantiles of the exact Student’s t distribution.

Because Student’s t distribution is symmetric, the confidence interval (6.13)
is necessarily symmetric. In contrast, the interval (7.20) is almost never sym-
metric. Even if the distribution of the underlying test statistic happened to be
symmetric, the bootstrap distribution based on finite B would almost never
be. It is, of course, possible to construct a symmetric bootstrap confidence
interval. We just need to invert a test for which the P value is not (7.18),
but rather something like (5.08), which is based on the absolute value, or,
equivalently, the square, of the t statistic.

The bootstrap confidence interval (7.20) is called a studentized bootstrap
confidence interval. The name comes from the fact that a statistic is said to
be studentized when it is the ratio of a random variable to its standard error,
as is the ordinary t statistic. This type of confidence interval is also sometimes
called a percentile-t or bootstrap-t confidence interval. Studentized bootstrap
confidence intervals have good theoretical properties, and, as we have seen,
they are quite easy to construct. If the assumptions of the classical normal
linear model are violated and the empirical distribution of the t∗b provides a
better approximation to the actual distribution of the t statistic than does
Student’s t distribution, then the studentized bootstrap confidence interval
should be more accurate than the usual interval based on asymptotic theory.

As we remarked above, there are a great many ways to compute bootstrap
confidence intervals, and there is a good deal of controversy about the rel-
ative merits of different approaches. For an introduction to the voluminous
literature, see DiCiccio and Efron (1996) and the associated discussion. Some
of the approaches in the literature appear to be obsolete, mere relics of the
way in which ideas about the bootstrap were developed, and others are too
complicated to explain here. Even if we limit our attention to studentized
bootstrap intervals, there are often several ways to proceed. Different ways
of estimating standard errors inevitably lead to different confidence intervals,
as do different ways of parametrizing a model. Thus, in practice, there is
often quite a number of reasonable ways to construct studentized bootstrap
confidence intervals.

Note that specifying the bootstrap DGP is not at all trivial if the disturbances
are not assumed to be IID. In fact, this topic is quite advanced and has been
the subject of much research: See Li and Maddala (1996) and Davison and
Hinkley (1997), among others.

Theoretical results discussed in Hall (1992) and Davison and Hinkley (1997)
suggest that studentized bootstrap confidence intervals generally work better
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than intervals based on asymptotic theory. However, their coverage can be
quite unsatisfactory in finite samples if the quantity (θ̂ − θ)/sθ is far from be-
ing pivotal, as can happen if the distributions of either θ̂ or sθ depend strongly
on the true unknown value of θ or on any other parameters of the model. When
this is the case, the standard errors often fluctuate wildly among the boot-
strap samples. Of course, the coverage of asymptotic confidence intervals is
generally also unsatisfactory in such cases.

Asymptotic and Bootstrap Confidence Regions

When test statistics like (6.18), with known finite-sample distributions, are
not available, the easiest way to construct an approximate confidence region
is to base it on the Wald statistic (6.15), which can be used with any k --vector
of parameter estimates θ̂ that is root-n consistent and asymptotically normal
and has a covariance matrix that can be consistently estimated by V̂ar(θ̂). If
cα denotes the 1− α quantile of the χ2(k) distribution, then an approximate
1− α confidence region is the set of all θ0 such that

(θ̂ − θ0)
⊤(V̂ar(θ̂))−1

(θ̂ − θ0) ≤ cα. (7.21)

Like the exact confidence region defined by (6.19), this asymptotic confidence
region is elliptical or ellipsoidal.

We can also use the statistic (6.15) to construct bootstrap confidence regions,
making the same assumptions as were made above about θ̂ and V̂ar(θ̂). As we
did for bootstrap confidence intervals, we use just one bootstrap DGP, either
parametric or using resampling, characterized by the parameter vector θ̂. For
each of B bootstrap samples, indexed by j, we obtain a vector of parameter
estimates θ∗

b and an estimated covariance matrix Var∗(θ∗
b ), in just the same

way as θ̂ and V̂ar(θ̂) were obtained from the original data. For each j, we
compute the bootstrap “test statistic”

τ∗b ≡ (θ∗
b − θ̂)⊤

(
Var∗(θ∗

b )
)−1

(θ∗
b − θ̂), (7.22)

which is the multivariate analog of (7.17). We then find the bootstrap critical
value c∗α, which is the 1 − α quantile of the EDF of the τ∗b . This is done by
sorting the τ∗b from smallest to largest and then taking the entry numbered
(B + 1)(1− α), assuming of course that α(B + 1) is an integer. For example,
if B = 999 and α = .05, then c∗α is the 950th entry in the sorted list. The
bootstrap confidence region is defined as the set of all θ0 such that

(θ̂ − θ0)
⊤(V̂ar(θ̂))−1

(θ̂ − θ0) ≤ c∗α. (7.23)

It is no accident that the bootstrap confidence region defined by (7.23) looks
very much like the asymptotic confidence region defined by (7.21). The only
difference is that the critical value cα, which appears on the right-hand side
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of (7.21), comes from the asymptotic distribution of the test statistic, while
the critical value c∗α, which appears on the right-hand side of (7.23), comes
from the empirical distribution of the bootstrap samples. Both confidence
regions have the same elliptical shape. When c∗α > cα, the region defined by
(7.23) is larger than the region defined by (7.21), and the opposite is true
when c∗α < cα.

Although this procedure is similar to the studentized bootstrap procedure
discussed in Section 7.3, its true analog is the procedure for obtaining a sym-
metric bootstrap confidence interval that is the subject of Exercise 7.xxx.
That procedure yields a symmetric interval because it is based on the square
of the t statistic. Similarly, because this procedure is based on the quadratic
form (6.15), the bootstrap confidence region defined by (7.23) is forced to
have the same elliptical shape (but not the same size) as the asymptotic con-
fidence region defined by (7.21). Of course, such a confidence region cannot
be expected to work very well if the finite-sample distribution of θ̂ does not
in fact have contours that are approximately elliptical.

In view of the many ways in which bootstrap confidence intervals can be
constructed, it should come as no surprise to learn that there are also many
other ways to construct bootstrap confidence regions. See Davison and Hink-
ley (1997) for references and a discussion of some of these.

The bootstrap confidence interval for θ, (7.20), can also be transformed by g
in order to obtain a bootstrap confidence interval for γ ≡ g(θ). The result is[

g(θ̂ − sθ c
∗
1−(α/2)), g(θ̂ − sθ c

∗
α/2)

]
, (7.24)

where c∗α/2 and c∗1−(α/2) are, as in (7.20), the entries indexed by (α/2)(B+1)
and (1− (α/2))(B + 1) in the sorted list of bootstrap t statistics t∗b .

Yet another way to construct a bootstrap confidence interval is to bootstrap
the t statistic for γ directly. Using the original data, we compute θ̂ and sθ,
and then γ̂ and sγ in terms of them. The bootstrap DGP is the same as the
one used to obtain a bootstrap confidence interval for θ, but this time, for each
bootstrap sample b, b = 1, . . . , B, we compute γ∗

b and (sγ)
∗
b . The bootstrap

“t statistics” (γ∗
b − γ̂)/(sγ)

∗
b are then sorted. If (cγ)

∗
α/2 and (cγ)

∗
1−(α/2) denote

the entries indexed by (α/2)(B+1) and (1− (α/2))(B+1) in the sorted list,
then the (asymmetric) bootstrap confidence interval is[

γ̂ − sγ(cγ)
∗
1−(α/2), γ̂ − sγ(cγ)

∗
α/2

]
. (7.25)

As readers are asked to check in Exercise 7.xxa, the intervals (7.24) and (7.25)
are not the same.

Bootstrap Standard Errors

The delta method is not the only way to obtain standard errors and covariance
matrices for functions of parameter estimates. The bootstrap can also be used

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

7.9 Final Remarks 267

for this purpose. Indeed, much of the early work on the bootstrap, such as
Efron (1979), was largely concerned with bootstrap standard errors.

Suppose that, expanding on the work in the previous subsection, we wish to
calculate the covariance matrix of the vector γ̂ = g(θ̂). A bootstrap procedure
for doing this involves three steps:

1. Specify a bootstrap DGP, parametric or resampling, and use it to gener-
ate B bootstrap samples, y∗

b .

2. For each bootstrap sample, use y∗
b to compute the parameter vector θ∗

b,
and then use θ∗

b to compute γ∗
b .

3. Calculate γ̄∗, the mean of the γ∗
b . Then calculate the estimated bootstrap

covariance matrix,

V̂ar∗(γ̂) =
1

B − 1

B∑
b=1

(γ∗
b − γ̄∗)(γ∗

b − γ̄∗)⊤.

If desired, bootstrap standard errors may be calculated as the square
roots of the diagonal elements of this matrix.

Bootstrap standard errors, which may or may not be more accurate than ones
based on asymptotic theory, can certainly be useful as descriptive statistics.
However, using them for inference generally cannot be recommended. In
many cases, calculating bootstrap standard errors is almost as much work as
calculating studentized bootstrap confidence intervals. As we noted at the
end of Section 7.3, there are theoretical reasons to believe that the latter
yield more accurate inferences than confidence intervals based on asymptotic
theory, including asymptotic confidence intervals that use bootstrap standard
errors. Thus, if we are going to go to the trouble of calculating a large number
of bootstrap estimates anyway, we can do better than just using them to
compute bootstrap standard errors.

7.9 Final Remarks

The bootstrap is a statistical technique capable of giving reliable inference
for a wide variety of econometric models. In this chapter, the main focus is
on inference based on the bootstrap. Although the bootstrap can be used
for many other purposes, inference, in the form of hypothesis testing or of
confidence sets, is the area in which use of the bootstrap has most clearly
benefited econometric practice.

Although pivotal test statistics do arise from time to time, most test statistics
in econometrics are not pivotal. The vast majority of them are, however,
asymptotically pivotal. A statistic that is not an exact pivot cannot be used
for a Monte Carlo test. However, approximate P values for statistics that
are only asymptotically pivotal, or even non-pivotal, can still be obtained by
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bootstrapping. The difference between a Monte Carlo test and a bootstrap
test is that for the former, the DGP is assumed to be known, whereas, for the
latter, it is not. Unless the null hypothesis under test is a simple hypothesis,
the DGP that generated the original data is unknown, and so it cannot be
used to generate simulated data. The bootstrap DGP is an estimate of the
unknown true DGP. The hope is that, if the bootstrap DGP is close, in some
sense, to the true one, then data generated by the bootstrap DGP will be
similar to data that would have been generated by the true DGP, if it were
known. If so, then a simulated P value obtained by use of the bootstrap DGP
is close enough to the true P value to allow accurate inference.

The actual implementation of a bootstrap test is identical to that of a Monte
Carlo test. The only difference is that we do not (usually) just choose any
convenient DGP in the null model, but rather one that can be considered a
good estimate of the unknown true DGP.

Our theoretical understanding of the bootstrap is still incomplete. Many
simulation experiments have shown that the bootstrap often performs much
better than existing theories predict. Even so, there are some guidelines,
here formulated more pretentiously as Golden Rules, that can help to ensure
reliable bootstrap inference. These rules reflect the fact that, in inference, one
wants as accurate a characterization as possible of the distribution, under the
null hypothesis under test, of the test statistics on which inference is based.

7.10 Exercises

7.1 The file bstats.txt contains 999 bootstrap test statistics, sorted from small-
est to largest and numbered for convenience. Use them to compute lower-tail,
upper-tail, equal-tail, and symmetric bootstrap P values when the value of
the actual test statistic is 2.197.

7.2 Suppose that we compute a bootstrap P value of 0.0603 using 199 bootstrap
test statistics. If we could instead use an infinite number of bootstrap test
statistics, we would obtain a bootstrap P value of p∗. Test the hypothesis
that p∗ < 0.05 against the alternative that p∗ ≥ 0.05.

7.3 Suppose the asymptotic distribution of a pivotal test statistic τ is N(0, 1). In a
sample of size n, the actual distribution is N(10/n, 1). What is the asymptotic
P value for a two-tailed test based on the statistic τ̂ = −1.60 when n = 20?
Suppose you could perform an infinite number of bootstrap simulations. Then
what would be the bootstrap P value based on the (incorrect) assumption
that the distribution is symmetric around the origin? What would be the
bootstrap P value without making any assumptions about the shape of the
distribution? Based on these results, would you reject the null hypothesis at
the .05 level? Hint: See Exercise 7.1.

7.4 The file classical.data contains 50 observations on three artificial variables,
namely, y, x2, and x3. The data on y are generated by the classical linear
regression model

y = β1ι+ β2x2 + β3x3 + u, u ∼ N(0, σ2I).
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Test the hypothesis that σ = 1.2 at the .05 level. Also compute a P value for
the test. Hint: See Exercise 4.19.

7.5 Using the data from the file classical.data again, estimate the regression model

y = β1ι+ β2x2 + β3x3 + u, u ∼ N(0, σ2I).

Compute a t statistic for the null hypothesis that β3 = 0. On the basis
of this test statistic, perform an exact test. Then perform parametric and
semiparametric bootstrap tests using 99, 999, and 9,999 simulations. How do
the two types of bootstrap P values correspond with the exact P value? How
does this correspondence change as B increases?

7.6 If F is a strictly increasing CDF defined on an interval [a, b] of the real line,
where either or both of a and b may be infinite, then the inverse function F −1

is a well-defined mapping from [0, 1] on to [a, b]. Show that, if the random
variable X is a drawing from the U(0, 1) distribution, then F −1(X) is a
drawing from the distribution of which F is the CDF.

7.7 In Section 4.7, we saw that Var(ût) = (1−ht)σ20 , where ût is the tth residual
from the linear regression model y = Xβ + u, and ht is the tth diagonal
element of the ‘hat matrix” PX; this was the result (4.58). Use this result to
derive an alternative to (7.11) as a method of rescaling the residuals prior to
resampling. Remember that the rescaled residuals must have mean 0.

7.8 This question uses data from the file house-price-data.txt, which contains 546
observations. Regress the logarithm of the house price on a constant, the log-
arithm of lot size, and the other ten explanatory variables, as in Exercise 6.15.
One of the explanatory variables is the number of storeys, which can take on
the values 1, 2, 3, and 4. Construct an unrestricted wild bootstrap .95 confi-
dence interval for the difference in the expectation of the log price between a
3-storey house and a 2-storey house.

7.9 Consider again the data in the file consumption.data and the ADL model
studied in Exercise 4.32, which is reproduced here for convenience:

ct = α+ βct−1 + γ0yt + γ1yt−1 + ut. (4.90)

Compute a t statistic for the hypothesis that γ0 + γ1 = 0. On the basis of
this test statistic, perform an asymptotic test, a parametric bootstrap test,
and a resampling bootstrap test using residuals rescaled according to (7.11).
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Chapter 8

Instrumental Variables

Estimation

8.1 Introduction

In Section 4.3 the ordinary least-squares estimator β̂ was shown to be consis-
tent under condition (4.13), according to which the expectation of the distur-
bance ut associated with observation t is zero conditional on the regressors Xt

for that same observation. As we saw in Section 5.5 this condition can also
be expressed either by saying that the regressors Xt are predetermined or by
saying that the disturbances ut are innovations. When condition (4.13) does
not hold, the consistency proof of Section 4.3 is not applicable, and the OLS
estimator is in general both biased and inconsistent.

It is not always reasonable to assume that the disturbances are innovations.
In fact, as we will see in the next section, there are commonly encountered
situations in which the disturbances are necessarily correlated with some of
the regressors for the same observation. Even in these circumstances, however,
it is usually possible, although not always easy, to define an information set Ωt

for each observation such that

E(ut |Ωt) = 0. (8.01)

Any regressor of which the value in period t is correlated with ut cannot
belong to Ωt.

8.2 Correlation Between Disturbances and Regressors

We now briefly discuss two common situations in which the disturbances are
correlated with the regressors and therefore do not have a zero expectation
conditional on them. The first one, usually referred to by the name errors
in variables, occurs whenever the independent variables in a regression model
are measured with error. The second situation, often simply referred to as
simultaneity, occurs whenever two or more endogenous variables are jointly
determined by a system of simultaneous equations.
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Errors in Variables

For a variety of reasons, many economic variables are measured with error. For
example, macroeconomic time series are often based, in large part, on surveys,
and they must therefore suffer from sampling variability. Whenever there
are measurement errors, the values economists observe inevitably differ, to a
greater or lesser extent, from the true values that economic agents presumably
act upon. As we will see, measurement errors in the dependent variable of a
regression model are generally of no great consequence, unless they are very
large. However, measurement errors in the independent variables cause the
disturbances to be correlated with the regressors that are measured with error,
and this causes OLS to be inconsistent.

The problems caused by errors in variables can be seen quite clearly in the
context of the simple linear regression model. Consider the model

y◦t = β1 + β2x
◦
t + u◦

t, u◦
t ∼ IID(0, σ2), (8.02)

where the variables x◦
t and y◦t are not actually observed. We refer to them as

latent variables. Instead, we observe

xt ≡ x◦
t + v1t, and

yt ≡ y◦t + v2t.
(8.03)

Here v1t and v2t are measurement errors which are assumed, perhaps not
realistically in some cases, to be IID with variances ω2

1 and ω2
2 , respectively,

and to be independent of x◦
t , y

◦
t , and u◦

t.

If we suppose that the true DGP is a special case of (8.02) along with (8.03),
we see from (8.03) that x◦

t = xt− v1t and y◦t = yt− v2t. If we substitute these
into (8.02), we find that

yt = β1 + β2(xt − v1t) + u◦
t + v2t

= β1 + β2xt + u◦
t + v2t − β2v1t

= β1 + β2xt + ut, (8.04)

where ut ≡ u◦
t + v2t − β2v1t. Thus Var(ut) is equal to σ2 + ω2

2 + β2
2ω

2
1 .

The effect of the measurement error in the dependent variable is simply to
increase the variance of the disturbances. Unless the increase is substantial,
this is generally not a serious problem.

The measurement error in the independent variable also increases the variance
of the disturbances, but it has another, much more severe, consequence as well.
Because xt = x◦

t + v1t, and ut depends on v1t, ut must be correlated with xt

whenever β2 ̸= 0. In fact, since the random part of xt is v1t, we see that

E(ut |xt) = E(ut | v1t) = −β2v1t, (8.05)
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because we assume that v1t is independent of u
◦
t and v2t. From (8.05), we can

see, using the fact that E(ut) = 0 unconditionally, that

Cov(xt, ut) = E(xtut) = E
(
xtE(ut |xt)

)
= −E

(
(x◦

t + v1t)β2v1t
)
= −β2ω

2
1.

This covariance is negative if β2 > 0 and positive if β2 < 0, and, since it does
not depend on the sample size n, it does not go away as n becomes large.
An exactly similar argument shows that the assumption that E(ut |Xt) = 0
is false whenever any element of Xt is measured with error. In consequence,
the OLS estimator is biased and inconsistent.

Errors in variables are a potential problem whenever we try to estimate a
consumption function, especially if we are using cross-section data. Many
economic theories (for example, Friedman, 1957) suggest that household con-
sumption depends on “permanent” income or “life-cycle” income, but surveys
of household behavior almost never measure this. Instead, they typically pro-
vide somewhat inaccurate estimates of current income. If we think of yt as
measured consumption, x◦

t as permanent income, and xt as estimated current
income, then the above analysis applies directly to the consumption function.
The marginal propensity to consume is β2, which must be positive, causing
the correlation between ut and xt to be negative. As readers are asked to show
in Exercise 8.1, the probability limit of β̂2 is less than the true value β20. In
consequence, the OLS estimator β̂2 is biased downward, even asymptotically.

Of course, if our objective is simply to estimate the relationship between the
observed dependent variable yt and the observed independent variable xt,
there is nothing wrong with using ordinary least squares to estimate equation
(8.04). In that case, ut would simply be defined as the difference between
yt and its expectation conditional on xt. But our analysis shows that the
OLS estimators of β1 and β2 in equation (8.04) are not consistent for the
corresponding parameters of equation (8.02). In most cases, it is parameters
like these that we want to estimate on the basis of economic theory.

There is an extensive literature on ways to avoid the inconsistency caused by
errors in variables. See, among many others, Hausman and Watson (1985),
Leamer (1987), and Dagenais and Dagenais (1997). The simplest and most
widely-used approach is just to use an instrumental variables estimator.

Simultaneous Equations

Economic theory often suggests that two or more endogenous variables are
determined simultaneously. In this situation, as we will see shortly, all of the
endogenous variables must necessarily be correlated with the disturbances in
all of the equations. This means that none of them may validly appear in the
regression functions of models that are to be estimated by least squares.

A classic example, which well illustrates the econometric problems caused by
simultaneity, is the determination of price and quantity for a commodity at
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the partial equilibrium of a competitive market. Suppose that qt is quantity
and pt is price, both of which would often be in logarithms. A linear (or
loglinear) model of demand and supply is

qt = γd pt +Xd
t βd + ud

t (8.06)

qt = γs pt +Xs
t βs + us

t , (8.07)

where equation (8.06) is the demand function and equation (8.07) is the supply
function. Here Xd

t and Xs
t are row vectors of observations on exogenous or

predetermined variables that appear, respectively, in the demand and supply
functions, βd and βs are corresponding vectors of parameters, γd and γs are
scalar parameters, and ud

t and us
t are the disturbances in the demand and

supply functions. Economic theory predicts that, in most cases, γd < 0 and
γs > 0, which is equivalent to saying that the demand curve slopes downward
and the supply curve slopes upward.

Equations (8.06) and (8.07) are a pair of linear simultaneous equations for
the two unknowns pt and qt. For that reason, these equations constitute what
is called a linear simultaneous equations model. In this case, there are two
dependent variables, quantity and price. For estimation purposes, the key
feature of the model is that quantity depends on price in both equations.

Since there are two equations and two unknowns, it is straightforward to solve
equations (8.06) and (8.07) for pt and qt. This is most easily done by rewriting
them in matrix notation as[

1 −γd
1 −γs

][
qt
pt

]
=

[
Xd

t βd

Xs
t βs

]
+

[
ud
t

us
t

]
. (8.08)

The solution to (8.08), which exists whenever γd ̸= γs, so that the matrix on
the left-hand side of (8.08) is nonsingular, is[

qt
pt

]
=

[
1 −γd
1 −γs

]−1
([

Xd
t βd

Xs
t βs

]
+

[
ud
t

us
t

])
. (8.09)

It can be seen from this solution that pt and qt depend on both ud
t and us

t ,
and on every exogenous and predetermined variable that appears in either the
demand function, the supply function, or both. Therefore, pt, which appears
on the right-hand side of equations (8.06) and (8.07), must be correlated
with the disturbances in both of those equations. If we rewrote one or both
equations so that pt was on the left-hand side and qt was on the right-hand
side, the problem would not go away, because qt is also correlated with the
disturbances in both equations.

It is easy to see that, whenever we have a linear simultaneous equations model,
there must be correlation between all of the disturbances and all of the en-
dogenous variables. If there are g endogenous variables and g equations, the
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solution looks very much like (8.09), with the inverse of a g × g matrix pre-
multiplying the sum of a g --vector of linear combinations of the exogenous
and predetermined variables and a g --vector of disturbances. If we want to
estimate one equation out of such a system, the most popular approach is to
use instrumental variables.

We have discussed two important situations in which the disturbances are
necessarily correlated with some of the regressors, and the OLS estimator must
consequently be inconsistent. This provides a strong motivation to employ
estimators that do not suffer from this type of inconsistency. In the remainder
of this chapter, we therefore discuss the method of instrumental variables.
This method can be used whenever the disturbances are correlated with one
or more of the explanatory variables, regardless of how that correlation may
have arisen.

8.3 Instrumental Variables Estimation

For most of this chapter, we will focus on the linear regression model

y = Xβ + u, E(uu⊤) = σ2I, (8.10)

where at least one of the explanatory variables in the n × k matrix X is
assumed not to be predetermined with respect to the disturbances. Suppose
that, for each t = 1, . . . , n, condition (8.01) is satisfied for some suitable
information set Ωt, and that we can form an n × k matrix W with typical
row Wt such that all its elements belong to Ωt. The k variables given by
the k columns of W are called instrumental variables, or simply instruments.
Later, we will allow for the possibility that the number of instruments may
exceed the number of regressors.

Instrumental variables may be either exogenous or predetermined, and, for a
reason that will be explained later, they should always include any columns
of X that are exogenous or predetermined. Finding suitable instruments may
be quite easy in some cases, but it can be extremely difficult in others. Many
empirical controversies in economics are essentially disputes about whether or
not certain variables constitute valid instruments.

The Simple IV Estimator

The condition (8.01) together with the requirement that Wt ∈ Ωt implies that

E(ut |Wt) = 0. (8.11)

Thus Wt
⊤(yt − Xtβ) is a a vector of elementary zero functions for the

model (8.10). We can therefore construct a set of unbiased estimating equa-
tions:

W⊤(y −Xβ) = 0. (8.12)

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

8.3 Instrumental Variables Estimation 275

Since there are k equations and k unknowns, we can solve equations (8.12)
directly to obtain the simple IV estimator

β̂IV ≡ (W⊤X)−1W⊤y. (8.13)

For identification by any given sample, it is necessary that W⊤X should be
nonsingular. If this condition were not satisfied, equations (8.12) would have
no unique solution. In particular, this rules out any linear dependence in the
columns of W.

This well-known estimator has a long history (see Morgan, 1990). It is in
general biased, just like the OLS estimate in a dynamic model with a set of
regressors including lags of the dependent variable. It is however consistent
under any sensible asymptotic construction like the “more of the same” con-
struction recommended in Section 4.3. This leads us to make the assumption
that

SW⊤X ≡ plim
n→∞

1−
n
W⊤X is deterministic and nonsingular, (8.14)

which is certainly a consequence of any decent asymptotic construction.

It is easy to see directly that the simple IV estimator (8.13) is consistent,
and, in so doing, to see that condition (8.11) can be weakened slightly. If
the model (8.10) is correctly specified, with true parameter vector β0, then it
follows that

β̂IV = (W⊤X)−1W⊤Xβ0 + (W⊤X)−1W⊤u

= β0 + (n−1W⊤X)−1n−1W⊤u.
(8.15)

Given the assumption (8.14) of asymptotic identification, it is clear that β̂IV

is consistent if and only if

plim
n→∞

1−
n
W⊤u = 0, (8.16)

Although this follows directly from (8.11), it may hold in circumstances in
which (8.11) is violated. We usually refer to the condition (8.16) by saying
that the disturbances are asymptotically uncorrelated with the instruments.
The weaker condition (8.16) is what is required for the consistency of the
IV estimator.

In order to derive the asymptotic covariance matrix of βIV, we make a further
assumption,

SW⊤W ≡ plim
n→∞

1−
n
W⊤W is deterministic and nonsingular. (8.17)

If the model (8.10) is correctly specified with true parameter vector β0 and
true disturbance variance σ2

0 , we see from (8.15) that

n1/2(β̂IV − β0) = (n−1W⊤X)−1n−1/2W⊤u.
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The factor n−1/2W⊤u can be handled in exactly the same way as was
n−1/2X⊤u in Section 5.5; see (5.48), (5.49), and (5.50). This leads to

n−1/2W⊤u
d−→ N(0, σ2

0SW⊤W ),

Along with assumption (8.14), this lets us conclude that

n1/2(β̂IV − β0)
d−→ N

(
0, σ2

0(SW⊤X)−1SW⊤W (S⊤
W⊤X)−1

)
The limiting covariance matrix above is σ2

0 times

plim
n→∞

(n−1W⊤X)−1 plim
n→∞

n−1W⊤W plim
n→∞

(n−1X⊤W )−1

= plim
n→∞

n(W⊤X)−1W⊤W (X⊤W )−1

= plim
n→∞

n
[
X⊤W (W⊤W )−1W⊤X

]−1

= plim
n→∞

(n−1X⊤PWX)−1.

The asymptotic covariance matrix of the simple IV estimator is thus

σ2
0 plim
n→∞

(n−1X⊤PWX)−1. (8.18)

The Generalized IV Estimator

In practice, the information set Ωt is very frequently specified by providing
a list of l instrumental variables that suggest themselves for various reasons.
Therefore, we now drop the assumption that the number of instruments is
equal to the number of parameters and let W denote an n×l matrix of instru-
ments. Often, l is greater than k, the number of regressors in the model (8.10).
In this case, the model is said to be overidentified, because, in general, there
is more than one way to formulate estimating equations like (8.12) using the
available instruments. If l = k, the model (8.10) is said to be just identified or
exactly identified, because there is only one way to formulate the estimating
equations. If l < k, it is said to be underidentified, because there are fewer
estimating equations than parameters to be estimated, and equations (8.12)
therefore have no unique solution.

If any instruments at all are available, it is normally possible to generate
an arbitrarily large collection of them, because any deterministic nonlinear
function of the l components of the tth row Wt of W can be used as the
tth component of a new instrument.1 If (8.10) is underidentified, some such

1 This procedure would not work if, for example, all of the original instruments
were binary variables.
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procedure is necessary if we wish to obtain consistent estimates of all the
elements of β. Alternatively, we would have to impose at least k−l restrictions
on β so as to reduce the number of independent parameters that must be
estimated to no more than the number of instruments.

For models that are just identified or overidentified, it is often desirable to
limit the set of potential instruments to deterministic linear functions of the
instruments in W, rather than allowing arbitrary deterministic functions. We
will see shortly that this is not only reasonable but optimal for linear simult-
aneous equation models. With this restriction, the IV estimator is unique for
a just identified model, because there is only one k --dimensional linear space
S(W ) that can be spanned by the k = l instruments, and, as we saw earlier,
the IV estimator for a given model depends only on the space spanned by the
instruments.

We can always treat an overidentified model as if it were just identified by
choosing exactly k linear combinations of the l columns of W. The challenge
is to choose these linear combinations optimally. Formally, we seek an l × k
matrix J such that the n × k matrix WJ is a valid instrument matrix and
such that, by using J, the asymptotic covariance matrix of the estimator
is minimized in the class of IV estimators which use an n × k matrix of
instruments that are linear combinations of the columns of W.

There are three requirements that the matrix J must satisfy. The first of these
is that it should have full column rank of k. Otherwise, the space spanned
by the columns of WJ would have dimension less than k, and the model
would be underidentified. The second requirement is that J should be at
least asymptotically deterministic. If not, it is possible that condition (8.16)
applied to WJ could fail to hold. The last requirement is that J should
be chosen to minimize the asymptotic covariance matrix of the resulting IV
estimator, and we now explain how this may be achieved.

Efficiency Considerations

First of all, notice that, since (8.18) depends on W only through the orthogo-
nal projection matrix PW , all that matters is the space S(W ) spanned by the
instrumental variables. In fact, as readers are asked to show in Exercise 8.2,
the estimator β̂IV itself depends on W only through PW . This fact is closely
related to the result that, for ordinary least squares, fitted values and residuals
depend only on the space S(X) spanned by the regressors.

Suppose first that we are at liberty to choose for instruments any variables at
all that satisfy the predeterminedness condition (8.11). Then, under reason-
able and plausible conditions, we can characterize the optimal instruments
for IV estimation of the model (8.10). By this, we mean the instruments that
minimize the asymptotic covariance matrix (8.18), in the usual sense that any
other choice of instruments leads to an asymptotic covariance matrix that
differs from the optimal one by a positive semidefinite matrix.
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In order to determine the optimal instruments, we must know the data-
generating process. In the context of a simultaneous equations model, a single
equation like (8.10), even if we know the values of the parameters, cannot be a
complete description of the DGP, because at least some of the variables in the
matrix X are endogenous. For the DGP to be fully specified, we must know
how all the endogenous variables are generated. For the demand-supply model
given by equations (8.06) and (8.07), both of those equations are needed to
specify the DGP. For a more complicated simultaneous equations model with
g endogenous variables, we would need g equations. For the simple errors-in-
variables model discussed in Section 8.2, we need equations (8.03) as well as
equation (8.02) in order to specify the DGP fully.

Quite generally, we can suppose that the explanatory variables in the regres-
sion model (8.10) satisfy the relation

X = X̄ + V , E(Vt |Ωt) = 0, (8.19)

where the tth row of X̄ is X̄t = E(Xt |Ωt), and Xt is the tth row of X. Thus
equation (8.19) can be interpreted as saying that X̄t is the expectation of Xt

conditional on the information set Ωt. It turns out that the n × k matrix
X̄ provides the optimal instruments for (8.10). Of course, in practice, X̄
is never observed, and it should be replaced by something that estimates it
consistently.

To see that X̄ provides the optimal matrix of instruments, it is, as usual, easier
to reason in terms of precision matrices rather than covariance matrices. For
any valid choice of instruments, the precision matrix corresponding to (8.18)
is 1/σ2 times

plim
n→∞

1−
n
X⊤PWX = plim

n→∞

(
n−1X⊤W (n−1W⊤W )−1n−1W⊤X

)
. (8.20)

Using (8.19) and a law of large numbers, we see that

plim
n→∞

1−
n
X⊤W = lim

n→∞
1−
n
E(X⊤W )

= lim
n→∞

1−
n
E(X̄⊤W ) = plim

n→∞

1−
n
X̄⊤W.

(8.21)

The second equality holds because E(V ⊤W ) = O, since, by the construction
in (8.19), Vt has zero expectation conditional on Wt. The last equality is just
an LLN in reverse. Similarly, we find that plim n−1W⊤X = plimn−1W⊤X̄.
Thus the precision matrix (8.20) becomes

plim
n→∞

1−
n
X̄⊤PWX̄. (8.22)

If we make the choice W = X̄, then (8.22) reduces to plimn−1X̄⊤X̄. The
difference between this and (8.22) itself is just plimn−1X̄⊤MWX̄, which is a
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positive semidefinite matrix. This shows that X̄ is indeed the optimal choice
of instrumental variables by the criterion of asymptotic variance.

We mentioned earlier that all the explanatory variables in (8.10) that are exo-
genous or predetermined should be included in the matrix W of instrumental
variables. It is now clear why this is so. If we denote by Z the submatrix
of X containing the exogenous or predetermined variables, then Z̄ = Z, be-
cause the row Zt is already contained in Ωt. Thus Z is a submatrix of the
matrix X̄ of optimal instruments. As such, it should always be a submatrix
of the matrix of instruments W used for estimation, even if W is not actually
equal to X̄.

Since the explanatory variables X satisfy (8.19), it follows from (8.18) and
(8.21) that the asymptotic covariance matrix of the IV estimator computed
using WJ as instrument matrix is

σ2
0 plim
n→∞

(n−1X̄⊤PWJX̄)−1. (8.23)

The tth row X̄t of X̄ belongs to Ωt by construction, and so each element of X̄t

is a deterministic function of variables in the information set Ωt. However,
the deterministic functions are not necessarily linear functions of Wt. Thus,
in general, it is impossible to find a matrix J such that X̄ = WJ , as would
be needed for WJ to constitute a set of truly optimal instruments. A natural
second-best solution is to project X̄ orthogonally on to the space S(W ). This
yields the matrix of instruments

WJ = PWX̄ = W (W⊤W )−1W⊤X̄, (8.24)

which implies that
J = (W⊤W )−1W⊤X̄. (8.25)

We now show that these instruments are indeed optimal under the constraint
that the instruments should be linear in Wt.

By substituting PWX̄ for WJ in (8.23), the asymptotic covariance matrix
becomes

σ2
0 plim
n→∞

(n−1X̄⊤PPWX̄X̄)−1.

If we write out the projection matrix PPWX̄ explicitly, we find that

X̄⊤PPWX̄X̄ = X̄⊤PWX̄(X̄⊤PWX̄)−1X̄⊤PWX̄ = X̄⊤PWX̄. (8.26)

Thus, the precision matrix for the estimator that uses instruments PWX̄ is
proportional to X̄⊤PWX̄. For the estimator with WJ as instruments, the
precision matrix is proportional to X̄⊤PWJX̄. The difference between the
two precision matrices is therefore proportional to

X̄⊤(PW − PWJ )X̄. (8.27)
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The k --dimensional subspace S(WJ), which is the image of the orthogonal
projection PWJ , is a subspace of the l--dimensional space S(W ), which is the
image of PW . Thus, by the result in Exercise 3.18, the difference PW −PWJ is
itself an orthogonal projection matrix. This implies that the difference (8.27)
is a positive semidefinite matrix, and so we can conclude that (8.24) is indeed
the optimal choice of instruments of the form WJ .

At this point, we come up against the difficulty that the optimal instrument
choice is infeasible, because we do not know X̄. But notice that, from the
definition (8.25) of the matrix J, we have that

plim
n→∞

J = plim
n→∞

(n−1W⊤W )−1n−1W⊤X̄

= plim
n→∞

(n−1W⊤W )−1n−1W⊤X, (8.28)

by (8.21). This suggests, correctly, that we can use PWX instead of PWX̄
without changing the asymptotic properties of the estimator.

If we use PWX as the matrix of instrumental variables, the estimating equa-
tions (8.12) that define the estimator become

X⊤PW (y −Xβ) = 0, (8.29)

which can be solved to yield the generalized IV estimator, or GIV estimator,

β̂IV = (X⊤PWX)−1X⊤PW y, (8.30)

which is sometimes just abbreviated as GIVE. The estimator (8.30) is indeed
a generalization of the simple estimator (8.13), as readers are asked to verify
in Exercise 8.3. For this reason, we will usually refer to the IV estimator
without distinguishing the simple from the generalized case.

The generalized IV estimator (8.30) can also be obtained by minimizing the
IV criterion function, which has many properties in common with the sum
of squared residuals for models estimated by least squares. This function is
defined as follows:

Q(β,y) = (y −Xβ)⊤PW (y −Xβ). (8.31)

Minimizing Q(β,y) with respect to β yields the estimator (8.30), as readers
are asked to show in Exercise 8.4.

Identifiability and Consistency of the IV Estimator

It is clear from (8.30) that the generalized IV estimator needs the matrix
X⊤PWX to be invertible. A condition of this sort is called an identification
condition. For the OLS estimator, the identification condition is that X⊤X
is invertible, and we saw that this is equivalent to the requirement of linear
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independence of the columns of X. The analogous requirement for the IV es-
timator is that the columns of PWX should be linearly independent, which
implies that the estimating equations (8.29) have a unique solution. When
this condition is satisfied by a given data set, we say that the parameters β
are identified by that data set.

A different condition is needed if we want to show that β̂IV is consistent. It is
an asymptotic counterpart to identification by a finite data set, and is called
asymptotic identification. Consider what happens to the estimating functions
in equations (8.29) as n → ∞ with a sensible asymptotic construction. Under
any DGP in the model (8.10), we define a vector of functions as follows:

α(β) ≡ plim
n→∞

1−
n
X⊤PW (y −Xβ) = plim

n→∞

1−
n
X⊤PWX(β0 − β),

where β0 is the true parameter vector. Note that plimn→∞ n−1X⊤PWu = 0,
on account of (8.16). Clearly α(β0) = 0.

For asymptotic identification, we require the condition that α(β) ̸= 0
for all β ̸= β0. For this condition to fail, there must exist β ̸= β0

such that plimn→∞ n−1X⊤PWX(β0 − β) = 0. But this implies that
plimn→∞ n−1X⊤PWX is singular. Consequently, what we require for asymp-
totic identification is that

SX⊤PW X ≡ plim
n→∞

n−1X⊤PWX is deterministic and nonsingular.

Note that this does not necessarily follow from (8.14) and (8.17), since the
former holds only for a just-identified model with l = k.

Asymptotic identification is sufficient for consistency. Because we are dealing
here with linear models, there is no need for a sophisticated proof of this fact;
see Exercise 8.6. The key assumption is, of course, (8.16). If this assumption
did not hold, because any of the instruments was asymptotically correlated
with the disturbances, the IV estimator would not be consistent.

Asymptotic Distribution of the IV Estimator

Like every estimator that we have studied, the IV estimator is asymptot-
ically normally distributed with an asymptotic covariance matrix that can
be estimated consistently. The asymptotic covariance matrix for the simple
IV estimator, expression (8.18), turns out to be valid for the generalized IV
estimator as well. To see this, we replace W in (8.18) by the asymptotically
optimal instruments PWX. As in (8.26), we find that

X⊤PPWXX = X⊤PWX(X⊤PWX)−1X⊤PWX = X⊤PWX,

from which it follows that (8.18) is unchanged if W is replaced by PWX.
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It can also be shown directly that (8.18) is the asymptotic covariance matrix
of the generalized IV estimator. From (8.30), it follows that

n1/2(β̂IV − β0) = (n−1X⊤PWX)−1n−1/2X⊤PW u. (8.32)

Under reasonable assumptions, a central limit theorem can be applied to
the expression n−1/2W⊤u, which allows us to conclude that the asymptotic
distribution of this expression is multivariate normal, with expectation zero
and covariance matrix

lim
n→∞

1−
n
W⊤E(uu⊤)W = σ2

0SW⊤W , (8.33)

since we assume that E(uu⊤) = σ2
0I. With this result, it can be shown quite

simply that (8.18) is the asymptotic covariance matrix of β̂IV; see Exercise 8.7.

In practice, since σ2
0 is unknown, we use

V̂ar(β̂IV) = σ̂2(X⊤PWX)−1 (8.34)

to estimate the covariance matrix of β̂IV. Here σ̂
2 is 1/n times the sum of the

squares of the components of the residual vector y −Xβ̂. In contrast to the
OLS case, there is no good reason to divide by anything other than n when
estimating σ2. Because IV estimation minimizes the IV criterion function and
not the sum of squared residuals, IV residuals are not necessarily too small.
Nevertheless, many regression packages divide by n− k instead of by n.

The choice of instruments usually affects the asymptotic covariance matrix of
the IV estimator. If some or all of the columns of X̄ are not contained in
the span S(W ) of the instruments, an efficiency gain is potentially available
if that span is made larger. Readers are asked in Exercise 8.8 to demonstrate
formally that adding an extra instrument by appending a new column to W
must, in general, reduce the asymptotic covariance matrix. Of course, it
cannot be made smaller than the lower bound σ2

0(X̄
⊤X̄)−1, which is attained

if the optimal instruments X̄ are available.

When all the regressors can validly be used as instruments, we have X̄ = X,
and the efficient IV estimator coincides with the OLS estimator, as the Gauss-
Markov Theorem predicts.

Two-Stage Least Squares

The IV estimator (8.30) is commonly known as the two-stage least-squares,
or 2SLS, estimator, because, before the days of good econometrics software
packages, it was often calculated in two stages using OLS regressions. In the
first stage, each column xi, i = 1, . . . , k, of X is regressed on W, if necessary.
If a regressor xi is a valid instrument, it is already (or should be) one of the
columns of W. In that case, since PWxi = xi, no first-stage regression is
needed, and we say that such a regressor serves as its own instrument.
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The fitted values from the first-stage regressions, plus the actual values of
any regressors that serve as their own instruments, are collected to form the
matrix PWX. Then the second-stage regression,

y = PWXβ + residuals, (8.35)

is used to obtain the 2SLS estimates. Because PW is an idempotent matrix,
the OLS estimate of β from this second-stage regression is

β̂2sls = (X⊤PWX)−1X⊤PW y,

which is identical to (8.30), the generalized IV estimator β̂IV.

If this two-stage procedure is used, some care must be taken when estimating
the standard error of the regression and the covariance matrix of the parameter
estimates. The OLS estimate of σ2 from regression (8.35) is

s2 =
∥y − PWXβ̂IV∥2

n− k
. (8.36)

In contrast, the estimate that was used in the estimated IV covariance matrix
(8.34) is

σ̂2 =
∥y −Xβ̂IV∥2

n
. (8.37)

These two estimates of σ2 are not asymptotically equivalent, and s2 is not
consistent. The reason is that the residuals from regression (8.35) do not
tend to the corresponding disturbances as n → ∞, because the regressors
in (8.35) are not the true explanatory variables. Therefore, 1/(n − k) times
the sum of squared residuals is not a consistent estimator of σ2. Of course,
no regression package providing IV or 2SLS estimation would ever use (8.36)
to estimate σ2. Instead, it would use (8.37), or at least something that is
asymptotically equivalent to it.

One clever way to get a consistent covariance matrix estimate is to run the
artificial regression

y −Xβ̂IV = PWXb + residuals. (8.38)

The regressand is just the vector of residuals from the IV estimation, and so it
is orthogonal to the regressors on account of the estimating equations (8.29).
The estimates of the artificial parameters b are thus all zero, and so the vector
of residuals is the regressand unaltered, and the sum of squared residuals is
the numerator of the consistent estimator (8.37). The estimated covariance
matrix is therefore exactly (8.34), multiplied by (n − k)/n if the regression
package reports s2 with a denominator of n− k.

Two-stage least squares was invented by Theil (1953) and Basmann (1957)
at a time when computers were very primitive. Consequently, despite the
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classic papers of Durbin (1954) and Sargan (1958) on instrumental variables
estimation, the term “two-stage least squares” came to be very widely used
in econometrics, even when the estimator is not actually computed in two
stages. We prefer to think of two-stage least squares as simply a particular
way to compute the generalized IV estimator, and we will use β̂IV rather than
β̂2sls to denote that estimator.

8.4 Finite-Sample Properties of IV Estimators

Unfortunately, the finite-sample distributions of IV estimators are much more
complicated than the asymptotic ones. Indeed, except in very special cases,
these distributions are unknowable in practice. Although it is consistent, the
IV estimator for just identified models has a distribution with such thick tails
that its expectation does not even exist. With overidentified models, the
expectation of the estimator exists, but it is in general different from the true
parameter value, so that the estimator is biased, often very substantially so.
In consequence, investigators can easily make serious errors of inference when
interpreting IV estimates.

The biases in the OLS estimates of a model like (8.10) arise because the
disturbances are correlated with some of the regressors. The IV estimator
solves this problem asymptotically, because the projections of the regressors
on to S(W ) are asymptotically uncorrelated with the disturbances. However,
there must always still be some correlation in finite samples, and this causes
the IV estimator to be biased.

Systems of Equations

In order to understand the finite-sample properties of the IV estimator, we
need to consider the model (8.10) as part of a system of equations. We
therefore change notation somewhat and rewrite (8.10) as

y = Zβ1 + Yβ2 + u, E(uu⊤) = σ2I, (8.39)

where the matrix of regressors X has been partitioned into an n×k1 matrix of
exogenous and predetermined variables, Z, and an n×k2 matrix of endogenous
variables, Y, and the vector β has been partitioned conformably into two
subvectors β1 and β2. There are assumed to be l ≥ k instruments, of which
k1 are the columns of the matrix Z.

The model (8.39) is not fully specified, because it says nothing about how the
matrix Y is generated. For each observation t, t = 1, . . . , n, the value yt of
the dependent variable and the values Yt of the other endogenous variables
are assumed to be determined by a set of linear simultaneous equations. The
variables in the matrix Y are called current endogenous variables, because
they are determined simultaneously, row by row, along with y. Suppose that
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all the exogenous and predetermined explanatory variables in the full set of
simultaneous equations are included in the n × l instrument matrix W, of
which the first k1 columns are those of Z. Then, as can easily be seen by
analogy with the explicit result (8.09) for the demand-supply model, we have
for each endogenous variable yi, i = 0, 1, . . . , k2, that

yi = Wπi + vi, E(vti |Wt) = 0. (8.40)

Here y0 ≡ y, and the yi, for i = 1, . . . , k2, are the columns of Y. The πi are
l --vectors of unknown coefficients, the vi are n--vectors of disturbances that
are innovations with respect to the instruments, vti is the tth element of vi,
and Wt is the tth row of W.

Equations like (8.40), which have only exogenous and predetermined variables
on the right-hand side, are called reduced-form equations, in contrast with
equations like (8.39), which are called structural equations. Writing a model
as a set of reduced-form equations emphasizes the fact that all the endogenous
variables are generated by similar mechanisms. In general, the disturbances
for the various reduced-form equations display contemporaneous correlation:
If vti denotes a typical element of the vector vi, then, for observation t, the
reduced-form disturbances vti are generally correlated among themselves and
correlated with the disturbance ut of the structural equation.

A Simple Example

In order to gain additional intuition about the properties of the IV estimator in
finite samples, we consider the very simplest nontrivial example, in which the
dependent variable y is explained by only one variable, which we denote by x.
The regressor x is endogenous, and there is available exactly one exogenous
instrument, w. In order to keep the example reasonably simple, we suppose
that all the disturbances, for both y and x, are normally distributed. Thus
the DGP that simultaneously determines x and y can be written as

y = xβ0 + σuu,

x = wπ0 + σvv,
(8.41)

where the second equation is analogous to (8.40). By explicitly writing σu

and σv as the standard deviations of the disturbances, we can define the vec-
tors u and v to be multivariate standard normal, that is, distributed as N(0, I).
There is contemporaneous correlation of u and v. Therefore, E(utvt) = ρ for
some correlation coefficient ρ such that −1 < ρ < 1. The result of Exercise 5.4
shows that the expectation of ut conditional on vt is ρvt, and so we can write
u = ρv + u1, where u1 has expectation zero conditional on v.

In this simple, just identified, setup, the IV estimator of the parameter β is

β̂IV = (w⊤x)−1w⊤y = β0 + σu(w
⊤x)−1w⊤u. (8.42)
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This expression is clearly unchanged if the instrument w is multiplied by an
arbitrary scalar, and so we can, without loss of generality, rescale w so that
w⊤w = 1. Then, using the second equation in (8.41), we find that

β̂IV − β0 =
σuw

⊤u

π0 + σvw⊤v
=

σuw
⊤(ρv + u1)

π0 + σvw⊤v
.

Let us now compute the expectation of this expression conditional on v. Since,
by construction, E(u1 |v) = 0, we obtain

E(β̂IV − β0 |v) =
ρσu

σv

z

a+ z
, (8.43)

where we have made the definitions a ≡ π0/σv, and z ≡ w⊤v. Given our
rescaling of w, it is easy to see that z ∼ N(0, 1).

When ρ = 0, the right-hand side of equation (8.43) vanishes, and so, condi-
tional on v, β̂IV is unbiased. In fact, since v is independent of u in this case,
and w is exogenous, it follows that x is itself exogenous. With both x and w
exogenous, the IV estimator is like the estimators dealt with in Exercise 4.25,
which are unbiased conditional on these exogenous variables. If ρ ̸= 0, how-
ever, x is not exogenous, and the estimator is biased conditional on v. The
unconditional expectation of the estimator does not even exist. To see this,
let us try to calculate the expectation of the random variable z/(a+z). If the
expectation existed, it would be

E
( z

a+ z

)
=

∫ ∞

−∞

x

a+ x
ϕ(x) dx, (8.44)

where, as usual, ϕ(·) is the density of the standard normal distribution. It is
a fairly simple calculus exercise to show that the integral in (8.44) diverges in
the neighborhood of x = −a.

If π0 = 0, then a = 0. In this extreme case, the model is not asymptotically
identified, and x = σvv is just noise, as though it were a disturbance. As a
consequence, w is not a valid instrument, and the IV estimator is inconsistent.

When a ̸= 0, which is the usual case, the IV estimator (8.42) is neither biased
nor unbiased, because it has no expectation for any finite sample size n. This
may seem to contradict the result according to which β̂IV is asymptotically
normal, since all the moments of the normal distribution exist. However,
the fact that a sequence of random variables converges to a limiting ran-
dom variable does not necessarily imply that the moments of the variables
in the sequence converge to those of the limiting variable; see Davidson and
MacKinnon (1993, Section 4.5). The estimator (8.42) is a case in point. For-
tunately, this possible failure to converge of the moments does not extend to
the CDFs of the random variables, which do indeed converge to that of the
limit. Consequently, P values and the upper and lower limits of confidence
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intervals computed with the asymptotic distribution are legitimate approxi-
mations, in the sense that they become more and more accurate as the sample
size increases.

A less simple calculation can be used to show that, in the overidentified case,
the first l − k moments of β̂IV exist; see Kinal (1980). This is consistent
with the result we have just obtained for an exactly identified model, where
l − k = 0, and the IV estimator has no moments at all. When the mean of
β̂IV exists, it is almost never equal to β0. Readers will have a much clearer
idea of the impact of the existence or nonexistence of moments, and of the
bias of the IV estimator, if they work carefully through Exercises 8.10 to 8.13,
in which they are asked to generate by simulation the EDFs of the estimator
in different situations.

8.5 Hypothesis Testing

Because the finite-sample distributions of IV estimators are almost never
known, exact tests of hypotheses based on such estimators are almost never
available. However, large-sample tests can be performed in a variety of ways.
Many of the methods of performing these tests are very similar to methods
that we have already discussed in Chapter 5.

Asymptotic t and Wald Statistics

When there is just one restriction, the easiest approach is simply to compute
an asymptotic t test. For example, if we wish to test the hypothesis that
βi = β0i, where βi is one of the regression parameters, then a suitable test
statistic is

tβi =
β̂i − βi0(
V̂ar(β̂i)

)1/2 , (8.45)

where β̂i is the IV estimate of βi, and V̂ar(β̂i) is the ith diagonal element of
the estimated covariance matrix, (8.34). This test statistic does not follow
Student’s t distribution in finite samples, but it is asymptotically distributed
as N(0, 1) under the null hypothesis.

For testing restrictions on two or more parameters, the natural analog of (8.45)
is a Wald statistic. Suppose that β is partitioned as [β1 β2], and we wish to
test the hypothesis that β2 = β20. Then the appropriate Wald statistic is

Wβ2 = (β̂2 − β20)
⊤(V̂ar(β̂2)

)−1
(β̂2 − β20), (8.46)

where V̂ar(β̂2) is the submatrix of (8.34) that corresponds to the vector β2.
This Wald statistic can be thought of as a generalization of the asymptotic t
statistic: When β2 is a scalar, the square root of (8.46) is (8.45).

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



288 Instrumental Variables Estimation

Linear Restrictions

If the restrictions to be tested are all linear restrictions, there is no further
loss of generality if we suppose that they are all zero restrictions. Thus the
null and alternative hypotheses can be written as

H0 : y = X1β1 + u, and (8.47)

H1 : y = X1β1 +X2β2 + u, (8.48)

where the matrices X1 and X2 are, respectively, n × k1 and n × k2, β1 is a
k1 --vector, and β2 is a k2 --vector. As elsewhere in this chapter, it is assumed
that E(uu⊤) = σ2I. Any or all of the columns of X = [X1 X2] may be
correlated with the disturbances. It is assumed that there exists an n × l
matrix W of instruments, which are asymptotically uncorrelated with the
disturbances, and that l ≥ k = k1 + k2.

There is a very convenient was to implement a test of the null (8.47) against
the alternative (8.48), described and justified in the following theorem.

Theorem 8.1.

A statistic that is a version of the Wald statistic Wβ2 in (8.46), with
β20 = 0, is the explained sum of squares from the artificial regression

y −X1β̃1 = PWX1b1 + PWX2b2 + residuals, (8.49)

where b1 and b2 are artificial parameter vectors, divided by any con-
sistent estimator of the variance σ2 of the disturbances.

Proof:

The proof proceeds in three stages. First, we derive an explicit expression
for the Wald statistic. Second, we derive another explicit expression for the
explained sum of squares from (8.49). Finally, we demonstrate that, except
for possibly different estimators of σ2, the two expressions are algebraically
identical.

(1.) With IV estimation, we cannot use the FWL theorem directly to get

a closed-form expression for β̂2. However we can apply the theorem to the
second-stage regression (8.35), since it is estimated by OLS. With the partition
of X, (8.35) becomes

y = PWX1β1 + PWX2β2 + residuals,

and so the appropriate FWL regression is

MPW X1y = MPW X1PWX2β2 + residuals,
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which gives the closed-form expression we seek:

β̂2 = (X2
⊤PWMPW X1

PWX2)
−1X2

⊤PWMPW X1
y. (8.50)

By arguments similar to those that led to (8.18), we can see that the asymp-

totic covariance matrix of β̂2 is

σ2 plim
n→∞

(n−1X2
⊤PWMPW X1PWX2)

−1. (8.51)

By use of (8.50) and (8.51), the Wald statistic can be written as

Wβ2 =
1

σ̂2
y⊤MPW X1PWX2(X2

⊤PWMPW X1PWX2)
−1X2

⊤PWMPW X1y

=
1

σ̂2
y⊤PMPW X1

PW X2y,

(8.52)
where σ̂2 is some consistent estimate of σ2. Now

MPW X1PW = PW − PWX1(X1
⊤PWX1)

−1X1
⊤PW = PW − PPW X1 ,

and so
σ̂2Wβ2 = y⊤P(PW −PPW X1

)X2
y. (8.53)

Note that the orthogonal projection matrix in the middle of the quadratic
form above projects on to the k2 --dimensional space spanned by the columns
of the matrix (PW − PPW X1)X2.

(2.) Recall that a consistent estimate of the covariance matrix of the IV es-
timator can be obtained by running the artificial regression (8.38), and, from
that, we can extract a consistent estimate of σ2. For the null hypothesis
regression, (8.38) becomes

y −X1β̃1 = PWX1b1 + residuals, (8.54)

where β̃1 is the restricted estimator for H0. By analogy with this, we con-
struct the artificial regression (8.49) in which we append extra regressors to
correspond to the columns of X2. The explained sum of squares from (8.49)
is

(y −X1β̃1)
⊤PPW X(y −X1β̃1), (8.55)

that is, the squared norm of the projection of the regressand y −X1β̃1 on to
the span of the regressors, that is, the columns of PW [X1 X2] = PWX.

Now β̃1 = (X1
⊤PWX1)

−1X1
⊤PWy, and so

PW (y −X1β̃1) = (PW − PWX1(X1
⊤PWX1)

−1X1
⊤PW )y

= (PW − PPW X1)y.
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Thus expression (8.55) is

y⊤(PW − PPW X1)PPW X(PW − PPW X1)y = y⊤(PPW X − PPW X1)y (8.56)

because PWPPW X = PPW X and PWPPW X1 = PPW X1 .

(3.) Although it is not obvious at first sight, we now show that the projection
in (8.53) is equal to PPW X −PPW X1 , which is itself an orthogonal projection
matrix on account of the result of Exercise 3.18. The dimensions are correct:
we noted above that the projection in (8.53) projects on to a space of dimen-
sion k2, and PPW X −PPW X1 projects on to a space of dimension k−k1 = k2.
For what we claim to be true, it is necessary and sufficient that

PPW X = PPW X1
+ P(PW −PPW X1

)X2
, (8.57)

and, for this, it is enough to show that the images of the two projections on
the right-hand side of (8.57) are orthogonal. We have

X1
⊤PW (PW − PPW X1

)X2

= X1
⊤PWX2 −X1

⊤PWX1(X1
⊤PWX1)

−1X1
⊤PWX2

= X1
⊤PWX2 −X1

⊤PWX2 = O.

We conclude that the quadratic forms in (8.53) and (8.56) are equal.

Remarks:

The total sum of squares from the artificial regression (8.49), divided by n,
is the usual (consistent) estimator (8.37) of σ2 from the IV estimation of the
null-hypothesis model. Thus an admissible version of Wβ2 is n times the ratio
of the explained sum of squares to the total sum of squares from (8.49), which
is just n times the uncentered R2 from that regression. Alternatively, another
asymptotically equivalent statistic is n times the ratio of the explained sum
of squares to the sum of squared residuals. This is justified because, under
the null hypothesis, the sum of squared residuals, being Op(n), dominates the
explained sum of squares, which is Op(1), in the denominator of R2, namely
the total sum of squares.

The result that the explained sum of squares is Op(1) follows if we can show
that (8.56) divided by n tends to zero in probability as n → ∞. Observe first
that

(PPW X − PPW X1)X1 = (PPW X − PPW X1)PWX1 = O. (8.58)

This follows because PWX1 is in the image of both PPW X and PPW X1 and
so both terms in the middle expression in (8.58) are just equal to PWX1.
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If we now replace y in (8.56) by X1β1 + u, according to (8.47), the terms
involving X1 vanish, so that (8.56) becomes

u⊤(PPWX − PPWX1)u. (8.59)

Although X is random, we have seen that we can replace it asymptotically
by X̄ when it occurs in the matrix product W⊤X, as is does in (8.59). Then,
if we make the replacement, it follows by Theorem 5.1, part 2, that this
expression is asymptotically equal to σ2 times a χ2(k2) variable. When it is
divided by n, the limit is zero.

The same matrix of instruments is assumed to be used for the estimation of
both H0 and H1. While this assumption is natural if we start by estimating
H1 and then impose restrictions on it, it may not be so natural if we start
by estimating H0 and then estimate a less restricted model. A matrix of
instruments that would be entirely appropriate for estimating H0 may be
inappropriate for estimating H1, either because it omits some columns of
X2 that are known to be uncorrelated with the disturbances, or because the
number of instruments is greater than k1 but less than k1 + k2. It is however
essential for a test that the W matrix used should be appropriate and should
be used for estimating H1 as well as H0.

A temptation that should be resisted is to compute an F statistic based
on the SSRs obtained by IV estimation of (8.47) and (8.48). Such a “real”
F statistic is not valid, even asymptotically. The problem is not with SSR0,
which is ∥y − X1β̃1∥2 both from the IV estimation of (8.47) and the OLS
estimation of (8.54). But the sum of squared residuals from the IV estimation

of (8.48) is the squared norm of the vector y −Xβ̂ (no need to partition X

or β). Since β̂ = (X⊤PWX)−1X⊤PWy by (8.30), this vector is

(I−X(X⊤PWX)−1X⊤PW )y. (8.60)

The n×n matrix in parentheses above can very easily be seem to be idempo-
tent, but it is manifestly not symmetric. It is therefore an oblique projection.
If we write P = X(X⊤PWX)−1X⊤PW , it is clear that P projects on to
S(X). However, I − P does not project on to S⊥(X). Rather, its image is
S⊥(PWX); see Exercise 3.10. The obliqueness of the projection highlights a
property of IV estimation, namely that the explained sum of squares and the
sum of squared residuals do not add up to the total sum of squares. The Theo-
rem relies on the fact that this property does hold for the artificial regressions
(8.54) and (8.49), and so using the wrong SSR1 gives an invalid F statistic.

Tests Based on Criterion Functions

The heart of the problem is that IV estimates are not obtained by minimizing
the SSR, but rather the IV criterion function (8.31). The proper IV analog
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for the F statistic is a statistic based on the difference between the values of
this criterion function evaluated at the restricted and unrestricted estimates.
At the unrestricted estimates β̂, we obtain

Q(β̂,y) = (y −Xβ̂)⊤PW (y −Xβ̂). (8.61)

Using the explicit expression (8.30) for the IV estimator, we see that (8.61) is
equal to

y⊤
(
I− PWX(X⊤PWX)−1X⊤)PW

(
I−X(X⊤PWX)−1X⊤PW

)
y

= y⊤
(
PW − PWX(X⊤PWX)−1X⊤PW

)
y (8.62)

= y⊤(PW − PPWX)y.

Observe that the presence of the factor of PW in the middle of this expression
converts the oblique projection in (8.60) into an orthogonal projection. If Q
is now evaluated at the restricted estimates β̃, an exactly similar calculation
shows that

Q(β̃,y) = y⊤(PW − PPWX1)y. (8.63)

The difference between (8.63) and (8.62) is thus

Q(β̃,y)−Q(β̂,y) = y⊤(PPWX − PPWX1)y. (8.64)

This is precisely the expression (8.56) which is the numerator of the Wald
statistic. Thus we can obtain an asymptotically correct test statistic by di-
viding (8.64) by any consistent estimate of σ2.

The only practical difficulty in computing (8.64) is that some regression pack-
ages do not report the minimized value of the IV criterion function. However,
this value is very easy to compute, since for any IV regression, restricted or
unrestricted, it is equal to the explained sum of squares from a regression of
the vector of IV residuals on the instruments W, as can be seen at once from
equation (8.61).

Heteroskedasticity and Autocorrelation Robust Tests

The test statistics discussed so far are valid only under the assumptions that
the disturbances are serially uncorrelated and homoskedastic. If we are pre-
pared to use an HCCME, the second of these assumptions can be relaxed;
both if we use a HAC estimator. If E(uu⊤) = Ω, where Ω is an n × n
matrix, then it can readily be seen from equation (8.32) that the asymptotic
covariance matrix of the vector n1/2(β̂IV − β0) has the sandwich form(

plim
n→∞

1−
n
X⊤PWX

)−1(
plim
n→∞

1−
n
X⊤PWΩPWX

)(
plim
n→∞

1−
n
X⊤PWX

)−1

. (8.65)
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Not surprisingly, this looks very much like expression (6.23) for OLS esti-
mation, except that PWX replaces X, and (8.65) involves probability limits
rather than ordinary limits because the matrices X, and possibly also W, are
now assumed to be stochastic.

Once again, the artificial regression is useful for computing an HCCME or a
HAC estimator. For the basic model y = Xβ + u, the artificial regression is
given by (8.38), repeated here for convenience:

y −Xβ̂IV = PWXb + residuals.

Since the estimated artificial parameters b are zero, the IV residuals are also
the residuals from this artificial regression. Then any version of an HCCME or
HAC estimator computed from (8.38) uses the correct residuals for whatever

version of the inconsistent estimate Ω̂ is chosen. Thus a robust estimator
from (8.38) takes the form

Var(β̂IV) ≡ (X⊤PWX)−1X⊤PW Ω̂PWX(X⊤PWX)−1, (8.66)

and it is immediate that this matrix times the sample size n tends to the
limit (8.65) as n → ∞.

Once the matrix (8.66) has been calculated with an appropriate choice of Ω̂,
we can compute Wald tests that are robust to heteroskedasticity or to both
heteroskedasticity and autocorrelation of unknown form. We simply use (8.45)
for a test of a single linear restriction, or (8.46) for a test of two or more
restrictions, with (8.66) replacing the ordinary covariance matrix estimator.
Alternatively, a robust Wald test can be performed by any test of the artificial
hypothesis that b2 = 0 in (8.49) that uses an HCCME or HAC estimator. Of
course, it must be remembered that all these tests are based on asymptotic
theory, and there is good reason to believe that this theory may often provide
a poor guide to their performance in finite samples.

8.6 Testing Overidentifying Restrictions

The degree of overidentification of an overidentified linear regression model
is defined to be l − k, where, as usual, l is the number of instruments, and
k is the number of regressors. Such a model implicitly incorporates l − k
overidentifying restrictions. These arise because the generalized IV estimator
implicitly uses only k effective instruments, namely, the k columns of PWX.
It does this because it is not possible, in general, to solve the l estimating
equations (8.12) for only k unknowns.

In order for a set of instruments to be valid, a sufficient condition is (8.11),
according to which the disturbance ut has expectation zero conditional on Wt,
the l --vector of current instruments. When this condition is not satisfied, the
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IV estimator risks being inconsistent. But, if we use for estimation only the
k effective instruments in the matrix PWX, it is only those k instruments
that need to satisfy condition (8.11). Let W ∗ be an n × (l − k) matrix
of extra instruments such that S(W ) = S(PWX, W ∗). This means that
the l--dimensional span of the full set of instruments is generated by linear
combinations of the effective instruments, PWX, and the extra instruments,
W ∗. The overidentifying restrictions require that the extra instruments should
also satisfy (8.11). Unlike the conditions for the effective instruments, the
overidentifying restrictions can, and always should, be tested.

The matrix W ∗ is not uniquely determined, but we will see in a moment that
this does not matter. For any specific choice of W ∗, what we wish to test is
the set of conditions

E(W ∗
t ut) = 0. (8.67)

Although we do not observe the ut, we can estimate the vector u by the vector
of IV residuals û. Thus, in order to make our test operational, we form the
sample analog of condition (8.67), which is

1−
n
(W ∗)⊤û, (8.68)

and check whether this quantity is significantly different from zero.

The model we wish to test is

y = Xβ + u, u ∼ IID(0, σ2I), E(W⊤u) = 0. (8.69)

Testing the overidentifying restrictions implicit in this model is equivalent to
testing it against the alternative model

y = Xβ +W ∗γ + u, u ∼ IID(0, σ2I), E(W⊤u) = 0. (8.70)

This alternative model is constructed in such a way that it is just identified:
There are precisely l coefficients to estimate, namely, the k elements of β and
the l − k elements of γ, and there are precisely l instruments.

Let û denote the residuals from the IV estimation of the null model (8.69).
The artificial regression for testing the null against the alternative (8.70) is
constructed just like (8.49):

û = PWXb1 +W ∗b2 + residuals. (8.71)

As before, the numerator of the Wald statistic based on this artificial regres-
sion is given by (8.59), where what is written as PWX there becomes, in our
current notation, [PWX W ∗], and PWX1 there becomes PWX here. Since
S(W ) = S(PWX, W ∗), the projection denoted PPW X in (8.59) is simply PW ,
and the difference of the two projections in (8.59) becomes PW − PPW X .

One possible choice for W ∗ would be a matrix the columns of which were all
orthogonal to those of PWX. Such a matrix could be constructed from an
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arbitrary W ∗ by multiplying it by MPWX. With such a choice, the orthogo-
nality of PWX and W ∗ means that, by the result in Exercise 3.18,

PW − PPWX = PW∗.

With this choice for W ∗, (8.59) becomes u⊤PW ∗u, which makes it clear that
the test of the null (8.69) against the alternative (8.70) tests whether (W ∗)⊤u
is significantly different from zero, as we wanted, based on (8.68).

As we claimed above, implementing a test of the overidentifying restrictions
does not require a specific choice of the matrix W ∗, and in fact it does not
require us to construct W ∗ explicitly at all. This is because the explained
sum of squares from (8.71) is the same as that from the regression

û = Wb + residuals. (8.72)

Hence the numerator of the Wald statistic is the explained sum of squares
from (8.72), which is just û⊤PW û. The statistic itself is this divided by a
consistent estimate of the variance of the disturbances. One such estimate is
n−1û⊤û, the usual estimate of σ̂2 from IV estimation. It is also, of course, the
total sum of squares from (8.72), divided by n. Thus one way to compute the
test statistic is to regress the residuals û from IV estimation of the original
model (8.69) on the full set of instruments, and use n times the uncentered R2

from this regression as the test statistic. If the model (8.69) is correctly
specified, the asymptotic distribution of the statistic is χ2(l − k).

Another very easy way to test the overidentifying restrictions is to use a test
statistic based on the IV criterion function. Since the alternative model (8.70)
is just identified, the minimized IV criterion function for it is exactly zero.
To see this, note that, for any just identified model, the IV residuals are or-
thogonal to the full set of instruments by the estimating equations (8.12) used
with just identified models. Therefore, when the criterion function (8.31) is
evaluated at the IV estimates β̂IV, it becomes û⊤PW û, as before. Thus an
appropriate test statistic is just the criterion function Q(β̂IV,y) for the orig-
inal model (8.69), divided by the estimate of the variance of the disturbances
from this same model. A test based on this statistic is often called a Sargan
test, after Sargan (1958). The test statistic is numerically identical to the one
based on regression (8.72), as readers are asked to show in Exercise 8.16.

Although (8.70) is a simple enough model, it actually represents two con-
ceptually different alternatives, because there are two situations in which the
“true” parameter vector γ in (8.70) could be nonzero. One possibility is
that the model (8.69) is correctly specified, but some of the instruments are
asymptotically correlated with the disturbances and are therefore not valid
instruments. The other possibility is that (8.69) is not correctly specified, and
some of the instruments (or, possibly, other variables that are correlated with
them) have incorrectly been omitted from the regression function. In either
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case, the overidentification test statistic leads us to reject the null hypothesis
whenever the sample size is large enough.

Even if we do not know quite how to interpret a significant value of the over-
identification test statistic, it is always a good idea to compute it. If it is
significantly larger than it should be by chance under the null hypothesis,
one should be extremely cautious in interpreting the estimates, because it is
quite likely either that the model is specified incorrectly or that some of the
instruments are invalid.

8.7 Durbin-Wu-Hausman Tests

In many cases, we do not know whether we actually need to use instrumental
variables. For example, we may suspect that some variables are measured
with error, but we may not know whether the errors are large enough to
cause enough inconsistency for us to worry about. Or we may suspect that
certain explanatory variables are endogenous, but we may not be at all sure of
our suspicions, and we may not know how much inconsistency would result if
they were justified. In such a case, it may or may not be perfectly reasonable
to employ OLS estimation.

If the regressors are valid instruments, then, as we saw in Section 8.3, they
are also the optimal instruments. Consequently, the OLS estimator, which
is consistent in this case, is preferable to an IV estimator computed with
some other valid instrument matrix W. In view of this, it would evidently
be very useful to be able to test the null hypothesis that the disturbances
are uncorrelated with all the regressors against the alternative that they are
correlated with some of the regressors, although not with the instruments W.
In this section, we discuss a simple procedure that can be used to perform
such a test. This procedure dates back to a famous paper by Durbin (1954),
and it was subsequently extended by Wu (1973) and Hausman (1978). We
will therefore refer to all tests of this general type as Durbin-Wu-Hausman
tests, or DWH tests.

The null and alternative hypotheses for the DWH test can be expressed as

H0 : y = Xβ + u, u ∼ IID(0, σ2I), E(X⊤u) = 0, and (8.73)

H1 : y = Xβ + u, u ∼ IID(0, σ2I), E(W⊤u) = 0. (8.74)

Under H1, the IV estimator β̂IV is consistent, but the OLS estimator β̂OLS is
not. Under H0, both are consistent. Thus, plim (β̂IV − β̂OLS) is zero under
the null and nonzero under the alternative. The idea of the DWH test is to
check whether the difference β̂IV − β̂OLS is significantly different from zero in
the available sample. This difference, which is sometimes called the vector of
contrasts, can be written as

β̂IV − β̂OLS = (X⊤PWX)−1X⊤PW y − (X⊤X)−1X⊤y. (8.75)
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Expression (8.75) is not very useful as it stands, but it can be converted into
a much more useful expression by means of a trick that is often useful in
econometrics. We pretend that the first factor of β̂IV is common to both
estimators, and take it out as a common factor. This gives

β̂IV − β̂OLS = (X⊤PWX)−1
(
X⊤PW y −X⊤PWX(X⊤X)−1X⊤y

)
.

Now we can find some genuinely common factors in the two terms of the
rightmost factor of this expression. Taking them out yields

β̂IV − β̂OLS = (X⊤PWX)−1X⊤PW

(
I−X(X⊤X)−1X⊤)y

= (X⊤PWX)−1X⊤PWMXy. (8.76)

The first factor in expression (8.76) is a positive definite matrix, by the iden-
tification condition. Therefore, testing whether β̂IV − β̂OLS is significantly
different from zero is equivalent to testing whether the vector X⊤PWMXy is
significantly different from zero.

Under H0, the preferred estimation technique is OLS, and the OLS residu-
als are given by the vector MXy. Therefore, we wish to test whether the
k columns of the matrix PWX are orthogonal to this vector of residuals. Let
us partition the matrix of regressors X = [Z Y ], where the k1 columns of Z
are included in the matrix of instruments W, and the k2 = k − k1 columns
of Y are treated as potentially endogenous. By construction, OLS residuals
are orthogonal to all the columns of X, in particular to those of Z. For these
regressors, there is therefore nothing to test: The relation

Z⊤PWMXy = Z⊤MXy = 0

holds identically, because PWZ = Z and MXZ = O. The test is thus
concerned only with the k2 elements of Y⊤PWMXy, which are not in general
identically zero, but should not differ from it significantly under H0.

The easiest way to test whether Y⊤PWMXy is significantly different from
zero is to use an F test for the k2 restrictions δ = 0 in the OLS regression

y = Xβ + PWYδ + u. (8.77)

The OLS estimates of δ from (8.77) are, by the FWL Theorem, the same as
those from the FWL regression of MXy on MXPWY , that is,

δ̂ = (Y⊤PWMXPWY )−1Y⊤PWMXy.

Since the inverted matrix is positive definite, we see that testing whether
δ = 0 is equivalent to testing whether Y⊤PWMXy = 0, as desired. This
conclusion could have been foreseen by considering the threefold orthogonal
decomposition that is implicitly performed by an F test; recall Section 5.4.
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The DWH test can also be implemented by means of another F test, which
yields exactly the same test statistic; see Exercise 8.17 for details.

The F test based on (8.77) has k2 and n−k−k2 degrees of freedom. Under H0,
if we assume that X andW are not merely predetermined but also exogenous,
and that the disturbances u are multivariate normal, the F statistic does
indeed have the F (k2, n − k − k2) distribution. Under H0 as it is expressed
in (8.73), its asymptotic distribution is F (k2,∞), and k2 times the statistic is
asymptotically distributed as χ2(k2).

If the null hypothesis (8.73) is rejected, we are faced with the same sort of
ambiguity of interpretation as for the test of overidentifying restrictions. One
possibility is that at least some columns of Y are indeed endogenous, but in
such a way that the alternative model (8.74) is correctly specified. But we can
equally well take (8.77) literally as a model with exogenous or predetermined
regressors. In that case, the nature of the misspecification of (8.73) is not that
Y is endogenous, but rather that the linear combinations of the instruments
given by the columns of PWY have explanatory power for the dependent
variable y over and above that of X. Without further investigation, there is
no way to choose between these alternative interpretations.

8.8 Bootstrap Tests

The difficulty with using the bootstrap for models estimated by IV is that
there is more than one endogenous variable. The bootstrap DGP must there-
fore be formulated in such a way as to generate samples containing bootstrap
realizations of both the main dependent variable y and the endogenous ex-
planatory variables, which we denote by Y .

As we saw in Section 8.4 the single equation (8.39) is not a complete specifi-
cation of a model. We can complete it in various ways, of which the easiest is
to use equations (8.40) for i = 1, . . . , k2. This introduces k2 vectors πi, each
containing l parameters. In addition, we must specify the joint distribution
of the disturbances u in the equation for y and the vi in the equations for
Y . We can write the reduced-form equations for the endogenous explanatory
variables in matrix form as

Y = WΠ2 + V2, (8.78)

where Π2 is an l×k2 matrix, the columns of which are the πi of (8.40), and V2

is an n× k2 matrix of disturbances, the columns of which are the vi of (8.40).
It is convenient to group all the disturbances together into one matrix, and
so we define the n× (k2 +1) matrix V as [u V2]. If Vt denotes a typical row
of V , then we will assume that

E(VtV
⊤
t ) = Σ, (8.79)
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where Σ is a (k2+1)×(k2+1) covariance matrix, the upper left-hand element
of which is σ2, the variance of the disturbances in u. Together, (8.39), (8.78),
and (8.79) constitute a model that, although not quite fully specified (because
the distribution of the disturbances is not given in full, only the first two
moments), can serve as a basis for various bootstrap procedures.

Suppose that we wish to develop bootstrap versions of the tests considered
in Section 8.5 where the null and alternative hypotheses are given by (8.47)
and (8.48), respectively. For concreteness, we consider the test implemented
by use of the artificial regression (8.49), although the same principles apply to
other forms of test, such as the asymptotic t test (8.45), or tests based on the
IV criterion function. Note that we now have two different partitions of the
matrixX of explanatory variables. First, there is the partition X = [Z Y ], in
which Z contains the exogenous or predetermined variables, and Y contains
the endogenous ones that are modeled explicitly by (8.78). Then there is
the partition X = [X1 X2], in which we separate the variables X1 included
under the null from the variables X2 that appear only under the alternative.
In general, these two partitions are not related. We can expect that, in most
cases, some columns of Y are contained in X1 and some in X2, and similarly
for Z.

The first step, as usual, is the estimation by IV of the model (8.47) that rep-
resents the null hypothesis. From this we obtain the constrained parameter
estimates β̃1 and residuals ũ. Next, we use β̃1 to formulate and run the artifi-
cial regression (8.49), and compute the statistic as n times the uncentered R2.
Then, in order to estimate all the other parameters of the extended model, we
run the k2 reduced-form regressions represented by (8.78), obtaining OLS es-
timates and residuals that we denote respectively by Π̂2 and V̂2. We will
write V̂ to denote [ũ V̂2].

For the bootstrap DGP, suppose first that all the instruments are exogenous.
In that case, they are used unchanged in the bootstrap DGP. At this point,
we must choose between a parametric and a resampling bootstrap. Since the
latter is slightly easier, we discuss it first. In most cases, both X and W
include a constant, and the residuals ũ and V̂ are centered. If not, as we
discussed in Section 7.4, they must be centered before proceeding further.
Because we wish the bootstrap DGP to retain the contemporaneous covariance
structure of V , the bootstrap disturbances are drawn as complete rows V ∗

t by
resampling entire rows of V̂ , in a way analogous to what is done with the pairs
bootstrap. In this way, we draw our bootstrap disturbances from the joint
empirical distribution of the V̂t. With models estimated by least squares, it is
desirable to rescale residuals before they are resampled; again see Section 7.4.
Since the columns of V̂2 are least squares residuals, it is probably desirable to
rescale them. However, there is no justification for rescaling the vector ũ.

For the parametric bootstrap, we must actually estimate Σ. The easiest way
to do so is to form the matrix

Σ̂ = 1−
n
V̂ ⊤V̂ .
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Since β̃1 and Π̂2 are consistent estimators, it follows that V̂ is also consistent
for V . We can then apply a law of large numbers to each element of Σ̂ in
order to show that it converges as n → ∞ to the corresponding element of
the true Σ. The row vectors of parametric bootstrap disturbances V ∗

t are
then independent drawings from the multivariate normal distribution with
expectation zero and covariance matrix Σ̂. In order to make these drawings,
the easiest method is to form a (k2+1)×(k2+1) matrix Â such that ÂÂ⊤= Σ̂.
Usually, Â is chosen to be upper or lower triangular; recall the discussion of
the multivariate normal distribution in Section 5.3. Then, if a random number
generator is used to draw (k2 + 1)--vectors v∗ from N(0, I), we see that Âv∗

is a drawing from N(0, Σ̂), as desired.

The rest of the implementation is the same for both the parametric and the re-
sampling bootstrap. For each bootstrap replication, the endogenous explana-
tory variables are first generated by the bootstrap reduced-form equations

Y ∗ = WΠ̂2 + V ∗
2 , (8.80)

where Π̂2 and V ∗
2 are just the matrices Π̂ and V ∗ without their first columns.

Then the main dependent variable is generated so as to satisfy the null hypo-
thesis:

y∗ = X∗
1 β̃1 + u∗.

Here the star on X∗
1 indicates that some of the regressors in X1 may be

endogenous, and so must have been simulated using (8.80). The bootstrap
disturbances u∗ are just the first column of V ∗. For each bootstrap sample,
the testing artificial regression is run, and a bootstrap statistic is computed
as n times the uncentered R2. Then, as usual, the bootstrap P value is the
proportion of bootstrap statistics greater than the statistic computed from
the original data.

An alternative and probably preferable approach to the parametric and re-
sampling bootstraps discussed above is a version of the wild bootstrap; see
Section 7.6. Instead of resampling rows of V̂ , we create the row vector of boot-
strap disturbances for observation t by the formula V ∗

t = s∗t V̂t, where the s∗t
are IID drawings from a distribution with expectation zero and variance one,
such as Mammen’s two-point distribution (7.13) or the Rademacher distribu-
tion (7.14). This approach retains the contemporaneous covariance structure,
and also allows for this structure to vary across observations; a phenomenon
that extends the idea of heteroskedasticity to the multivariate case.

Bootstrap tests of overidentifying restrictions follow the same lines. Since the
null hypothesis for such a test is just the model being estimated, the only
extra work needed is the estimation of the reduced-form model (8.78) for the
endogenous explanatory variables. Bootstrap disturbances are generated by a
parametric, resampling, or wild bootstrap, and the residuals from the IV esti-
mation using the bootstrap data are regressed on the full set of instruments.
As usual, the simplest test statistic is the nR2 from this regression.
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It is particularly easy to bootstrap DWH tests, because for them the null
hypothesis is that none of the explanatory variables is endogenous. It is
therefore quite unnecessary to model them by (8.78), and bootstrap data are
generated as for any other model to be estimated by least squares. Note that,
if we are prepared to make the strong assumptions of the classical normal
linear model under the null, the bootstrap is quite unnecessary, because, as
we saw in the previous section, the test statistic has a known finite-sample
distribution.

If some of the non-endogenous explanatory variables are lagged dependent
variables, or lags of the endogenous explanatory variables, bootstrap samples
must be generated recursively, as for the case of the ordinary regression model
with a lagged dependent variable, for which the recursive bootstrap DGP
was (7.09). Especially if lags of endogenous explanatory variables are involved,
this may become quite complicated.

It is worth issuing a warning that, for a number of reasons well beyond the
scope of this chapter, the bootstrap methods outlined above cannot be ex-
pected to work as well as the bootstrap methods for regression models dis-
cussed in earlier chapters. Some reasons for this are discussed in Dufour
(1997). Bootstrapping of simultaneous equations models has been and still is
an active topic of research, and many new methods have been proposed. One
of several versions of the wild bootstrap proposed in Davidson and MacKinnon
(2010) appears particularly promising.

Wild Cluster Bootstrap

At this point, we can take up the problem, mentioned but not treated in the
last chapter, of how to construct bootstrap DGPs in the presence of cluster-
ing. Even more so than with IV estimation, bootstrapping with clustering is
an active research topic; see MacKinnon (2015) and MacKinnon and Webb
(2016). It seems fair to say that, at this time of writing, there is no single
approach that works effectively for all sets of clustered data, but one that does
work well when there is a good number of rather small clusters is the wild
cluster bootstrap. It uses exactly the same principle as the wild bootstrap for
IV estimation. For the g th cluster, g = 1, . . . , G, the vector u∗

g of bootstrap
disturbances is s∗gûg, with, as before, the s∗g IID drawings from a distribution
with expectation zero and variance one, and the ûg are vectors of residuals
for the observations in cluster g.

The wild cluster bootstrap preserves the covariance structure within clusters.
Where it may fail to work well is when some clusters contain many observa-
tions, because then there is too little variability in the bootstrap samples to
give rise to an adequate representation of the distribution implicit in the true
DGP. Different issues, which we cannot treat here, arise as well when clusters
are of widely different sizes.
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8.9 Final Remarks

Although it is formally very similar to other estimators that we have studied,
the IV estimator does involve several important new concepts. These include
the idea of an instrumental variable, the notion of forming a set of instru-
ments optimally as weighted combinations of a larger number of instruments
when that number exceeds the number of parameters, and the concept of
overidentifying restrictions.

The optimality of the generalized IV estimator depends critically on the fairly
strong assumption that the disturbances are homoskedastic and serially un-
correlated. When this assumption is relaxed, it may be possible to obtain
estimators that are more efficient than the GIV estimator.

8.10 Exercises

8.1 Consider a very simple consumption function, of the form

ci = β1 + β2y
∗
i + u∗i , u∗i ∼ IID(0, σ2),

where ci is the logarithm of consumption by household i, and y∗i is the per-
manent income of household i, which is not observed. Instead, we observe
current income yi, which is equal to y∗i +vi, where vi ∼ IID(0, ω2) is assumed

to be uncorrelated with y∗i and u∗i . Therefore, we run the regression

ci = β1 + β2yi + ui.

Under the plausible assumption that the true value β20 is positive, show that
yi is negatively correlated with ui. Using this result, evaluate the plim of the
OLS estimator β̂2, and show that this plim is less than β20.

8.2 Consider the simple IV estimator (8.13), computed first with an n×k matrix
W of instrumental variables, and then with another n×k matrix WJ, where
J is a k×k nonsingular matrix. Show that the two estimators coincide. Why
does this fact show that (8.13) depends on W only through the orthogonal
projection matrix PW ?

8.3 Show that, if the matrix of instrumental variables W is n× k, with the same
dimensions as the matrix X of explanatory variables, then the generalized
IV estimator (8.30) is identical to the simple IV estimator (8.13).

8.4 Show that minimizing the criterion function (8.31) with respect to β yields
the generalized IV estimator (8.30).

⋆8.5 Under the usual assumptions of this chapter, including (8.16), show that the
plim of

1−
nQ(β0,y) =

1−
n (y −Xβ0)

⊤PW (y −Xβ0)

is zero if y = Xβ0 +u. Under the same assumptions, along with the asymp-
totic identification condition that SX⊤W (SW⊤W )−1SW⊤X has full rank,
show further that plimn−1Q(β,y) is strictly positive for β ̸= β0.
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8.6 Under assumption (8.16) and the asymptotic identification condition that
SX⊤W (SW⊤W )−1SW⊤X has full rank, show that the GIV estimator β̂IV is
consistent by explicitly computing the probability limit of the estimator for
a DGP such that y = Xβ0 + u.

8.7 Suppose that you can apply a central limit theorem to the vector n−1/2W⊤u,
with the result that it is asymptotically multivariate normal, with expecta-
tion 0 and covariance matrix (8.33). Use equation (8.32) to demonstrate ex-
plicitly that, if y = Xβ0 + u, then n1/2(β̂IV − β0) is asymptotically normal
with expectation 0 and covariance matrix (8.18).

8.8 Suppose that W1 and W2 are, respectively, n × l1 and n × l2 matrices of
instruments, and that W2 consists of W1 plus l2 − l1 additional columns.
Prove that the generalized IV estimator using W2 is asymptotically more
efficient than the generalized IV estimator using W1. To do this, you need to
show that the matrix (X⊤PW1

X)−1− (X⊤PW2
X)−1 is positive semidefinite.

Hint: see Exercise 4.14.

8.9 Show that the simple IV estimator defined in (8.42) is unbiased when the data
are generated by (8.41) with σv = 0. Interpret this result.

8.10 Use the DGP (8.41) to generate at least 1000 sets of simulated data for x
and y with sample size n = 10, using normally distributed disturbances and
parameter values σu = σv = 1, π0 = 1, β0 = 0, and ρ = 0.5. For the
exogenous instrument w, use independent drawings from the standard normal
distribution, and then rescale w so that w⊤w is equal to n, rather than 1 as
in Section 10.4.

For each simulated data set, compute the IV estimator (8.42). Then draw
the empirical distribution of the realizations of the estimator on the same
plot as the CDF of the normal distribution with expectation zero and var-
iance σ2u/nπ

2
0 . Explain why this is an appropriate way to compare the finite-

sample and asymptotic distributions of the estimator.

In addition, for each simulated data set, compute the OLS estimator, and
plot the EDF of the realizations of this estimator on the same axes as the
EDF of the realizations of the IV estimator.

8.11 Redo Exercise 8.10 for a sample size of n = 100. If you have enough computer
time available, redo it yet again for n = 1000, in order to see how quickly or
slowly the finite-sample distribution tends to the asymptotic distribution.

8.12 Redo the simulations of Exercise 8.10, for n = 10, generating the exogenous
instrument w as follows. For the first experiment, use independent drawings
from the uniform distribution on [−1, 1]. For the second, use drawings from
the AR(1) process wt = αwt−1 + εt, where w0 = 0, α = 0.8, and the εt are
independent drawings from N(0, 1). In all cases, rescale w so that w⊤w = n.
To what extent does the empirical distribution of β̂IV appear to depend on
the properties of w? What theoretical explanation can you think of for your
results?

8.13 Include one more instrument in the simulations of Exercise 8.10. Continue
to use the same DGP for y and x, but replace the simple IV estimator by
the generalized one, based on two instruments w and z, where z is generated
independently of everything else in the simulation. See if you can verify the
theoretical prediction that the overidentified estimator computed with two
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instruments is more biased, but has thinner tails, than the just identified
estimator.

Repeat the simulations twice more, first with two additional instruments and
then with four. What happens to the distribution of the estimator as the
number of instruments increases?

8.14 Verify that β̂IV is the OLS estimator for model (8.10) when the regressor
matrix is X = [Z Y ] = WΠ, with the matrix V in (8.81) equal to O. Is
this estimator consistent? Explain.

PWX = [Z PWY ] = [Z PW (WΠ2 + V2)]

= [Z WΠ2 + PWV2] = WΠ + PWV .
(8.81)

8.15 Sketch a proof of the result that the scalar

1

σ20
u⊤(PPWX − PPWX1

)u,

which is expression (8.59) divided by σ20 , is asymptotically distributed as
χ2(k2) whenever the random vector u is IID(0, σ20 I) and is asymptotically
uncorrelated with the instruments W. Here X has k columns, X1 has
k1 columns, and k2 = k − k1.

8.16 Show that nR2 from the artificial regression (8.72) is equal to the Sargan test
statistic, that is, the minimized IV criterion function for model (8.69) divided
by the IV estimate of the variance of the disturbances of that model.

8.17 Consider the following OLS regression, where the variables have the same
interpretation as in Section 10.7 on DWH tests:

y = Xβ +MWYζ + u. (8.82)

Show that an F test of the restrictions ζ = 0 in (8.82) is numerically identical
to the F test for δ = 0 in (8.77). Show further that the OLS estimator of β
from (8.82) is identical to the estimator β̂IV obtained by estimating (8.74)
by instrumental variables.

8.18 Show that the difference between the generalized IV estimator β̂IV and the
OLS estimator β̂OLS, for which an explicit expression is given in equation
(8.76), has zero covariance with β̂OLS itself. For simplicity, you may treat
the matrix X as fixed.

8.19 The file money.data contains seasonally adjusted quarterly data for the loga-
rithm of the real money supply, mt, real GDP, yt, and the 3-month Treasury
Bill rate, rt, for Canada for the period 1967:1 to 1998:4. Using these data,
estimate the model

mt = β1 + β2rt + β3yt + β4mt−1 + β5mt−2 + ut (8.83)

by OLS for the period 1968:1 to 1998:4. Then perform a DWH test for the
hypothesis that the interest rate, rt, can be treated as exogenous, using rt−1

and rt−2 as additional instruments.

8.20 Estimate equation (8.83) by generalized instrumental variables, treating rt
as endogenous and using rt−1 and rt−2 as additional instruments. Are the
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estimates much different from the OLS ones? Verify that the IV estimates
may also be obtained by OLS estimation of equation (8.82). Are the reported
standard errors the same? Explain why or why not.

8.21 Perform a Sargan test of the overidentifying restrictions for the IV estimation
you performed in Exercise 8.20. How do you interpret the results of this test?

8.22 The file demand-supply.data contains 120 artificial observations on a demand-
supply model similar to equations (8.06)–(8.07). The demand equation is

qt = β1 + β2xt2 + β3xt3 + γpt + ut, (8.84)

where qt is the log of quantity, pt is the log of price, xt2 is the log of income,
and xt3 is a dummy variable that accounts for regular demand shifts.

Estimate equation (8.84) by OLS and 2SLS, using the variables xt4 and xt5
as additional instruments. Does OLS estimation appear to be valid here?
Does 2SLS estimation appear to be valid here? Perform whatever tests are
appropriate to answer these questions.

Reverse the roles of qt and pt in equation (8.84) and estimate the new equation
by OLS and 2SLS. How are the two estimates of the coefficient of qt in the
new equation related to the corresponding estimates of γ from the original
equation? What do these results suggest about the validity of the OLS and
2SLS estimates?
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Chapter 9

Generalized Least Squares

and Related Topics

9.1 Introduction

If the parameters of a regression model are to be estimated efficiently by
least squares, the disturbances must be white noise, that is, be uncorrelated
and have the same variance. These assumptions are needed to prove the
Gauss-Markov Theorem. Moreover, the usual estimators of the covariance
matrices of the OLS estimator are not valid when these assumptions do not
hold, although alternative “sandwich” covariance matrix estimators that are
asymptotically valid may be available (see Sections 6.4, 6.5, and 6.6). Thus
it is clear that we need new estimation methods to handle regression models
with disturbances that are heteroskedastic, serially correlated, or both. We
develop some of these methods in this chapter.

We will consider the model

y = Xβ + u, E(uu⊤) = Ω, (9.01)

where Ω, the covariance matrix of the disturbances, is a positive definite n×n
matrix. If Ω is equal to σ2I, then (9.01) is just the linear regression model
(4.03), with white-noise disturbances. If Ω is diagonal with nonconstant di-
agonal elements, then the disturbances are still uncorrelated, but they are
heteroskedastic. If Ω is not diagonal, then ui and uj are correlated whenever
ωij , the ij th element of Ω, is nonzero. In econometrics, covariance matrices
that are not diagonal are most commonly encountered with time-series data,
and the correlations are usually highest for observations that are close in time.

In the next section, we obtain an efficient estimator for the vector β in the
model (9.01) by transforming the regression so that it satisfies the conditions
of the Gauss-Markov theorem. This efficient estimator is called the gener-
alized least squares, or GLS, estimator. Although it is easy to write down
the GLS estimator, it is not always easy to compute it. In Section 9.3, we
therefore discuss ways of computing GLS estimates, including the particularly
simple case of weighted least squares. In the following section, we relax the
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often implausible assumption that the matrix Ω is completely known. Sec-
tion 9.5 discusses some aspects of heteroskedasticity. Sections 9.6 through
9.9 deal with various aspects of serial correlation, including autoregressive
and moving-average processes, testing for serial correlation, GLS estimation
of models with serially correlated disturbances, and specification tests for
models with serially correlated disturbances. Finally, Section 9.10 discusses
error-components models for panel data.

9.2 The GLS Estimator

In order to obtain an efficient estimator of the parameter vector β of the lin-
ear regression model (9.01), we transform the model so that the transformed
model satisfies the conditions of the Gauss-Markov theorem. Estimating the
transformed model by OLS therefore yields efficient estimates. The transfor-
mation is expressed in terms of an n×n matrix Ψ , which is usually triangular,
that satisfies the equation

Ω−1 = ΨΨ⊤. (9.02)

As we discussed in Section 4.4, such a matrix can always be found, often by
using Crout’s algorithm.1 Premultiplying (9.01) by Ψ⊤ gives

Ψ⊤y = Ψ⊤Xβ + Ψ⊤u. (9.03)

Because the covariance matrix Ω is nonsingular, the matrix Ψ must be as
well, and so the transformed regression model (9.03) is perfectly equivalent to
the original model (9.01). The OLS estimator of β from regression (9.03) is

β̂GLS = (X⊤ΨΨ⊤X)−1X⊤ΨΨ⊤y = (X⊤Ω−1X)−1X⊤Ω−1y. (9.04)

This estimator is called the generalized least squares, or GLS, estimator of β.

It is not difficult to show that the covariance matrix of the transformed vector
of disturbances Ψ⊤u is simply the identity matrix:

E(Ψ⊤uu⊤Ψ ) = Ψ⊤E(uu⊤)Ψ = Ψ⊤ΩΨ

= Ψ⊤(ΨΨ⊤)−1Ψ = Ψ⊤(Ψ⊤)−1Ψ−1Ψ = I.

The second equality in the second line here uses a result about the inverse of
a product of square matrices that was proved in Exercise 2.17.

1 For computation, it is easier to use the algorithm for Ω, not Ω−1, and invert
the result to obtain Ψ . Inverting a triangular matrix is numerically simpler
than inverting a symmetric matrix.
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Since β̂GLS is just the OLS estimator from (9.03), its covariance matrix can
be found directly from the standard formula for the OLS covariance matrix,
expression (4.38), if we replace X by Ψ⊤X and σ2

0 by 1:

Var(β̂GLS) = (X⊤ΨΨ⊤X)−1 = (X⊤Ω−1X)−1. (9.05)

In order for (9.05) to be valid, the conditions of the Gauss-Markov theorem
must be satisfied. Here, this means that Ω must be the covariance matrix
of u conditional on the explanatory variables X. It is thus permissible for Ω
to depend on X, or indeed on any other exogenous variables.

The generalized least squares estimator β̂GLS can also be obtained by mini-
mizing the GLS criterion function

(y −Xβ)⊤Ω−1(y −Xβ), (9.06)

which is just the sum of squared residuals from the transformed regres-
sion (9.03). This criterion function can be thought of as a generalization
of the SSR function in which the squares and cross products of the residuals
from the original regression (9.01) are weighted by the inverse of the matrix Ω.
The effect of such a weighting scheme is clearest when Ω is a diagonal matrix:
In that case, each observation is simply given a weight proportional to the
inverse of the variance of its disturbance.

Efficiency of the GLS Estimator

The GLS estimator β̂GLS defined in (9.04) is also the solution of the set of
estimating equations

X⊤Ω−1(y −Xβ̂GLS) = 0. (9.07)

These estimating equations are equivalent to the first-order conditions for the
minimization of the GLS criterion function (9.06).

It is interesting to compare the GLS estimator with other estimators. A
general estimator for the linear regression model (9.01) is defined in terms of
an n× k matrix of exogenous variables W, where k is the dimension of β, by
the equations

W⊤(y −Xβ) = 0. (9.08)

Since there are k equations and k unknowns, we can solve (9.08) to obtain
the estimator

β̂W ≡ (W⊤X)−1W⊤y. (9.09)

The GLS estimator (9.04) is evidently a special case of this estimator, with
W = Ω−1X.

Under certain assumptions, the estimator (9.09) is unbiased for the model
(9.01). Suppose that the DGP is a special case of that model, with para-
meter vector β0 and known covariance matrix Ω. We assume that X and
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W are exogenous, which implies that E(u |X,W ) = 0. This rather strong
assumption, which is analogous to the assumption (4.11), is necessary for the
unbiasedness of β̂W and makes it unnecessary to resort to asymptotic anal-
ysis. If we merely wanted to prove that β̂W is consistent, we could, as in
Section 8.3, get away with the much weaker assumption that E(ut |Wt) = 0,
or, weaker still, that plimn→∞ n−1W⊤u = 0; recall (8.16).

Substituting Xβ0 + u for y in (9.09), we see that

β̂W = β0 + (W⊤X)−1W⊤u.

Therefore, the covariance matrix of β̂W is

Var(β̂W ) = E
(
(β̂W − β0)(β̂W − β0)

⊤)
= E

(
(W⊤X)−1W⊤uu⊤W (X⊤W )−1

)
= (W⊤X)−1W⊤ΩW (X⊤W )−1.

(9.10)

As we would expect, this is a sandwich covariance matrix. When W = X,
we have the OLS estimator, and Var(β̂W ) reduces to expression (6.22).

The efficiency of the GLS estimator can be verified by showing that the dif-
ference between (9.10), the covariance matrix for the estimator β̂W defined in
(9.09), and (9.05), the covariance matrix for the GLS estimator, is a positive
semidefinite matrix. As was shown in Exercise 4.14, this difference is positive
semidefinite if and only if the difference between the inverse of (9.05) and the
inverse of (9.10), that is, the matrix

X⊤Ω−1X −X⊤W (W⊤ΩW )−1W⊤X, (9.11)

is positive semidefinite. In Exercise 9.2, readers are invited to show that this
is indeed the case.

The GLS estimator β̂GLS is typically more efficient than the more general
estimator β̂W for all elements of β, because it is only in very special cases
that the matrix (9.11) has any zero diagonal elements. Because the OLS
estimator β̂ is just β̂W when W = X, we conclude that the GLS estimator
β̂GLS in most cases is more efficient, and is never less efficient, than the OLS
estimator β̂.

9.3 Computing GLS Estimates

At first glance, the formula (9.04) for the GLS estimator seems quite simple.
To calculate β̂GLS when Ω is known, we apparently just have to invert Ω,
form the matrix X⊤Ω−1X and invert it, then form the vector X⊤Ω−1y, and,
finally, postmultiply the inverse of X⊤Ω−1X by X⊤Ω−1y. However, GLS
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estimation is not nearly as easy as it looks. The procedure just described
may work acceptably when the sample size n is small, but it rapidly becomes
computationally infeasible as n becomes large. The problem is that Ω is an
n × n matrix. When n = 1000, simply storing Ω and its inverse typically
requires 16 MB of memory; when n = 10,000, storing both these matrices
requires 1600 MB. Even if enough memory were available, computing GLS
estimates in this naive way would be enormously expensive.

Practical procedures for GLS estimation require us to know quite a lot about
the structure of the covariance matrix Ω and its inverse. GLS estimation is
easy to do if the matrix Ψ, defined in (9.02), is known and has a form that
allows us to calculate Ψ⊤x, for any vector x, without having to store Ψ itself
in memory. If so, we can easily formulate the transformed model (9.03) and
estimate it by OLS.

There is one important difference between (9.03) and the usual linear regres-
sion model. For the latter, the variance of the disturbances is unknown, while
for the former, it is known to be 1. Since we can obtain OLS estimates with-
out knowing the variance of the disturbances, this suggests that we should not
need to know everything about Ω in order to obtain GLS estimates. Suppose
that Ω = σ2∆, where the n × n matrix ∆ is known to the investigator, but
the positive scalar σ2 is unknown. Then if we replace Ω by ∆ in the definition
(9.02) of Ψ, we can still run regression (9.03), but the disturbances now have
variance σ2 instead of variance 1. When we run this modified regression, we
obtain the estimate

(X⊤∆−1X)−1X⊤∆−1y = (X⊤Ω−1X)−1X⊤Ω−1y = β̂GLS,

where the equality follows immediately from the fact that σ2/σ2 = 1. Thus
the GLS estimates are the same whether we use Ω or ∆, that is, whether
or not we know σ2. However, if σ2 is known, we can use the true covariance
matrix (9.05). Otherwise, we must fall back on the estimated covariance
matrix

V̂ar(β̂GLS) = s2(X⊤∆−1X)−1,

where s2 is the usual OLS estimate (4.63) of the error variance from the
transformed regression.

Weighted Least Squares

It is particularly easy to obtain GLS estimates when the disturbances are
heteroskedastic but uncorrelated. This implies that the matrix Ω is diagonal.
Let ω2

t denote the tth diagonal element of Ω. Then Ω−1 is a diagonal matrix
with tth diagonal element ω−2

t , and Ψ can be chosen as the diagonal matrix
with tth diagonal element ω−1

t . Thus we see that, for a typical observation,
regression (9.03) can be written as

ω−1
t yt = ω−1

t Xtβ + ω−1
t ut. (9.12)
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This regression is to be estimated by OLS. The regressand and regressors are
simply the dependent and independent variables multiplied by ω−1

t , and the
variance of the disturbance is clearly 1.

For obvious reasons, this special case of GLS estimation is often called
weighted least squares, or WLS. The weight given to each observation when
we run regression (9.12) is ω−1

t . Observations for which the variance of the
disturbance is large are given low weights, and observations for which it is
small are given high weights. In practice, if Ω = σ2∆ , with ∆ known but σ2

unknown, regression (9.12) remains valid, provided we reinterpret ω2
t as the

tth diagonal element of ∆ and recognize that the variance of the disturbances
is now σ2 instead of 1.

There are various ways of determining the weights to be used in weighted
least squares estimation. In the simplest case, either theory or preliminary
testing may suggest that E(u2

t ) is proportional to z2t , where zt is some variable
that we observe. For instance, zt might be a variable like population or
national income. In this case, zt plays the role of ωt in equation (9.12),
because we want to weight the tth observation by z−1

t . Another possibility is
that the data we actually observe were obtained by grouping data on different
numbers of individual units. For example, suppose that the disturbances for
the ungrouped data have constant variance, but that observation t is the
average of Nt individual observations, where Nt varies. This implies that the
variance of ut must then be proportional to 1/Nt. Thus, in this case, N 1/2

t

plays the role of ω−1
t in equation (9.12). If the grouped data were sums instead

of averages, the variance of ut would be proportional to Nt, and N−1/2
t would

play the role of ω−1
t .

Weighted least squares estimation can easily be performed using any program
for OLS estimation. When one is using such a procedure, it is important to
remember that all the variables in the regression, including the constant term ,
must be multiplied by the same weights. Thus if, for example, the original
regression is

yt = β1 + β2xt + ut,

the weighted regression is

yt/ωt = β1(1/ωt) + β2(xt/ωt) + ut/ωt.

Here the regressand is yt/ωt, the regressor that corresponds to the constant
term is 1/ωt, and the regressor that corresponds to xt is xt/ωt.

It is possible to report summary statistics like R2, ESS, and SSR either in
terms of the dependent variable yt or in terms of the transformed regressand
yt/ωt. However, it really only makes sense to report R2 in terms of the
transformed regressand. As we saw in Section 4.9, R2 is valid as a measure
of goodness of fit only when the residuals are orthogonal to the fitted values.
This is true for the residuals and fitted values from OLS estimation of the
weighted regression (9.12), but it is not true if those residuals and fitted values
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are subsequently multiplied by the ωt in order to make them comparable with
the original dependent variable.

9.4 Feasible Generalized Least Squares

In practice, the covariance matrix Ω is often not known even up to a scalar
factor. This makes it impossible to compute GLS estimates. However, in many
cases it is reasonable to suppose that Ω, or ∆ , depends in a known way on
a vector of unknown parameters γ. If so, it may be possible to estimate γ
consistently, so as to obtain Ω(γ̂), say. Then Ψ (γ̂) can be defined as in (9.02),
and GLS estimates computed conditional on Ψ (γ̂). This type of procedure is
called feasible generalized least squares, or feasible GLS, because it is feasible
in many cases when ordinary GLS is not.

As a simple example, suppose we want to obtain feasible GLS estimates of
the linear regression model

yt = Xtβ + ut, E(u2
t ) = exp(Ztγ), (9.13)

where β and γ are, respectively, a k --vector and an l --vector of unknown para-
meters, and Xt and Zt are conformably dimensioned row vectors of observa-
tions on exogenous or predetermined variables that belong to the information
set on which we are conditioning. Some or all of the elements of Zt may well
belong to Xt. The function exp(Ztγ) is an example of a skedastic function.
In the same way that a regression function determines the conditional expec-
tation of a random variable, a skedastic function determines its conditional
variance. The skedastic function exp(Ztγ) has the property that it is positive
for any vector γ. This is a desirable property for any skedastic function to
have, since negative estimated variances would be highly inconvenient.

In order to obtain consistent estimates of γ, usually we must first obtain
consistent estimates of the disturbances in (9.13). The obvious way to do so
is to start by computing OLS estimates β̂. This allows us to calculate a vector
of OLS residuals with typical element ût. We can then run the auxiliary linear
regression

log û2
t = Ztγ + vt, (9.14)

over observations t = 1, . . . , n to find the OLS estimates γ̂. These estimates
are then used to compute

ω̂t =
(
exp(Ztγ̂)

)1/2
for all t. Finally, feasible GLS estimates of β are obtained by using ordinary
least squares to estimate regression (9.12), with the estimates ω̂t replacing the
unknown ωt. This is an example of feasible weighted least squares.
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Why Feasible GLS Works Asymptotically

Under suitable regularity conditions, it can be shown that this type of proce-
dure yields a feasible GLS estimator β̂F that is consistent and asymptotically
equivalent to the GLS estimator β̂GLS. We will not attempt to provide a
rigorous proof of this proposition; for that, see Amemiya (1973a). However,
we will try to provide an intuitive explanation of why it is true.

If we substitute Xβ0+u for y into expression (9.04), the formula for the GLS
estimator, we find that

β̂GLS = β0 + (X⊤Ω−1X)−1X⊤Ω−1u,

from which we see that

n1/2(β̂GLS − β0) =
(
n−1X⊤Ω−1X

)−1
n−1/2X⊤Ω−1u. (9.15)

Under standard assumptions, the first matrix on the right-hand side tends in
probability to a nonstochastic k × k matrix with full rank as n → ∞, while
the vector that postmultiplies it tends in distribution to a multivariate normal
distribution.

For the feasible GLS estimator, the analog of equation (9.15) is

n1/2(β̂F − β0) =
(
n−1X⊤Ω−1(γ̂)X

)−1
n−1/2X⊤Ω−1(γ̂)u. (9.16)

The right-hand sides of expressions (9.16) and (9.15) look very similar, and it
is clear that the latter must be asymptotically equivalent to the former if

plim
n→∞

1−
n
X⊤Ω−1(γ̂)X = plim

n→∞

1−
n
X⊤Ω−1X (9.17)

and
n−1/2X⊤Ω−1(γ̂)u

a
= n−1/2X⊤Ω−1u; (9.18)

recall that things that depend on the sample size n are asymptotically equal
if the difference between them converges to zero in probability.

A rigorous statement and proof of the conditions under which equations (9.17)
and (9.18) hold is beyond the scope of this book. If they are to hold, it is
desirable that γ̂ should be a consistent estimator of γ, and this requires that
the OLS estimator β̂ should be consistent. For example, it can be shown
that the estimator obtained by running regression (9.14) would be consistent
if the regressand depended on ut rather than ût. Since the regressand is
actually ût, it is necessary that the residuals ût should consistently estimate
the disturbances ut. This in turn requires that β̂ should be consistent for β0.
Thus, in general, we cannot expect γ̂ to be consistent if we do not start with
a consistent estimator of β.

Unfortunately, as we will see later, if Ω(γ) is not diagonal, then the OLS
estimator β̂ is, in general, not consistent whenever any element of Xt is a
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lagged dependent variable. A lagged dependent variable is predetermined
with respect to disturbances that are innovations, but not with respect to
disturbances that are serially correlated. With GLS or feasible GLS estima-
tion, the problem does not arise, because, if the model is correctly specified,
the transformed explanatory variables are predetermined with respect to the
transformed disturbances. When the OLS estimator is inconsistent, we must
obtain a consistent estimator of γ in some other way.

Whether or not feasible GLS is a desirable estimation method in practice
depends on how good an estimate of Ω can be obtained. If Ω(γ̂) is a very
good estimate, then feasible GLS has essentially the same properties as GLS
itself, and inferences based on the GLS covariance matrix (9.05), with Ω(γ̂)
replacing Ω, should be reasonably reliable, even though they are not exact
in finite samples. Note that condition (9.17), in addition to being necessary
for the validity of feasible GLS, guarantees that the feasible GLS covariance
matrix estimator converges as n → ∞ to the true GLS covariance matrix.
On the other hand, if Ω(γ̂) is a poor estimate, feasible GLS estimates may
have quite different properties from real GLS estimates, and inferences may
be quite misleading.

It is entirely possible to iterate a feasible GLS procedure. The estimator β̂F

can be used to compute a new set of residuals, which can be used to obtain
a second-round estimate of γ, which can be used to calculate second-round
feasible GLS estimates, and so on. This procedure can either be stopped after
a predetermined number of rounds or continued until convergence is achieved
(if it ever is achieved). Iteration does not change the asymptotic distribution
of the feasible GLS estimator, but it does change its finite-sample distribution.

9.5 Heteroskedasticity

There are two situations in which the disturbances are heteroskedastic but
serially uncorrelated. In the first, the form of the heteroskedasticity is com-
pletely unknown, while, in the second, the skedastic function is known ex-
cept for the values of some parameters that can be estimated consistently.
Concerning the case of heteroskedasticity of unknown form, we saw in Sec-
tion 6.4 how to compute asymptotically valid covariance matrix estimates
for OLS parameter estimates. The fact that these HCCMEs are sandwich
covariance matrices makes it clear that, although they are consistent under
standard regularity conditions, OLS is not efficient when the disturbances are
heteroskedastic.

If the variances of all the disturbances are known, at least up to a scalar factor,
then efficient estimates can be obtained by weighted least squares, which we
discussed in Section 9.3. For a linear model, we need to multiply all of the
variables by ω−1

t , the inverse of the standard error of ut, and then use ordinary
least squares. The usual OLS covariance matrix is perfectly valid, although
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it is desirable to replace s2 by 1 if the variances are completely known, since
in that case s2 → 1 as n → ∞.

If the form of the heteroskedasticity is known, but the skedastic function
depends on unknown parameters, then we can use feasible weighted least
squares and still achieve asymptotic efficiency. An example of such a pro-
cedure was discussed in the previous section. As we have seen, it makes
no difference asymptotically whether the ωt are known or merely estimated
consistently, although it can certainly make a substantial difference in finite
samples. Asymptotically, at least, the usual OLS covariance matrix is just as
valid with feasible WLS as with WLS.

Testing for Heteroskedasticity

In some cases, it may be clear from the specification of the model that the
disturbances must exhibit a particular pattern of heteroskedasticity. In many
cases, however, we may hope that the disturbances are homoskedastic but
be prepared to admit the possibility that they are not. In such cases, if
we have no information on the form of the skedastic function, it may be
prudent to employ an HCCME, especially if the sample size is large. In a
number of simulation experiments, Andrews (1991) has shown that, when the
disturbances are homoskedastic, use of an HCCME, rather than the usual
OLS covariance matrix, frequently has little cost. However, as we saw in
Exercise 6.12 this is not always true. In finite samples, tests and confidence
intervals based on HCCMEs are somewhat less reliable than ones based on
the usual OLS covariance matrix when the latter is appropriate.

If we have information on the form of the skedastic function, we might well
wish to use weighted least squares. Before doing so, it is advisable to perform a
specification test of the null hypothesis that the disturbances are homoskedas-
tic against whatever heteroskedastic alternatives may seem reasonable. There
are many ways to perform this type of specification test. The simplest ap-
proach that is widely applicable, and the only one that we will discuss, involves
running an artificial regression in which the regressand is the vector of squared
residuals from the model under test.

A reasonably general model of heteroskedasticity conditional on some explana-
tory variables Zt is

E(u2
t |Ωt) = h(δ +Ztγ), (9.19)

where the skedastic function h(·) is a nonlinear function that can take on
only positive values, Zt is a 1 × r vector of observations on exogenous or
predetermined variables that belong to the information set Ωt, δ is a scalar
parameter, and γ is an r --vector of parameters. Under the null hypothesis
that γ = 0, the function h(δ + Ztγ) collapses to h(δ), a constant. One
plausible specification of the skedastic function is

h(δ +Ztγ) = exp(δ +Ztγ) = exp(δ) exp(Ztγ).

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



316 Generalized Least Squares and Related Topics

Under this specification, the variance of ut reduces to the constant σ
2 ≡ exp(δ)

when γ = 0. Since, as we will see, one of the advantages of the tests proposed
here is that they do not depend on the functional form of h(·), there is no
need for us to consider specifications less general than (9.19).

If we define vt as the difference between u2
t and its conditional expectation,

we can rewrite equation (9.19) as

u2
t = h(δ +Ztγ) + vt, (9.20)

which has the form of a regression model. While we would not expect the
disturbance vt to be as well behaved as the disturbances in most regression
models, since the distribution of u2

t is almost always skewed to the right,
it does have zero expectation by definition, and we will assume that it has a
finite, and constant, variance. This assumption would probably be excessively
strong if γ were nonzero, but it seems perfectly reasonable to assume that the
variance of vt is constant under the null hypothesis that γ = 0.

Suppose, to begin with, that we actually observe the ut. In order to turn
(9.20) into a linear regression model, we replace the nonlinear function h by
a first-order Taylor approximation; see Section 6.8. We have, approximately,
that

h(δ +Ztγ) = h(δ) + h′(δ)Ztγ,

and, by substituting this into (9.20), we find a linear regression model

u2
t = h(δ) + h′(δ)Ztγ + vt. (9.21)

Here h(δ) is just a constant, and the constant factor h′(δ) can harmlessly
be incorporated into the definition of the vector of coefficients of Zt, and so
(9.21) is equivalent to the regression

u2
t = bδ +Ztbγ + vt (9.22)

where we implicitly define the new parameters bδ and bγ . Observe that re-
gression (9.22) indeed does not depend on the functional form of h(·). The
null hypothesis of homoskedasticity can be expressed as bγ = 0, and can be
tested by, for instance, the ordinary F statistic, or by n times the centered
R2 from this regression, which is asymptotically distributed as χ2(r).

In practice, of course, we do not actually observe the ut. However, as we
noted in Section 6.4, least squares residuals converge asymptotically to the
corresponding disturbances when the model is correctly specified. Thus it
seems plausible that the test should still be asymptotically valid if we replace
u2
t in regression (9.22) by û2

t , the tth squared residual from least squares
estimation of the model under test. The test regression then becomes

û2
t = bδ +Ztbγ + residual. (9.23)
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It can be shown that replacing u2
t by û2

t does not change the asymptotic
distribution of the F and nR2 statistics for testing the hypothesis bγ = 0; see
Davidson and MacKinnon (1993, Section 11.5). Of course, since the finite-
sample distributions of these test statistics may differ substantially from their
asymptotic ones, it is a very good idea to bootstrap them when the sample
size is small or moderate. This will be discussed further in Section 9.7.

Tests based on regression (9.23) require us to choose Zt, and there are many
ways to do so. One approach is to include functions of some of the original
regressors. As we saw in Section 5.5, there are circumstances in which the
usual OLS covariance matrix is valid even when there is heteroskedasticity.
White (1980) showed that, in a linear regression model, if E(u2

t ) is constant
conditional on the squares and cross-products of all the regressors, then there
is no need to use an HCCME; see Section 6.4. He therefore suggested that Zt

should consist of the squares and cross-products of all the regressors, because,
asymptotically, such a test rejects the null whenever heteroskedasticity causes
the usual OLS covariance matrix to be invalid. However, unless the number
of regressors is very small, this suggestion results in r, the dimension of Zt,
being very large. As a consequence, the test is likely to have poor finite-sample
properties and low power, unless the sample size is quite large.

If economic theory does not tell us how to choose Zt, there is no simple,
mechanical rule for choosing it. The more variables that are included in Zt,
the greater is likely to be their ability to explain any observed pattern of
heteroskedasticity, but the larger is the number of degrees of freedom for the
test statistic. Adding a variable that helps substantially to explain the u2

t must
surely increase the power of the test. However, adding variables with little
explanatory power may simply dilute test power by increasing the number of
degrees of freedom without increasing the noncentrality parameter; recall the
discussion in Section 5.8. This is most easily seen in the context of χ2 tests,
where the critical values increase monotonically with the number of degrees
of freedom. For a test with, say, r + 1 degrees of freedom to have as much
power as a test with r degrees of freedom, the noncentrality parameter for the
former test must be a certain amount larger than the noncentrality parameter
for the latter.

9.6 Autoregressive and Moving-Average Processes

The disturbances for nearby observations may be correlated, or may appear
to be correlated, in any sort of regression model, but this phenomenon is most
commonly encountered in models estimated with time-series data, where it is
known as serial correlation or autocorrelation. In practice, what appears to
be serial correlation may instead be evidence of a misspecified model, as we
discuss in Section 9.9. In some circumstances, though, it is natural to model
the serial correlation by assuming that the disturbances follow some sort of
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stochastic process. Such a process defines a sequence of random variables.
Some of the stochastic processes that are commonly used to model serial
correlation will be discussed in this section.

If there is reason to believe that serial correlation may be present, the first
step is usually to test the null hypothesis that the disturbances are serially
uncorrelated against a plausible alternative that involves serial correlation.
Several ways of doing this will be discussed in the next section. The second
step, if evidence of serial correlation is found, is to estimate a model that
accounts for it. An estimation method based on GLS will be discussed in
Section 9.8. The final step, which is extremely important but is often omitted,
is to verify that the model which accounts for serial correlation is compatible
with the data. Some techniques for doing so will be discussed in Section 9.9.

The AR(1) Process

One of the simplest and most commonly used stochastic processes is the first-
order autoregressive process, or AR(1) process. We have already encountered
regression models with disturbances that follow such a process in Section 4.2.
The AR(1) process can be written as

ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), |ρ| < 1. (9.24)

The disturbance at time t is equal to some fraction ρ of that at time t−1, with
the sign changed if ρ < 0, plus the innovation εt. Since it is assumed that εt
is independent of εs for all s ̸= t, εt evidently is an innovation, according to
the definition of that term in Section 5.5.

The condition in equation (9.24) that |ρ| < 1 is called a stationarity condition,
because it is necessary for the AR(1) process to be stationary. There are
several definitions of stationarity in time series analysis. According to the
one that interests us here, a series with typical element ut is stationary if the
unconditional expectation E(ut) and the unconditional variance Var(ut) exist
and are independent of t, and if the covariance Cov(ut, ut−j) is also, for any
given j, independent of t. This particular definition is sometimes referred to
as covariance stationarity, or wide-sense stationarity. Another term used to
describe stationarity is time-translation invariance.

Suppose that, although we begin to observe the series only once t = 1, the
series has been in existence for an infinite time. We can then compute the
variance of ut by substituting successively for ut−1, ut−2, ut−3, and so on in
(9.24). We see that

ut = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + · · · . (9.25)

Using the fact that the innovations εt, εt−1, . . . are independent, and therefore
uncorrelated, the variance of ut is seen to be

σ2
u ≡ Var(ut) = σ2

ε + ρ2σ2
ε + ρ4σ2

ε + ρ6σ2
ε + · · · = σ2

ε

1− ρ2
. (9.26)
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The last expression here is indeed independent of t, as required for a stationary
process, but the last equality can be true only if the stationarity condition
|ρ| < 1 holds, since that condition is necessary for the infinite series 1 + ρ2 +
ρ4 + ρ6 + · · · to converge. In addition, if |ρ| > 1, the last expression in (9.26)
is negative, and so cannot be a variance. In most econometric applications,
where ut is the disturbance appended to a regression model, the stationarity
condition is a very reasonable condition to impose, since, without it, the
variance of the disturbances would increase without limit as the sample size
was increased.

It is not necessary to make the rather strange assumption that ut exists for
negative values of t all the way to −∞. If we suppose that the expectation
and variance of u1 are respectively 0 and σ2

ε /(1 − ρ2), then we see at once
that E(u2) = E(ρu1) + E(ε2) = 0, and that

Var(u2) = Var(ρu1 + ε2) = σ2
ε

(
ρ2

1− ρ2
+ 1

)
=

σ2
ε

1− ρ2
= Var(u1),

where the second equality uses the fact that ε2, because it is an innovation, is
uncorrelated with u1. A simple recursive argument then shows that Var(ut) =
σ2
ε /(1− ρ2) for all t.

The argument in (9.26) shows that σ2
u ≡ σ2

ε /(1 − ρ2) is the only admissible
value for Var(ut) if the series is stationary. Consequently, if the variance
of u1 is not equal to σ2

u, then the series cannot be stationary. However, if
the stationarity condition is satisfied, Var(ut) must tend to σ2

u as t becomes
large. This can be seen by repeating the calculation in (9.26), but recognizing
that the series has only a finite number of terms. As t grows, the number of
terms becomes large, and the value of the finite sum tends to the value of the
infinite series, which is the stationary variance σ2

u.

It is not difficult to see that, for the AR(1) process (9.24), the covariance of
ut and ut−1 is independent of t if Var(ut) = σ2

u for all t.

Cov(ut, ut−1) = E(utut−1) = E
(
(ρut−1 + εt)ut−1

)
= ρσ2

u.

In order to compute the correlation of ut and ut−1, we divide Cov(ut, ut−1)
by the square root of the product of the variances of ut and ut−1, that is,
by σ2

u. We then find that the correlation of ut and ut−1 is just ρ.

The j th order autocovariance of the AR(1) process is both the covariance
of ut and ut−j and the covariance of ut and ut+j . As readers are asked to
demonstrate in Exercise 9.4, under the assumption that Var(u1) = σ2

u, this
autocovariance is equal to ρjσ2

u, independently of t. It follows that the AR(1)
process (9.24) is indeed covariance stationary if Var(u1) = σ2

u. The correlation
between ut and ut−j is of course just ρj. Since ρj tends to zero quite rapidly
as j increases, except when |ρ| is very close to 1, this result implies that
an AR(1) process generally exhibits small correlations between observations
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that are far removed in time, but it may exhibit large correlations between
observations that are close in time. Since this is precisely the pattern that
is frequently observed in the residuals of regression models estimated using
time-series data, it is not surprising that the AR(1) process is often used to
account for serial correlation in such models.

If we combine the result (9.26) with the result proved in Exercise 9.4, we see
that, if the AR(1) process (9.24) is stationary, the covariance matrix of the
vector u, which is called the autocovariance matrix of the AR(1) process, can
be written as

Ω(ρ) =
σ2
ε

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

ρn−1 ρn−2 ρn−3 · · · 1

. (9.27)

All the ut have the same variance, σ2
u, which by (9.26) is the first factor

on the right-hand side of (9.27). It follows that the second factor is the
matrix of correlations of the disturbances, or autocorrelation matrix, which
we denote ∆(ρ). We will need to make use of (9.27) in Section 9.8 when we
discuss GLS estimation of regression models with AR(1) disturbances.

Higher-Order Autoregressive Processes

Although the AR(1) process is very useful, it is quite restrictive. A much
more general stochastic process is the pth order autoregressive process, or
AR(p) process,

ut = ρ1ut−1 + ρ2ut−2 + . . .+ ρput−p + εt, εt ∼ IID(0, σ2
ε ). (9.28)

For such a process, ut depends on up to p lagged values of itself, as well as
on εt. The AR(p) process (9.28) can also be expressed as(

1− ρ1L− ρ2L
2 − · · · − ρpL

p
)
ut = εt, εt ∼ IID(0, σ2

ε ), (9.29)

where L denotes the lag operator. The lag operator L has the property that

when L multiplies anything with a time subscript, this subscript is lagged
one period. Thus Lut = ut−1, L

2ut = ut−2, L
3ut = ut−3, and so on. The

expression in parentheses in (9.29) is a polynomial in the lag operator L, with
coefficients 1 and −ρ1, . . . ,−ρp. If we make the definition

ρ(z) ≡ ρ1z + ρ2z
2 + · · ·+ ρpz

p (9.30)

for arbitrary z, we can write the AR(p) process (9.29) very compactly as(
1− ρ(L)

)
ut = εt, εt ∼ IID(0, σ2

ε ).
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This compact notation is useful, but it does have two disadvantages: The
order of the process, p, is not apparent, and there is no way of expressing any
restrictions on the ρi.

The stationarity condition for an AR(p) process may be expressed in several
ways. One of them, based on the definition (9.30), is that all the roots of the
polynomial equation

1− ρ(z) = 0 (9.31)

must lie outside the unit circle. This simply means that all of the (possibly
complex) roots of equation (9.31) must be greater than 1 in absolute value.2

This condition can lead to quite complicated restrictions on the ρi for general
AR(p) processes. The stationarity condition that |ρ1| < 1 for an AR(1) pro-
cess is evidently a consequence of this condition. In that case, (9.31) reduces
to the equation 1−ρ1z = 0, the unique root of which is z = 1/ρ1, and this root
is greater than 1 in absolute value if and only if |ρ1| < 1. As with the AR(1)
process, the stationarity condition for an AR(p) process is necessary but not
sufficient. Stationarity requires in addition that the variances and covariances
of u1, . . . , up should be equal to their stationary values. If not, it remains true
that Var(ut) and Cov(ut, ut−j) tend to their stationary values for large t if
the stationarity condition is satisfied, and so processes that are not stationary
but satisfy the necessary condition may be called asymptotically stationary.

In practice, when an AR(p) process is used to model the disturbances of a
regression model, p is usually chosen to be quite small. By far the most pop-
ular choice is the AR(1) process, but AR(2) and AR(4) processes are also
encountered reasonably frequently. AR(4) processes are particularly attrac-
tive for quarterly data, because seasonality may cause correlation between
disturbances that are four periods apart.

Moving-Average Processes

Autoregressive processes are not the only way to model stationary time series.
Another type of stochastic process is themoving-average, orMA, process. The
simplest of these is the first-order moving-average, or MA(1), process

ut = εt + α1εt−1, εt ∼ IID(0, σ2
ε ), (9.32)

in which the disturbance ut is a weighted average of two successive innovations,
εt and εt−1.

It is not difficult to calculate the autocovariance matrix for an MA(1) process.
From (9.32), we see that the variance of ut is

σ2
u ≡ E

(
(εt + α1εt−1)

2
)
= σ2

ε + α2
1σ

2
ε = (1 + α2

1)σ
2
ε ,

2 For a complex number a+ bi, a and b real, the absolute value is (a2 + b2)1/2.
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the covariance of ut and ut−1 is

E
(
(εt + α1εt−1)(εt−1 + α1εt−2)

)
= α1σ

2
ε ,

and the covariance of ut and ut−j for j > 1 is 0. Therefore, the covariance
matrix of the entire vector u is

σ2
ε∆(α1) ≡ σ2

ε


1 + α2

1 α1 0 · · · 0 0

α1 1 + α2
1 α1 · · · 0 0

...
...

...
...

...

0 0 0 · · · α1 1 + α2
1

. (9.33)

The autocorrelation matrix is the matrix (9.33) divided by σ2
ε (1 + α2

1). It is
evident that there is no correlation between disturbances which are more than
one period apart. Moreover, the correlation between successive disturbances
varies only between −0.5 and 0.5, the smallest and largest possible values
of α1/(1 + α2

1), which are achieved when α1 = −1 and α1 = 1, respectively.
Therefore, an MA(1) process cannot be appropriate when the observed correl-
ation between successive residuals is large in absolute value, or when residuals
that are not adjacent are correlated.

Just as AR(p) processes generalize the AR(1) process, higher-order moving-
average processes generalize the MA(1) process. The qth order moving-
average process, or MA(q) process, may be written as

ut = εt + α1εt−1 + α2εt−2 + · · ·+ αq εt−q, εt ∼ IID(0, σ2
ε ). (9.34)

Using lag-operator notation, the process (9.34) can also be written as

ut = (1 + α1L + · · ·+ αqL
q)εt ≡

(
1 + α(L)

)
εt, εt ∼ IID(0, σ2

ε ),

where α(L) is a polynomial in the lag operator.

Autoregressive processes, moving-average processes, and other related stoch-
astic processes have many important applications in both econometrics and
macroeconomics. Their properties have been studied extensively in the liter-
ature on time-series methods. A classic reference is Box and Jenkins (1976),
which has been updated as Box, Jenkins, and Reinsel (1994). Books that are
specifically aimed at economists include Granger and Newbold (1986), Harvey
(1989), Hamilton (1994), and Hayashi (2000).
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9.7 Testing for Serial Correlation

Over the decades, an enormous amount of research has been devoted to the
subject of specification tests for serial correlation in regression models. Even
though a great many different tests have been proposed, many of them no
longer of much interest, the subject is not really very complicated. As we
show in this section, it is perfectly easy to test the null hypothesis that the
disturbances of a regression model are serially uncorrelated against the alter-
native that they follow an autoregressive process of any specified order. Most
of the tests that we will discuss are straightforward applications of testing
procedures which were introduced in Chapter 5.

The null hypothesis of no serial correlation is the usual linear regression model:

y = Xβ + u. (9.35)

The alternative hypothesis can be written as

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), (9.36)

in which the disturbances follow an AR(1) process. Let β̃ and ũ be the
OLS estimates of β and the OLS residuals respectively from (9.35). Let us
use (9.36) to solve first for εt, and then for ut, so as to get

εt = ut − ρut−1 and ut = yt −Xtβ,

εt = yt −Xtβ − ρ(yt−1 −Xt−1β), that is,

yt = ρyt−1 +Xtβ − ρXt−1β + εt, εt ∼ IID(0, σ2
ε ). (9.37)

The last line above is a nonlinear regression with white-noise disturbances,
but, as with testing for heteroskedasticity in Section 9.5, it can be linearized,
after which the null hypothesis that ρ = 0 can then be tested in a conventional
manner.

The partial derivative of the right-hand side of (9.37) with respect to ρ is
yt−1 −Xt−1β, and the vector of partial derivatives with respect to the com-
ponents of β is Xt − ρXt−1. We can now perform a first-order Taylor ap-
proximation around ρ = 0, as required by the null hypothesis, and β̃, the
estimates obtained under the null. (Recall Section 6.8 for Taylor’s theorem.)
The right-hand side of (9.37) can be approximated by

Xt(β̃ + bβ) + (yt−1 −Xt−1β̃)ρ+ εt,

where we have written bβ for β− β̃. Then the nonlinear regression (9.37) can
be approximated by a linearized version, as follows:

yt = Xt(β̃ + bβ) + (yt−1 −Xt−1β̃)ρ+ εt
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This can be rewritten more simply as

yt = Xtβ + bρũt−1 + εt,

or, in vector-matrix notation,

y = Xβ + bρũ1 + ε, (9.38)

where ũ1 has typical element ũt−1. It is not hard to show that the OLS
estimate of bρ and the t statistic are identical to those obtained from the
regression

ũ = Xbβ + bρũ1 + residuals. (9.39)

The null can be tested straightforwardly using the asymptotic t statistic tρ
for bρ = 0 in either (9.38) or (9.39). The latter regression demonstrates that
the t statistic is a function of the residuals ũ and the regressors X only.

Although the regression (9.38) looks perfectly simple, it is not quite clear
how it should be implemented. There are two approaches: run both (9.35)
and (9.38) over the entire sample period, or omit the first observation from
both. In the former case, the unobserved value of ũ0 must be replaced by 0
before the test regression is run. As Exercise 9.14 demonstrates, the different
approaches result in test statistics that are numerically different, even though
they all follow the same asymptotic distribution under the null hypothesis.

Our approach to tests based on linearized regressions can readily be used to
test against higher-order autoregressive processes and even moving-average
processes. For example, in order to test against an AR(p) process, we can
simply run the test regression

ũt = Xtbβ + bρ1 ũt−1 + . . .+ bρp ũt−p + residual (9.40)

and use an asymptotic F test of the null hypothesis that the coefficients of
all the lagged residuals are zero; see Exercise 9.6. Of course, in order to run
regression (9.40), we either need to drop the first p observations or replace
the unobserved lagged values of ũt with zeros.

If we wish to test against an MA(q) process, it turns out that we can proceed
exactly as if we were testing against an AR(q) process. The reason is that an
autoregressive process of any order is locally equivalent to a moving-average
process of the same order. Intuitively, this means that, for large samples, an
AR(q) process and an MA(q) process look the same in the neighborhood of
the null hypothesis of no serial correlation. Since our tests based on linearized
regressions use information on first derivatives only, it should not be surprising
that those used for testing against both alternatives turn out to be identical;
see Exercise 9.7.

The use of (9.39) for testing against AR(1) disturbances was first suggested
by Durbin (1970). Breusch (1978) and Godfrey (1978a, 1978b) subsequently
showed how to use similar testing regressions to test against AR(p) and MA(q)
disturbances. For a more detailed treatment of these and related procedures,
see Godfrey (1988).
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The Durbin-Watson Statistic

The best-known test statistic for serial correlation is the d statistic proposed
by Durbin and Watson (1950, 1951) and commonly referred to as the DW
statistic.

It is completely determined by the least squares residuals ũ of the model (9.35)
under test:

d =

∑n
t=2(ũt − ũt−1)

2∑n
t=1 ũ

2
t

=
n−1ũ⊤ũ+ n−1ũ1

⊤ũ1

n−1ũ⊤ũ
− n−1ũ2

1 + 2n−1ũ⊤ũ1

n−1ũ⊤ũ
.

(9.41)

If we ignore the difference between n−1ũ⊤ũ and n−1ũ1
⊤ũ1, and the term

n−1ũ2
1, both of which clearly tend to zero as n → ∞, it can be seen that the

first term in the second line of (9.41) tends to 2 and the second term tends
to −2ρ̃, where ρ̃ ≡ ũ⊤ũ1/ũ

⊤ũ can be thought of as a crude estimator of ρ.
Therefore, d is asymptotically equal to 2 − 2ρ̃. In samples of reasonable size,
then, a value of d ∼= 2 corresponds to the absence of serial correlation in the
residuals, while values of d less than 2 correspond to ρ̃ > 0, and values greater
than 2 correspond to ρ̃ < 0. It is important to note that the DW statistic is
not valid when there are lagged dependent variables among the regressors.

In Section 3.3 we saw that, for a correctly specified linear regression model,
the residual vector ũ is equal to MXu. Therefore, even if the disturbances
are serially independent, the residuals generally display a certain amount of
serial correlation. This implies that the finite-sample distributions of all the
test statistics we have discussed, including that of the DW statistic, depend
on X. In practice, applied workers generally make use of the fact that the
critical values for d are known to fall between two bounding values, dL and
dU, which depend only on the sample size, n, the number of regressors, k, and
whether or not there is a constant term. These bounding critical values have
been tabulated for many values of n and k ; see Savin and White (1977).

The need for special tables, among other relevant considerations, mean that
the Durbin-Watson statistic, despite its popularity, is not very satisfactory.
Using it with these tables is relatively cumbersome and often yields inconclu-
sive results. Moreover, the tables allow us to perform one-tailed tests against
the alternative that ρ > 0 only. Since the alternative that ρ < 0 is often of
interest as well, the inability to perform a two-tailed test, or a one-tailed test
against this alternative, is a serious limitation. Although exact P values for
both one-tailed and two-tailed tests, which depend on the X matrix, can be
obtained by using appropriate software, many computer programs do not offer
this capability. In addition, the DW statistic is not valid when the regressors
include lagged dependent variables, and it cannot easily be generalized to test
for higher-order processes. Fortunately, the development of simulation-based
tests has made the DW statistic obsolete.
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Monte Carlo and Bootstrap Tests for Serial Correlation

We discussed simulation-based tests, including Monte Carlo tests and boot-
strap tests, at some length in Chapter 7. The techniques discussed there can
readily be applied to the problem of testing for serial correlation in linear
regression models.

The test statistics we have discussed, the t statistic from the testing regres-
sion (9.38) and d, are pivotal under the null hypothesis that ρ = 0 when the
assumptions of the classical normal linear model are satisfied. This makes it
possible to perform Monte Carlo tests that are exact in finite samples. Piv-
otalness follows from two properties that are shared by these statistics: first,
they depend only on the residuals ũt obtained by estimation under the null
hypothesis and the exogenous explanatory variables X. The distribution of
the residuals depends on X, but this matrix is given and the same for all
DGPs in a classical normal linear model. The distribution does not depend
on the parameter vector β of the regression function, because, if y = Xβ+u,
then MXy = MXu whatever the value of the vector β.

The second property of the statistics is scale invariance. By this, we mean
that multiplying the dependent variable by an arbitrary scalar λ leaves the
statistic unchanged. In a linear regression model, multiplying the dependent
variable by λ causes the residuals to be multiplied by λ. But the t statistic
from (9.38) and the DW statistic d are clearly unchanged if all the residuals
are multiplied by the same constant, and so they are scale invariant. Since the
residuals ũ are equal to MXu, it follows that multiplying σ by an arbitrary λ
multiplies the residuals by λ. Consequently, the distributions of the statistics
are independent of σ2 as well as of β. This implies that, for the classical
normal linear model, both statistics are pivotal.

We now outline how to perform Monte Carlo tests for serial correlation in the
context of the classical normal linear model. Let us call the test statistic we
are using τ and its realized value τ̂ . If we want to test for AR(1) disturbances,
the best choice for the statistic τ is the t statistic tρ from (9.38), but it could
also be the DW statistic. If we want to test for AR(p) disturbances, the best
choice for τ would be the F statistic from (9.40).

The first step, evidently, is to compute τ̂ . The next step is to generate B sets
of simulated residuals and use each of them to compute a simulated test
statistic, say τ∗j , for j = 1, . . . , B. Because the parameters do not matter,
we can simply draw B vectors u∗

j from the N(0, I) distribution and regress
each of them on X to generate the simulated residuals MXu∗

j , which are then
used to compute τ∗j . This can be done very inexpensively. The final step is
to calculate an estimated P value. This can be done for either a one-tailed or
a two-tailed test; see Section 7.3.

Whenever the regression function contains lagged dependent variables, or
whenever the distribution of the disturbances is unknown, none of the stan-
dard test statistics for serial correlation is pivotal. Nevertheless, it is still pos-
sible to obtain very accurate inferences, even in quite small samples, by using

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

9.7 Testing for Serial Correlation 327

bootstrap tests. The procedure is essentially unchanged from the Monte Carlo
test. We still generate B simulated test statistics and use them to compute
a P value. For best results, the test statistic used should be asymptotically
valid for the model that is being tested. In particular, we should avoid d
whenever there are lagged dependent variables.

It is extremely important to generate the bootstrap samples in such a way
that they are compatible with the model under test. Ways of generating
bootstrap samples for regression models were discussed in Section 7.4. When
the model includes lagged dependent variables, we need to generate y∗

j rather
than just u∗

j . For this, we need estimates of the parameters of the regression
function. If the model includes lagged dependent variables, we must generate
the bootstrap samples recursively, as in (7.09). Unless we are going to assume
that the disturbances are normally distributed, we should draw the bootstrap
disturbances from the EDF of the residuals for the model under test, after
they have been appropriately rescaled. Recall that there is more than one
way to do this. The simplest approach is just to multiply each residual by
(n/(n− k))1/2, as in (7.11).

We strongly recommend the use of simulation-based tests for serial correla-
tion, rather than asymptotic tests. Monte Carlo tests are appropriate only
in the context of the classical normal linear model, but bootstrap tests are
appropriate under much weaker assumptions. It is generally a good idea to
test for both AR(1) disturbances and higher-order ones, at least fourth-order
in the case of quarterly data, and at least twelfth-order in the case of monthly
data.

Heteroskedasticity-Robust Tests

The tests for serial correlation that we have discussed are based on the assump-
tion that the disturbances are homoskedastic. When this crucial assumption
is violated, the asymptotic distributions of all the test statistics differ from
whatever distributions they are supposed to follow asymptotically.

Suppose we wish to test the linear regression model (9.35), in which the distur-
bances are serially uncorrelated, against the alternative that the disturbances
follow an AR(p) process. Under the assumption of homoskedasticity, we could
simply run the testing regression (9.40) and use an asymptotic F test. If we
let Z denote an n × p matrix with typical element Zti = ũt−i, where any
missing lagged residuals are replaced by zeros, this regression can be written
as

ũ = Xb+Zc + residuals. (9.42)

The ordinary F test for c = 0 in (9.42) is not robust to heteroskedasticity,
but it is straightforward to compute a robust Wald test using an HCCME.

Although this heteroskedasticity-robust test is asymptotically valid, it is not
exact in finite samples. We can expect to obtain more reliable results by
using bootstrap P values instead of asymptotic ones. This requires the use
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of a bootstrap DGP adapted to heteroskedasticity; the best choice is the wild
bootstrap.

Other Tests Based on OLS Residuals

The tests for serial correlation that we have discussed in this section are by
no means the only scale-invariant tests based on least squares residuals that
are regularly encountered in econometrics. Many tests for heteroskedasticity,
skewness, kurtosis, and other deviations from the NID assumption also have
these properties. For example, consider tests for heteroskedasticity based
on regression (9.23). Nothing in that regression depends on y except for the
squared residuals that constitute the regressand. Further, it is clear that both
the F statistic for the hypothesis that bγ = 0 and n times the centered R2 are
scale invariant. Therefore, for a classical normal linear model with X and Z
fixed, these statistics are pivotal. Consequently, Monte Carlo tests based on
them, in which we draw the disturbances from the N(0, 1) distribution, are
exact in finite samples.

When the normality assumption is not appropriate, we have two options. If
some other distribution that is known up to a scale parameter is thought to be
appropriate, we can draw the disturbances from it instead of from the N(0, 1)
distribution. Then, if the assumed distribution really is the true one, we obtain
an exact test. Alternatively, we can perform a bootstrap test in which the
disturbances are obtained either by resampling the rescaled residuals or using
the wild bootstrap. This is also appropriate when there are lagged dependent
variables among the regressors. The bootstrap test is not exact, but it should
still perform well in finite samples no matter how the disturbances actually
happen to be distributed.

9.8 Estimating Models with Autoregressive Disturbances

If we decide that the disturbances of a regression model are serially correlated,
either on the basis of theoretical considerations or as a result of specification
testing, and we are confident that the regression function itself is not misspec-
ified, the next step is to estimate a modified model which takes account of the
serial correlation. The simplest such model is (9.36), which is the original re-
gression model modified by having the disturbances follow an AR(1) process.
For ease of reference, we rewrite (9.36) here:

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ). (9.43)

In many cases, as we will discuss in the next section, the best approach may
actually be to specify a more complicated, dynamic, model for which the
disturbances are not serially correlated. In this section, however, we ignore
this important issue and simply discuss how to estimate the model (9.43)
under various assumptions.
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Estimation by Feasible GLS

We have seen that, if the ut follow a stationary AR(1) process, that is, if
|ρ| < 1 and Var(u1) = σ2

u = σ2
ε /(1 − ρ2), then the covariance matrix of the

entire vector u is the n × n matrix Ω(ρ) given in equation (9.27). In order
to compute GLS estimates, we need to find a matrix Ψ with the property
that ΨΨ⊤ is proportional to Ω−1. This property is satisfied whenever the
covariance matrix of the vector Ψ⊤u is proportional to the identity matrix,
which it must be if we choose Ψ in such a way that Ψ⊤u = ε.

For t = 2, . . . , n, we know from (9.24) that

εt = ut − ρut−1, (9.44)

and this allows us to construct the rows of Ψ⊤ except for the first row. The tth

row has 1 in the tth position, −ρ in the (t− 1)st position, and 0s everywhere
else.

For the first row of Ψ⊤, however, we need to be a little more careful. Under
the hypothesis of stationarity of u, the variance of u1 is σ2

u. Further, since
the εt are innovations, u1 is uncorrelated with the εt for t = 2, . . . , n. Thus,
if we define ε1 by the formula

ε1 = (σε/σu)u1 = (1− ρ2)1/2u1, (9.45)

it can be seen that the n--vector ε, with the first component ε1 defined
by (9.45) and the remaining components εt defined by (9.44), has a covar-
iance matrix equal to σ2

ε I.

Putting together (9.44) and (9.45), we conclude that Ψ⊤ should be defined
as an n× n matrix with all diagonal elements equal to 1 except for the first,
which is equal to (1 − ρ2)1/2, and all other elements equal to 0 except for
the ones on the diagonal immediately below the principal diagonal, which are
equal to −ρ . In terms of Ψ rather than of Ψ⊤, we have:

Ψ (ρ) =


(1− ρ2)1/2 −ρ 0 · · · 0 0

0 1 −ρ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −ρ

0 0 0 · · · 0 1

, (9.46)

where the notation Ψ (ρ) emphasizes that the matrix depends on the usually
unknown parameter ρ . The matrix ΨΨ⊤ is proportional to the inverse of
the autocovariance matrix that appears in equation (9.27). The calculations
needed to show that this is so are outlined in Exercises 9.9 and 9.10.

It is essential that the AR(1) parameter ρ is either known or is consistently
estimable. If we know ρ, we can obtain GLS estimates. If we do not know it
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but can estimate it consistently, we can obtain feasible GLS estimates. For
the case in which the explanatory variables are all exogenous, the simplest
way to estimate ρ consistently is to use the estimator ρ̃ from the regression

ũt = bρũt−1 + residual, t = 1, . . . , n, (9.47)

where, as above, the ũt are the residuals from regression (9.35). In order to
be able to keep the first observation, we assume that ũ0 = 0. This regression
yields an estimate of bρ, which we will call ρ̃ because it is an estimate of ρ
based on the residuals under the null. Explicitly, we have

ρ̃ =

∑n
t=1 ũtũt−1∑n
t=1 ũ

2
t−1

, (9.48)

It turns out that, if the explanatory variables X in (9.35) are all exogenous,
then ρ̃ is a consistent estimator of the parameter ρ in model (9.36), or, equiv-
alently, (9.37), where it is not assumed that ρ = 0. This slightly surprising
result depends crucially on the assumption of exogenous regressors. If one of
the variables in X is a lagged dependent variable, the result no longer holds.

Whatever estimate of ρ is used must satisfy the stationarity condition that
|ρ| < 1, without which the process would not be stationary, and the trans-
formation for the first observation would involve taking the square root of a
negative number. Unfortunately, the estimator ρ̃ is not guaranteed to satisfy
the stationarity condition, although, in practice, it is very likely to do so when
the model is correctly specified, even if the true value of ρ is quite large in
absolute value.

Whether ρ is known or estimated, the next step in GLS estimation is to form
the vector Ψ⊤y and the matrix Ψ⊤X. It is easy to do this without having to
store the n × n matrix Ψ in computer memory. The first element of Ψ⊤y is
(1 − ρ2)1/2y1, and the remaining elements have the form yt − ρyt−1. Each
column of Ψ⊤X has precisely the same form as Ψ⊤y and can be calculated in
precisely the same way.

The final step is to run an OLS regression of Ψ⊤y on Ψ⊤X. This regression
yields the (feasible) GLS estimates

β̂GLS = (X⊤ΨΨ⊤X)−1X⊤ΨΨ⊤y (9.49)

along with the estimated covariance matrix

V̂ar(β̂GLS) = s2(X⊤ΨΨ⊤X)−1, (9.50)

where s2 is the usual OLS estimate of the variance of the disturbances. Of
course, the estimator (9.49) is formally identical to (9.04), since (9.49) is valid
for any Ψ matrix.
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The main weakness of GLS as used above arises whenever one or more of
the explanatory variables are lagged dependent variables, or, more generally,
predetermined but not exogenous variables. Even with a consistent estimator
of ρ, one of the conditions for the applicability of feasible GLS, condition
(9.18), does not hold when any elements of Xt are not exogenous. Fortunately,
there is not much temptation to use GLS if the non-exogenous explanatory
variables are lagged variables, because lagged variables are not observed for
the first observation. In all events, the conclusion is simple: We should avoid
GLS if the explanatory variables are not all exogenous.

In Section 9.4, we mentioned the possibility of using an iterated feasible GLS
procedure. We can now see precisely how such a procedure would work for
this model. In the first step, we obtain the OLS parameter vector β̃. In the
second step, the formula (9.48) is evaluated at β = β̃ to obtain ρ̃, a consistent
estimate of ρ. In the third step, we use (9.49) to obtain the feasible GLS
estimate β̂FGLS. At this point, we go back to the second step and use β̂FGLS

to update the residuals ũt which can then be used in (9.48) for an updated
estimate of ρ, which we subsequently use in (9.49) for the next estimate of β.
The iterative procedure may then be continued until convergence, assuming
that it does converge.

Although the iterated feasible GLS estimator generally performs well, it does
have one weakness: If ρ̂ denotes the iterated estimate of ρ, there is no way to
ensure that |ρ̂| < 1. In the unlikely but not impossible event that |ρ̂| ≥ 1, the
estimated covariance matrix (9.50) is not valid. In such cases, one can use
maximum likelihood estimation (not discussed in this book; see the textbook
ETM, Chapter 9), which shares the good properties of iterated feasible GLS
while also ensuring that the estimate of ρ satisfies the stationarity condition.

The iterated feasible GLS procedure considered above has much in com-
mon with a very old, but still widely-used, algorithm for estimating models
with stationary AR(1) disturbances. This algorithm, which is called iterated
Cochrane-Orcutt, was originally proposed in a classic paper by Cochrane and
Orcutt (1949). It works in exactly the same way as iterated feasible GLS,
except that it omits the first observation. The properties of this algorithm
are explored in Exercises 9.15-16.

9.9 Specification Testing and Serial Correlation

Models estimated using time-series data frequently appear to have distur-
bances which are serially correlated. However, as we will see, many types
of misspecification can create the appearance of serial correlation. Therefore,
finding evidence of serial correlation does not mean that it is necessarily ap-
propriate to model the disturbances as following some sort of autoregressive
or moving-average process. If the regression function of the original model is
misspecified in any way, then a model like (9.37), which has been modified to
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Figure 9.1 The appearance of serial correlation

incorporate AR(1) disturbances, is probably also misspecified. It is therefore
extremely important to test the specification of any regression model that has
been “corrected” for serial correlation.

The Appearance of Serial Correlation

There are several types of misspecification of the regression function that can
incorrectly create the appearance of serial correlation. For instance, it may be
that the true regression function is nonlinear in one or more of the regressors
while the estimated one is linear. In that case, depending on how the data
are ordered, the residuals from a linear regression model may well appear to
be serially correlated. All that is needed is for the independent variables on
which the dependent variable depends nonlinearly to be correlated with time.

As a concrete example, consider Figure 9.1, which shows 200 hypothetical
observations on a regressor x and a regressand y, together with an OLS re-
gression line and the fitted values from the true, nonlinear model. For the
linear model, the residuals are always negative for the smallest and largest
values of x, and they tend to be positive for the intermediate values. As a
consequence, they appear to be serially correlated: If the observations are
ordered according to the value of x, the estimate ρ̃ obtained by regressing the
OLS residuals on themselves lagged once is 0.298, and the t statistic for ρ = 0
is 4.462. Thus, if the data are ordered in this way, there appears to be strong
evidence of serial correlation. But this evidence is misleading. Either plot-
ting the residuals against x or including x2 as an additional regressor quickly
reveals the true nature of the misspecification.
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The true regression function in this example contains a term in x2. Since
the linear model omits this term, it is underspecified, in the sense discussed
in Section 4.8. Any sort of underspecification has the potential to create
the appearance of serial correlation if the incorrectly omitted variables are
themselves serially correlated. Therefore, whenever we find evidence of serial
correlation, our first reaction should be to think carefully about the specifica-
tion of the regression function. Perhaps one or more additional independent
variables should be included among the regressors. Perhaps powers, cross-
products, or lags of some of the existing independent variables need to be
included. Or perhaps the regression function should be made dynamic by
including one or more lags of the dependent variable.

9.10 Models for Panel Data

Many data sets are measured across two dimensions. One dimension is time,
and the other is usually called the cross-section dimension. For example, we
may have 40 annual observations on 25 countries, or 100 quarterly observations
on 50 states, or 6 annual observations on 3100 individuals. Data of this type
are often referred to as panel data. The disturbances for a model using panel
data are likely to display certain types of dependence, which should be taken
into account when we estimate such a model.

For simplicity, we restrict our attention to the linear regression model

yit = Xitβ + uit, i = 1, . . . ,m, t = 1, . . . , T, (9.51)

where Xit is a 1 × k vector of observations on explanatory variables. There
are assumed to be m cross-sectional units and T time periods, for a total
of n = mT observations. If each uit has expectation zero conditional on its
corresponding Xit, we can estimate equation (9.51) by ordinary least squares.
But the OLS estimator is not efficient if the uit are not IID, and the IID
assumption is rarely realistic with panel data.

If certain shocks affect the same cross-sectional unit at all points in time, the
disturbances uit and uis must be correlated for all t ̸= s. Similarly, if certain
shocks affect all cross-sectional units at the same point in time, the distur-
bances uit and ujt must be correlated for all i ̸= j. In consequence, if we use
OLS, not only do we obtain inefficient parameter estimates, but we also ob-
tain an inconsistent estimate of their covariance matrix; recall the discussion
of Section 6.4. If the expectation of uit conditional on Xit is not zero, then
OLS actually yields inconsistent parameter estimates. This happens, for ex-
ample, when Xit contains lagged dependent variables and the uit are serially
correlated.
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Error-Components Models

The two most popular approaches for dealing with panel data are both based
on what are called error-components models. The idea is to specify the distur-
bance uit in (9.51) as consisting of two or three separate shocks, each of which
is assumed to be independent of the others. A fairly general specification is

uit = et + vi + εit. (9.52)

Here et affects all observations for time period t, vi affects all observations
for cross-sectional unit i, and εit affects only observation it. It is gener-
ally assumed that the et are independent across t, the vi are independent
across i, and the εit are independent across all i and t. Classic papers on error-
components models include Balestra and Nerlove (1966), Fuller and Battese
(1974), and Mundlak (1978).

In order to estimate an error-components model, the et and vi can be regarded
as being either fixed or random, in a sense that we will explain. If the et
and vi are thought of as fixed effects, then they are treated as parameters
to be estimated. It turns out that they can then be estimated by OLS using
dummy variables. If they are thought of as random effects, then we must
figure out the covariance matrix of the uit as functions of the variances of
the et, vi, and εit, and use feasible GLS. Each of these approaches can be
appropriate in some circumstances but may be inappropriate in others.

In what follows, we simplify the error-components specification (9.52) by elim-
inating the et. Thus we assume that there are shocks specific to each cross-
sectional unit, or group, but no time-specific shocks. This assumption is often
made in empirical work, and it considerably simplifies the algebra. In addi-
tion, we assume that the Xit are exogenous. The presence of lagged dependent
variables in panel data models raises a number of issues that we do not wish
to discuss here; see Arellano and Bond (1991) and Arellano and Bover (1995).

Fixed-Effects Estimation

Fixed-effects estimation was discussed on Chapter 3. We recall that discussion
here for convenience. The model that underlies fixed-effects estimation, based
on equation (9.51) and the simplified version of equation (9.52), can be written
as follows:

y = Xβ +Dη + ε, E(εε⊤) = σ2
ε In, (9.53)

where y and ε are n--vectors with typical elements yit and εit, respectively,
and D is an n × m matrix of indicator (dummy) variables. Column j of D
indicates the cross-sectional unit j, j = 1, . . . ,m: the element in the row
corresponding to observation it, for i = 1, . . . ,m and t = 1, . . . , T, is equal
to 1 if i = j and equal to 0 otherwise.3 The m--vector η has typical element vi,

3 If the data are ordered so that all the observations in the first group appear
first, followed by all the observations in the second group, and so on, the row
corresponding to observation it is row T (i− 1) + t.
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and so it follows that the n--vectorDη has element vi in the row corresponding
to observation it. Note that there is exactly one element of D equal to 1 in
each row, which implies that the n--vector ι with each element equal to 1 is
a linear combination of the columns of D. Consequently, in order to avoid
collinear regressors, the matrix X should not contain a constant.

The vector η plays the role of a parameter vector, and it is in this sense that
the vi are called fixed effects. They could in fact be random; the essential
thing is that they must be uncorrelated with the disturbances εit. They
may, however, be correlated with the explanatory variables in the matrix X.
Whether or not this is the case, the model (9.53), interpreted conditionally
on η, implies that the following functions of data and parameters are zero
functions:

Xit
⊤(yit −Xitβ − vi) and yit −Xitβ − vi.

The fixed-effects estimator, which is the OLS estimator of β in equation
(9.53), is based on the estimating equations implied by these estimating func-
tions. Because of the way it is computed, this estimator is sometimes called
the least squares dummy variables, or LSDV, estimator.

Let MD denote the projection matrix I−D(D⊤D)−1D⊤. Then, by the FWL
Theorem, we know that the OLS estimator of β in (9.53) can be obtained
by regressing MDy, the residuals from a regression of y on D, on MDX,
the matrix of residuals from regressing each of the columns of X on D. The
fixed-effects estimator is therefore

β̂FE = (X⊤MDX)−1X⊤MDy. (9.54)

For any n--vector x, let x̄i denote the group mean T−1
∑T

t=1 xit. Then it
is easy to check that element it of the vector MDx is equal to xit − x̄i,
the deviation from the group mean. Since all the variables in (9.54) are
premultiplied by MD, it follows that this estimator makes use only of the
information in the variation around the mean for each of the m groups. For
this reason, it is often called the within-groups estimator. Because X and D
are exogenous, this estimator is unbiased. Moreover, since the conditions of
the Gauss-Markov theorem are satisfied, we can conclude that the fixed-effects
estimator is BLUE.

The fixed-effects estimator (9.54) has advantages and disadvantages. It is
easy to compute, even when m is very large, because it is never necessary to
make direct use of the n × n matrix MD. All that is needed is to compute
the m group means for each variable. In addition, the estimates η̂ of the fixed
effects may well be of interest in their own right. However, the estimator
cannot be used with an explanatory variable that takes on the same value for
all the observations in each group, because such a column would be collinear
with the columns of D. More generally, if the explanatory variables in the
matrix X are well explained by the dummy variables in D, the parameter
vector β is not estimated at all precisely. It is of course possible to estimate
a constant, simply by taking the mean of the estimates η̂.
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Random-Effects Estimation

It is possible to improve on the efficiency of the fixed-effects estimator if one
is willing to impose restrictions on the model (9.53). For that model, all we
require is that the matrix X of explanatory variables and the cross-sectional
shocks vi should both be uncorrelated with the idiosyncratic shocks εit, but
this does not rule out the possibility of a correlation between the variables
in X and the vi. The restrictions imposed for random-effects estimation
require that E(vi |X) = 0 for all i = 1, . . . ,m.

This assumption is by no means always plausible. For example, in a panel of
observations on individual workers, an observed variable like the hourly wage
rate may well be correlated with an unobserved variable like ability, which
implicitly enters into the individual-specific disturbance vi. However, if the
assumption is satisfied, it follows that

E(uit |X) = E(vi + εit |X) = 0, (9.55)

since vi and εit are then both uncorrelated with X. Condition (9.55) is pre-
cisely the condition which ensures that OLS estimation of the model (9.51)
yields unbiased estimates.

However, OLS estimation of equation (9.51) is not in general efficient, be-
cause the uit are not IID. We can calculate the covariance matrix of the uit

if we assume that the vi are IID random variables with expectation zero and
variance σ2

v . This assumption accounts for the term “random” effects. From
(9.52), setting et = 0 and using the assumption that the shocks are indepen-
dent, we can easily see that

Var(uit) = σ2
v + σ2

ε ,

Cov(uituis) = σ2
v , and

Cov(uitujs) = 0 for all i ̸= j.

These define the elements of the n × n covariance matrix Ω, which we need
for GLS estimation. If the data are ordered by the cross-sectional units in
m blocks of T observations each, this matrix has the form

Ω =


Σ 0 · · · 0
0 Σ · · · 0
...

...
...

0 0 · · · Σ

,
where

Σ ≡ σ2
ε IT + σ2

v ιι
⊤ (9.56)

is the T × T matrix with σ2
v + σ2

ε in every position on the principal diagonal
and σ2

v everywhere else. Here ι is a T --vector of 1s.
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To obtain GLS estimates of β, we would need to know the values of σ2
ε and σ2

v ,
or, at least, the value of their ratio, since, as we saw in Section 9.3, GLS
estimation requires only that Ω should be specified up to a factor. To obtain
feasible GLS estimates, we need a consistent estimate of that ratio. However,
the reader may have noticed that we have made no use in this section so far
of asymptotic concepts, such as that of a consistent estimate. This is because,
in order to obtain definite results, we must specify what happens to both m
and T when n = mT tends to infinity.

Consider the fixed-effects model (9.53). Ifm remains fixed as T → ∞, then the
number of regressors also remains fixed as n → ∞, and standard asymptotic
theory applies. But if T remains fixed as m → ∞, then the number of
parameters to be estimated tends to infinity, and the m--vector η̂ of estimates
of the fixed effects is not consistent, because each estimated effect depends
only on the finite number T of observations. It is nevertheless possible to
show that, even in this case, β̂ remains consistent; see Exercise 9.20.

It is always possible to find a consistent estimate of σ2
ε by estimating the fixed-

effects model (9.53), because, no matter how m and T may behave as n → ∞,
there are n residuals. Thus, if we divide the SSR from (9.53) by n −m − k,
we obtain an unbiased and consistent estimate of σ2

ε , since the disturbances
for this model are just the εit. But the natural estimator of σ2

v , namely, the
sample variance of the m elements of η̂, is not consistent unless m → ∞.
In practice, therefore, it is probably undesirable to use the random-effects
estimator when m is small.

There is another way to estimate σ2
v consistently if m → ∞ as n → ∞. One

starts by running the regression

PDy = PDXβ + residuals, (9.57)

where PD ≡ I−MD, so as to obtain the between-groups estimator

β̂BG = (X⊤PDX)−1X⊤PDy. (9.58)

Although regression (9.57) appears to have n = mT observations, it really has
only m, because the regressand and all the regressors are the same for every
observation in each group. The estimator bears the name “between-groups”
because it uses only the variation among the group means. If m < k, note
that the estimator (9.58) does not even exist, since the matrix X⊤PDX can
have rank at most m.

If the restrictions of the random-effects model are not satisfied, the estimator
β̂BG, if it exists, is in general biased and inconsistent. To see this, observe
that, for unbiased estimating equations, we require that

E
(
(PDX)⊤it(yit −Xitβ)

)
= 0, (9.59)
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where (PDX)it is the row labelled it of the n × k matrix PDX. Since
yit −Xitβ = vi + εit, and since εit is independent of everything else in condi-
tion (9.59), this condition is equivalent to the absence of correlation between
the vi and the elements of the matrix X.

As readers are asked to show in Exercise 9.21, the variance of the disturbances
in regression (9.57) is σ2

v + σ2
ε /T. Therefore, if we run it as a regression with

m observations, divide the SSR by m − k, and then subtract 1/T times our
estimate of σ2

ε , we obtain a consistent, but not necessarily positive, estimate
of σ2

v . If the estimate turns out to be negative, we probably should not be
estimating an error-components model.

As we will see in the next paragraph, both the OLS estimator of model (9.51)
and the feasible GLS estimator of the random-effects model are matrix-
weighted averages of the within-groups, or fixed-effects, estimator (9.54) and
the between-groups estimator (9.58). For the former to be consistent, we need
only the assumptions of the fixed-effects model, but for the latter we need in
addition the restrictions of the random-effects model. Thus both the OLS
estimator of (9.51) and the feasible GLS estimator are consistent only if the
between-groups estimator is consistent.

For the OLS estimator of (9.51),

β̂ = (X⊤X)−1X⊤y

= (X⊤X)−1(X⊤MDy +X⊤PDy)

= (X⊤X)−1X⊤MDXβ̂FE + (X⊤X)−1X⊤PDXβ̂BG,

which shows that the estimator is indeed a matrix-weighted average of β̂FE

and β̂BG. As readers are asked to show in Exercise 9.22, the GLS estimator
of the random-effects model can be obtained by running the OLS regression

(I− λPD)y = (I− λPD)Xβ + residuals, (9.60)

where the scalar λ is defined by

λ ≡ 1−
(
Tσ2

v

σ2
ε

+ 1

)−1/2

. (9.61)

For feasible GLS, we need to replace σ2
ε and σ2

v by the consistent estimators
that were discussed earlier in this subsection.

Equation (9.60) implies that the random-effects GLS estimator is a matrix-
weighted average of the OLS estimator for equation (9.51) and the between-
groups estimator, and thus also of β̂FE and β̂BG. The GLS estimator is
identical to the OLS estimator when λ = 0, which happens when σ2

v = 0,
and equal to the within-groups, or fixed-effects, estimator when λ = 1, which
happens when σ2

ε = 0. Except in these two special cases, the GLS estimator
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is more efficient, in the context of the random-effects model, than either the
OLS estimator or the fixed-effects estimator. But equation (9.60) also implies
that the random-effects estimator is inconsistent whenever the between-groups
estimator is inconsistent.

Unbalanced Panels

Up to this point, we have assumed that we are dealing with a balanced panel,
that is, a data set for which there are precisely T observations for each cross-
sectional unit. However, it is quite common to encounter unbalanced panels,
for which the number of observations is not the same for every cross-sectional
unit. The fixed-effects estimator can be used with unbalanced panels without
any real change. It is still based on regression (9.53), and the only change is
that the matrix of dummy variables D no longer has the same number of 1s in
each column. The random-effects estimator can also be used with unbalanced
panels, but it needs to be modified slightly.

Let us assume that the data are grouped by cross-sectional units. Let Ti

denote the number of observations associated with unit i, and partition y and
X as follows:

y = [y1
.... y2

.... · · · .... ym], X = [X1
.... X2

.... · · · .... Xm],

where yi and Xi denote the Ti rows of y and X that correspond to the ith

unit. By analogy with (9.61), make the definition

λi ≡ 1−
(
Tiσ

2
v

σ2
ε

+ 1

)−1/2

.

Let ȳi denote a Ti--vector, each element of which is the mean of the elements
of yi. Similarly, let X̄i denote a Ti × k matrix, each element of which is the
mean of the corresponding column of Xi. Then the random-effects estimator
can be computed by running the linear regression

y1 − λ1ȳ1

y2 − λ2 ȳ2
...

ym − λmȳm

 =


X1 − λ1X̄1

X2 − λ2X̄2
...

Xm − λmX̄m

β + residuals. (9.62)

Note that PDy is just [ȳ1
.... ȳ2

.... · · · .... ȳm], and similarly for PDX. Therefore,
since all the λi are equal to λ when the panel is balanced, regression (9.62)
reduces to regression (9.60) in that special case.

Group Effects and Individual Data

Error-components models are also relevant for regressions on cross-section
data with no time dimension, but where the observations naturally belong to

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



340 Generalized Least Squares and Related Topics

groups. For example, each observation might correspond to a household living
in a certain state, and each group would then consist of all the households
living in a particular state. In such cases, it is plausible that the disturbances
for individuals within the same group are correlated. An error-components
model that combines a group-specific disturbance vi, with variance σ2

v , and an
individual-specific disturbance εit, with variance σ2

ε , is a natural way to model
this sort of correlation. Such a model implies that the correlation between
the disturbances for observations in the same group is ρ ≡ σ2

v/(σ
2
v + σ2

ε ) and
the correlation between the disturbances for observations in different groups
is zero.

A fixed-effects model is often unsatisfactory for dealing with group effects. In
many cases, some explanatory variables are observed only at the group level,
so that they have no within-group variation. Such variables are perfectly
collinear with the group dummies used in estimating a fixed-effects model,
making it impossible to identify the parameters associated with them. On the
other hand, they are identified by a random-effects model for an unbalanced
panel, because this model takes account of between-group variation. This
can be seen from equation (9.62): Collinearity of the transformed group-level
variables on the right-hand side occurs only if the explanatory variables are
collinear to begin with. The estimates of σ2

ε and σ2
v needed to compute the

λi may be obtained in various ways, some of which were discussed in the
subsection on random-effects estimation. As we remarked there, these work
well only if the number of groups m is not too small.

If it is thought that the within-group correlation ρ is small, it may be tempting
to ignore it and use OLS estimation, with the usual OLS covariance matrix.
This can be a serious mistake unless ρ is actually zero, since the OLS stan-
dard errors can be drastic underestimates even with small values of ρ, as
Kloek (1981) and Moulton (1986, 1990) have pointed out; recall Section 6.6
on clustered data. The problem is particularly severe when the number of
observations per group is large, as readers are asked to show in Exercise 9.23.
The correlation of the disturbances within groups means that the effective
sample size is much smaller than the actual sample size when there are many
observations per group.

In this section, we have presented just a few of the most basic ideas concerning
estimation with panel data. Of course, GLS is not the only method that can be
used to estimate models for data of this type. For more detailed treatments of
various models for panel data, see, among others, Chamberlain (1984), Hsiao
(1986, 2001), Ruud (2000, Chapter 24), Baltagi (2001), Arellano and Honoré
(2001), Greene (2002, Chapter 14), and Wooldridge (2002).

9.11 Final Remarks

Several important concepts were introduced in the first four sections of this
chapter, which dealt with the basic theory of generalized least squares estima-

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

9.12 Exercises 341

tion. The concept of an efficient estimator, which we introduced in Section 9.2,
is important for many more models than just linear regression. The key idea of
feasible GLS estimation is that an unknown covariance matrix may in some
circumstances be replaced by a consistent estimate of that matrix without
changing the asymptotic properties of the resulting estimator.

The remainder of the chapter dealt with the treatment of heteroskedasticity
and serial correlation in linear regression models, and with error-components
models for panel data. Although this material is of considerable practical
importance, most of the techniques we discussed, although sometimes compli-
cated in detail, are conceptually straightforward applications of feasible GLS
estimation and the methods for testing hypotheses that were introduced in
Chapters 5 and 8.

9.12 Exercises

9.1 Using the fact that E(uu⊤|X) = Ω for regression (9.01), show directly,
without appeal to standard OLS results, that the covariance matrix of the
GLS estimator β̂GLS is given by the rightmost expression of (9.05).

9.2 Show that the matrix (9.11), reproduced here for easy reference,

X⊤Ω−1X −X⊤W (W⊤ΩW )−1W⊤X,

is positive semidefinite. As in Section 7.2, this may be done by showing that
this matrix can be expressed in the form Z⊤MZ, for some n × k matrix Z
and some n×n orthogonal projection matrix M. It is helpful to express Ω−1

as ΨΨ⊤, as in equation (9.02).

9.3 Using the data in the file earnings.data, run the regression

yt = β1d1t + β2d2t + β3d3t + ut,

which was previously estimated in Exercise 3.23. Recall that the dit are
dummy variables. Then test the null hypothesis that E(u2t ) = σ2 against the
alternative that

E(u2t ) = γ1d1t + γ2d2t + γ3d3t.

Report P values for F and nR2 tests.

9.4 If ut follows the stationary AR(1) process

ut = ρut−1 + εt, εt ∼ IID(0, σ2ε ), |ρ| < 1,

show that Cov(ut, ut−j) = Cov(ut, ut+j) = ρjσ2ε /(1 − ρ2). Then use this
result to show that the correlation between ut and ut−j is just ρj.

9.5 Consider the nonlinear regression model yt = xt(β)+ut. Derive the GNR for
testing the null hypothesis that the ut are serially uncorrelated against the
alternative that they follow an AR(1) process.

9.6 Show how to test the null hypothesis that the disturbances of the linear
regression model y = Xβ+u are serially uncorrelated against the alternative
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that they follow an AR(4) process by means of a linearized regression. Derive
the test regression from first principles.

9.7 Consider the following three models, where ut is assumed to be IID(0, σ2):

H0 : yt = β + ut

H1 : yt = β + ρ(yt−1 − β) + ut

H2 : yt = β + ut + αut−1

Explain how to test H0 against H1 by using a linearized regression. Then
show that exactly the same test statistic is also appropriate for testing H0

against H2.

9.8 Write the trace in the right-hand side of equation xxx explicitly in terms
of PX rather than MX, and show that the terms containing one or more
factors of PX all vanish asymptotically.

9.9 By direct matrix multiplication, show that, if Ψ is given by (9.46), then ΨΨ⊤

is equal to the matrix
1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1

.

Show further, by direct calculation, that this matrix is proportional to the
inverse of the matrix Ω given in equation (9.27).

9.10 Show that equation (9.25), relating u to ε, can be modified to take account
of the definition (9.45) of ε1, with the result that

ut = εt + ρεt−1 + ρ2εt−2 + · · ·+ ρt−1

(1− ρ2)1/2
ε1. (9.63)

The relation Ψ⊤u = ε implies that u = (Ψ⊤)−1ε. Use the result (9.63) to
show that Ψ−1 can be written as

θ ρθ ρ2θ · · · ρn−1θ

0 1 ρ · · · ρn−2

0 0 1 · · · ρn−3

...
...

...
...

0 0 0 · · · 1

,

where θ ≡ (1 − ρ2)−1/2. Verify by direct calculation that this matrix is the
inverse of the Ψ given by (9.46).

9.11 Consider a square, symmetric, nonsingular matrix partitioned as follows

H ≡
[
A C⊤

C B

]
, (9.64)
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where A and B are also square symmetric nonsingular matrices. By using the
rules for multiplying partitioned matrices (see Section 1.4), show that H−1

can be expressed in partitioned form as

H−1 =

[
D E⊤

E F

]
,

where

D = (A−C⊤B−1C)−1,

E = −B−1C(A−C⊤B−1C)−1 = −(B −CA−1C⊤)−1CA−1, and

F = (B −CA−1C⊤)−1.

9.12 Suppose that the matrix H of the previous question is positive definite. It
therefore follows (see Section 3.4) that there exists a square matrix X such
that H = X⊤X. Partition X as [X1 X2], so that

X⊤X =

[
X1

⊤X1 X1
⊤X2

X2
⊤X1 X2

⊤X2

]
,

where the blocks of the matrix on the right-hand side are the same as the
blocks in (9.64). Show that the top left block D of H−1 can be expressed

as (X1
⊤M2X1)

−1, where M2 ≡ I − X2(X2
⊤X2)

−1X2
⊤. Use this result to

show that D−A−1 = (X1
⊤M2X1)

−1 − (X1
⊤X1)

−1 is a positive semidefinite
matrix.

⋆9.13 Consider testing for first-order serial correlation of the disturbances in the
regression model

y = βy1 + u, |β | < 1, (9.65)

where y1 is the vector with typical element yt−1, by use of the statistics
tGNR and tSR defined in xxx and xxx, respectively. Show first that the
vector denoted as MX ũ1 in xxx and xxx is equal to −β̃MXy2, where y2
is the vector with typical element yt−2, and β̃ is the OLS estimate of β
from (9.65). Then show that, as n → ∞, tGNR tends to the random vari-
able τ ≡ σ−2

u plimn−1/2(βy1 − y2)
⊤u, whereas tSR tends to the same random

variable times β. Show finally that tGNR, but not tSR, provides an asymptot-
ically correct test, by showing that the random variable τ is asymptotically
distributed as N(0, 1).

9.14 The file money.data contains seasonally adjusted quarterly data for the loga-
rithm of the real money supply, mt, real GDP, yt, and the 3-month Treasury
Bill rate, rt, for Canada for the period 1967:1 to 1998:4. A conventional
demand for money function is

mt = β1 + β2 rt + β3yt + β4mt−1 + ut. (9.66)

Estimate this model over the period 1968:1 to 1998:4, and then test it for
AR(1) disturbances using two different testing regressions that differ in their
treatment of the first observation.
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⋆9.15 The algorithm called iterated Cochrane-Orcutt, alluded to in Section 8.8, is
just iterated feasible GLS without the first observation. This algorithm is
begun by running the regression y = Xβ + u by OLS, preferably omitting
observation 1, in order to obtain the first estimate of β. The residuals from this
equation are then used to estimate ρ according to equation xxx. What is the
next step in this procedure? Complete the description of iterated Cochrane-
Orcutt as iterated feasible GLS, showing how each step of the procedure can
be carried out using an OLS regression.

Show that, when the algorithm converges, conditions xxx for NLS estimation
are satisfied. Also show that, unlike iterated feasible GLS including observa-
tion 1, this algorithm must eventually converge, although perhaps only to a
local, rather than the global, minimum of SSR(β, ρ).

9.16 Estimate this model using the iterated Cochrane-Orcutt algorithm, using a se-
quence of OLS regressions, and see how many iterations are needed to achieve
the same estimates as those achieved by NLS. Compare this number with the
number of iterations used by NLS itself.

Repeat the exercise with a starting value of 0.5 for ρ instead of the value of 0
that is conventionally used.

9.17 Test the hypothesis that the disturbances of the linear regression model (9.66)
are serially uncorrelated against the alternatives that they follow the simple
AR(4) process ut = ρ4ut−4+εt and that they follow a general AR(4) process.

9.18 Consider the linear regression model

y = X0β0 +X1β1 +X2β2 + u, u ∼ IID(0, σ2I), (9.67)

where there are n observations, and k0, k1, and k2 denote the numbers of
parameters in β0, β1, and β2, respectively. Let H0 denote the hypothesis
that β1 = 0 and β2 = 0, H1 denote the hypothesis that β2 = 0, and H2

denote the model (9.67) with no restrictions.

Show that the F statistics for testingH0 againstH1 and for testingH1 against
H2 are asymptotically independent of each other.

9.19 This question uses data on daily returns for the period 1989–1998 for shares
of Mobil Corporation from the file daily-crsp.data. These data are made
available by courtesy of the Center for Research in Security Prices (CRSP);
see the comments at the bottom of the file. Regress these returns on a constant
and themselves lagged once, twice, three, and four times, dropping the first
four observations. Then test the null hypothesis that all coefficients except
the constant term are equal to zero, as they should be if market prices fully
reflect all available information. Be sure to report a P values for the test.

9.20 Consider the fixed-effects model (9.53). Show that, under mild regularity con-
ditions, which you should specify, the OLS estimator β̂FE tends in probability
to the true parameter vector β0 as m, the number of cross-sectional units,
tends to infinity, while T , the number of time periods, remains fixed.

9.21 Suppose that
y = Xβ + v + ε, (9.68)

where there are n = mT observations, y is an n--vector with typical element
yit, X is an n× k matrix with typical row Xit, ε is an n--vector with typical
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element εit, and v is an n--vector with vi repeated in the positions that
correspond to yi1 through yiT . Let the vi have variance σ2v and the εit
have variance σ2ε . Given these assumptions, show that the variance of the
disturbances in regression (9.57) is σ2v + σ2ε /T.

⋆9.22 Show that, for Σ defined in (9.56),

Σ−1/2 =
1

σε
(IT − λPι),

where Pι ≡ ι(ι⊤ι)−1ι⊤= (1/T )ιι⊤, and

λ = 1−
(
Tσ2v
σ2ε

+ 1

)−1/2

.

Then use this result to show that the GLS estimates of β may be obtained
by running regression (9.60). What is the covariance matrix of the GLS
estimator?

⋆9.23 Suppose that, in the error-components model (9.68), none of the columns of X
displays any within-group variation. Recall that, for this model, the data are
balanced, with m groups and T observations per group. Show that the OLS
and GLS estimators are identical in this special case. Then write down the
true covariance matrix of both these estimators. How is this covariance matrix
related to the usual one for OLS that would be computed by a regression
package under classical assumptions? What happens to this relationship as
T and ρ, the correlation of the disturbances within groups, change?
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Bühlmann, P. (1997). “Sieve bootstrap for time series”, Bernoulli, 3, 123–48.
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Économique, 91, 11–33

MacKinnon, J. G., and M. D. Webb (2016). “Wild bootstrap inference for wildly
different cluster sizes,” Journal of Applied Econometrics, forthcoming.

MacKinnon, J. G., and H. White (1985). “Some heteroskedasticity consistent co-
variance matrix estimators with improved finite sample properties,” Journal of
Econometrics, 29, 305–25.

Magnus, J. R. and J. Durbin (1999). “Estimation of regression coefficients on interest
when other regression coefficients are of no interest,” Econometrica, 67, 639–643.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

References 353

Mammen, E., 1993. “Bootstrap and wild bootstrap for high dimensional linear mod-
els”, Annals of Statistics, 21, 255–85.

Matsumoto, M. and T. Nishimura (1998). “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator”, ACM Transactions
on Modeling and Computer Simulation 8 (1): 3–330.

Mittelhammer, R. (2013). Mathematical Statistics for Economics and Business,
second edition, New York, Springer.

Morgan, M. S. (1990). The History of Econometric Ideas, Cambridge, Cambridge
University Press.

Moulton, B. R. (1986). “Random group effects and the precision of regression esti-
mates,” Journal of Econometrics, 32, 385–97.

Moulton, B. R. (1990). “An illustration of a pitfall in estimating the effects of
aggregate variables on micro units,” Review of Economics and Statistics, 72,
334–8.

Mundlak, Y. (1978). “On the pooling of time series and cross sectional data,” Econo-
metrica, 46, 69–86.

Newey, W. K., and K. D. West (1987). “A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix,” Econometrica,
55, 703–8.

Newey, W. K., and K. D. West (1994). “Automatic lag selection in covariance matrix
estimation,” Review of Economic Studies, 61, 631–53.

Park, J. Y. (2002). “An invariance principle for sieve bootstrap in time series”,
Econometric Theory, 18, 469–90.

Park, J. Y. (2003). “Bootstrap unit root tests”, Econometrica 71, 1845–95.

Pesaran, M. H. (2015). Time Series and Panel Data Econometrics, Oxford, Oxford
University Press.

Politis, D. N. (2003). “The impact of bootstrap methods on time series analysis”,
Statistical Science, 18, 219–30.

Politis, D. N., and J. P. Romano (1994). “The stationary bootstrap”, Journal of the
American Statistical Association, 89, 1303–13.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Nu-
merical Recipes: The Art of Scientific Computing, third edition, Cambridge,
Cambridge University Press.

Ruud, P. A. (2000). An Introduction to Classical Econometric Theory, New York,
Oxford University Press.

Sargan, J. D. (1958). “The estimation of economic relationships using instrumental
variables,” Econometrica, 26, 393–415.

Savin, N. E., and K. J. White (1977). “The Durbin-Watson test for serial correlation
with extreme sample sizes or many regressors,” Econometrica, 45, 1989–96.

Shao, J. (2007). Mathematical Statistics, second edition, New York, Springer.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon



354 References

Schervish, M. J. (1996). Theory of Statistics, New York, Springer.

Seber, G. A. F. (1980). The Linear Hypothesis: A General Theory, second edition,
London, Charles Griffin.

Simes, R. J. (1986). “An improved Bonferroni procedure for multiple tests of signif-
icance,” Biometrika, 73, 751–4.

Snedecor, G. W. (1934). Calculation and Interpretation of Analysis of Variance and
Covariance, Ames, Iowa, Collegiate Press.

Theil, H. (1953). “Repeated least squares applied to complete equation systems,”
The Hague, Central Planning Bureau, mimeo.

van der Vaart, A. W. (1998). Asymptotic statistics, Cambridge, Cambridge Univer-
sity Press.

White, H. (1980). “A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity,” Econometrica, 48, 817–38.

White, H. (2000). Asymptotic Theory for Econometricians, revised edition, Orlando,
Academic Press.

White, H., and I. Domowitz (1984). “Nonlinear regression with dependent observa-
tions,” Econometrica, 52, 143–61.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data,
Cambridge, Mass., MIT Press.

Wu, C. F. J. (1986). “Jackknife, Bootstrap and Other Resampling Methods in Re-
gression Analysis”, Annals of Statistics, 14, 1261–95.

Wu, D.-M. (1973). “Alternative tests of independence between stochastic regressors
and disturbances,” Econometrica, 41, 733–50.

Young, A. (2015). “Improved, nearly exact, statistical inference with robust and clus-
tered covariance matrices using effective degrees of freedom corrections,” working
paper, London School of Economics.

Copyright c⃝ 2021, Russell Davidson and James G. MacKinnon

Author Index

Amemiya, T., 313

Andrews, D. W. K., 259

Andrews, D. W. K., 219, 222, 315

Anglin, P. M., 50

Angrist, J. D., 221, 224

Arellano, M., 334, 340

Athey, S., 7

Austin, G., 214

Bahadur, R. R., 8

Balestra, P., 334

Baltagi, B. H., 340

Basmann, R. L., 283

Battese, G. E., 334

Benjamini, Y., 181

Beran, R., 250

Berkowitz, J., 259

Bertrand, M., 221, 226

Bester, C. A., 222

Billingsley, P., 22, 191

Bond, S., 334

Bover, O., 334

Box, G. E. P., 322

Breusch, T. S., 324

Bryant, P., 92
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NID disturbances, 97

Nominal level

of a test, 147–148

Non-centrality parameter

for normal distribution, 145–146

Noncentral chi-squared distribution,
182–184, 195

Noncentral F distribution, 183

Noncentral t distribution, 184–186

Noncentrality parameter, 183–186

Nonlinear regression function, 30

Nonparametric bootstrap, 246–249

Nonstochastic plim, 107–110

Nonstochastic regressors, see Regressors

Norm of a vector, 53

Normal distribution, 14, 48, 151, 192

bivariate, 153, 155, 192

linear combinations, 190–191

multivariate, 153–155

standard, 14, 48, 151–152, 192

Normality

asymptotic, 172–175

Normally, independently, and identically
distributed, see NID disturbances

Null hypothesis, 144–145

of bootstrap test, 261–262

Oblique projection, 93–94, 291

Observations

influential, 88–90

OLS estimating equation, 44

OLS estimating equations
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unbiased, 101–102, 104

OLS estimator

basic concepts, 44–46

biased, 102–104, 137–138

consistency of, 111–113

covariance matrix of, 117–120

efficiency of, 123–125

numerical properties, 46, 64–92

sandwich covariance matrix, 213

statistical properties, 46, 97–126

unbiased, 101

OLS residuals, 45, 50, 65, 95–96, 126–128

tests based on, 328

One-tailed simulated P value, 241–242

One-tailed test, 146, 204

One-tailed confidence interval, 204

Operator

first-difference, 96

Optimal instruments, 277–279, 282

Ordinary least squares (OLS), 44–46

geometry of, 64–73, 92

Ordinary least squares estimator, see
OLS estimator

Orthogonal complement, 60

Orthogonal decomposition, 69–70, 93–94,
164–165

Orthogonal projection, 67–70, 93–94

Orthogonal regressors, 75–77

Orthogonal vectors, 59

Orthogonality condition, 65

Outer product

of vectors, 33

Overidentification, 276, 293

Overidentifying restrictions, 293–296

and IV estimation, 293–296

Sargan test, 295, 305

tests of, 293–296, 300

Overrejection

by a test, 179

Overspecification, 129–132, 134

P value, 149–151

for asymmetric two-tailed test, 194,
262

bootstrap, 241–243, 245, 246, 253,
262–263, 268

simulated, 241–243

for symmetric two-tailed test, 149–151

Pairs bootstrap, 255–256

Panel data, 333–340

balanced, 333–339

unbalanced, 339

Parallel vectors, 56–57

Parameter estimates, 39

restricted, 164–165

unrestricted, 164–165

variance of a function of, 120–123,
226–229, 236

Parameter uncertainty

in forecast error, 121–122

Parameters

of regression model, 9–10

Parametric bootstrap, 246

Parametric model

fully specified, 28

partially specified, 28

Partitioned matrix, 37–39

addition, 38

inverse of, 342–343

multiplication, 38–39, 50

PDF, see Probability density function

Percentile-t confidence intervals, 264

Perfect fit, 135

Period of RNG, 238–239

Pivot, 203

asymptotic, 203, 240

Pivotal function, 203

Pivotal statistic, 203, 240, 244–245, 326

plim, 106–110

nonstochastic, 107–110

Polynomial

in lag operator, 320–322

Population mean, 17, 39–41

Population moment, 40

Positive definite matrix, 115–116,
139–140, 343

inverse of, 116

Positive semidefinite matrix, 115–116
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Power

of a bootstrap test, 253–255

of a test, 148–149, 182–186, 194–195

Power function, 185–186

Power loss, 253–255

Precision

and efficiency, 123

of an estimator, 116

of OLS estimates, 118–120

Precision matrix, 116

Predetermined explanatory variable, 173

Predetermined variable, 102

Predeterminedness condition, 102–104

Prediction error, 121–123

variance of, 121–123

Preliminary test, see Pretest

Pretest, 187

Pretest estimator, 187–190

MSE of, 187–188

Pretesting, 186–190

Principal diagonal of a square matrix, 32

Probability, 11

conditional, 19–22, 48

Probability density function (PDF), 13

bivariate normal, 155, 192

conditional, 22

joint, 17–19

marginal, 18–19

normalization, 14

and rescaling, 192

standard normal, 14, 48, 151–152

Probability distribution, 11–16

bivariate, 17–19

continuous, 13–14

discrete, 14–15

multivariate, 17–19

Probability limit (plim), 106–110, 173

Product of orthogonal projections, 76–77,
94–95

Projection, 67–70

complementary, 69–70

oblique, 93–94, 291

orthogonal, 67–70, 93–94

Projection matrix, 67–70

orthogonal, 67–70, 95

Pseudo-random numbers, 27

Pseudo-true values

of parameters of a false model, 122

Pythagoras’ Theorem, 54–55

Quadratic form, 115

and chi-squared distribution, 156–157

Quantile

of chi-squared distribution, 233

of a distribution, 200–201, 233

Quantile function, 200–201

Quarterly data, 79–80

Quartiles of a distribution, 201

Quintiles of a distribution, 201

R2, 135, 141–142

adjusted, 136–137

centered, 135, 141

relation with F test, 166

uncentered, 135, 141

Rademacher distribution, 257

Random number generator (RNG), 4, 27,
48, 238–239

for non-uniform distributions, 239

for positive integers, 239

Random numbers, 4, 27, 239

Random sample, 144

Random variables, 11–23

bivariate, 17–18

censored, 15–16

continuous, 12–13

discrete, 12, 14–15

independent, 18–19

realization of, 11

scalar, 11–16

vector-valued, 17–18

Random-effects estimation, 334–340

Rank

full, 35

full column, 115–116

of a matrix, 35, 63, 96

Rate of convergence, 176

Real line, 53
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Recipe for simulation

characterization of a distribution, 152

Recursive simulation, 246

Reduced-form equation, 285

Regressand, 36

Regression

standard error of, 129

Regression function

linear, 29–31, 49

loglinear, 30–31, 49

multiplicative, 30

nonlinear, 30

Regression line, 86–88

Regression model, 9–11, 24–26

with AR(1) disturbances, 328–331

classical normal linear, 98

complete specification, 26, 97

confidence intervals, 204–206

confidence regions, 206–210

disturbances, 9–11, 25–29

error terms, 9

linear, 29–31, 97–98

loglinear, 30–31, 134

multiple, 29, 41–46, 50

normal disturbances, 98, 159–167

parameters, 9–10, 27

simple, 9–10, 36, 50

simulation of, 26–29

Regression standard error (s), 129

Regressors, 36–37

fixed, 101

nonstochastic, 101

predetermined, 173

Rejection

overrejection, 179

probability, 147–148

region, 146–148

rule, 146–148

by a test, 145

underrejection, 179

Reparametrization

of linear regression model, 160, 193

Replication, 251

Resampling, 247–249

of residuals, 247–249, 269

Resampling bootstrap, 248–249

Rescaled residuals, 248–249

Residual vector, 44–45, 66–68

Residuals

and disturbances, 126–128

definition of, 65

mean of, 127

OLS, 45, 50, 65, 95–96, 126–128

omit 1, 96

rescaled, 248–249

sum of squared, 44–45, 50, 67, 135

variance of, 127–128, 140

vector of, 66–67

Restricted estimates, 164–165

Restricted model, 130–132

Restricted sum of squared residuals
(RSSR), 163

RNG, see Random number generator

Root mean squared error (RMSE), 133

Root-n consistency, 176

Row vector, 32

RSSR, see Restricted sum of squared
residuals

s2, 128–129, 175

Same-order notation, 110–111, 139

Same-order relation, 110–111

deterministic, 110

stochastic, 110

Sample

definition, 9

Sample autocovariance matrix, 217–218

Sample correlation, 233

Sample mean, 39–40

standard error of, 216

Sample moment, 40

Sample size, 9

Sandwich covariance matrix, 117,
198–199, 211–223

cluster-robust, 219–223

as CRVE, 222–223

as HCCME, 213–214, 292–293

for IV estimator, 292–293
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for OLS estimator, 213

Sargan test, 295, 305

scalar covariance matrix, 126

scalar matrix, 117

Scalar product, 32–33, 53, 57–59

geometry of, 57–59

Scale invariance, 326

Scatter diagram, 86–87

Schur product, 35

Seasonal adjustment, 81–82

by regression, 82

Seasonal dummy variables, 80–82, 95

Seasonality, 79–82

Seed of random number generator, 239

Semiparametric bootstrap, 248–249

Sequence of nested hypotheses, 344

Serial correlation, 26, 117, 216–219,
317–333

appearance of, 332–333

problem for bootstrapping, 258–260

testing for, 323–328

Sieve bootstrap, 259–260

Significance level

marginal, 149

of a test, 146–148

Simple hypothesis, 240

Simple IV estimator, 274–275, 302–303

Simulated P value, 241–243

equal-tail, 242–243

one-tailed , 241–242

symmetric, 242–243

two-tailed , 242–243

Simulated value, 28

Simulation, 26–29

recursive, 142, 246

of regression model, 26–29

Simulation-based tests, 240–252

Simultaneous equations model, 272–274,
284

and DGP, 277–278

linear, 273–274

reduced-form, 284–285

Singular matrix, 35

Size of a test, 147–148

Skedastic function, 312

Skewness, 153, 249

Slope coefficient, 11, 74–75, 87

Span, 60

Spatial autocorrelation, 117

Specification, deterministic and
stochastic, 27–28

Specification tests, 315

appearance of serial correlation,
331–333

for heteroskedasticity, 315–317

Square matrix, 32

SSR, see Sum of squared residuals

Standard deviation, 17

Standard error of regression (s), 129

Standard errors, 17

bootstrap, 266–267

cluster-robust, 222–223, 235

for treatment effects, 139

of a function of parameter estimates,
120–123, 226–229

heteroskedasticity-consistent, 213–214

heteroskedasticity-robust, 213–214

Standard normal density, 14, 48, 192

Standard normal distribution, 14, 48,
151–152, 192

Stationarity, 318

asymptotic, 321

Stationarity condition

for AR(1) process, 318–319

for general AR process, 321

Stationary bootstrap, 258

Stationary process, 318–319

Statistic

asymptotically pivotal, 203, 240,
244–245

pivotal, 203, 240, 244–245, 326

scale invariant, 326

Statistical independence, 18–19, 48–49

Stochastic convergence, 106–110

Stochastic process, 318

stationary, 318–319

Stochastic same-order relation, 110

Stochastic specification, 27–28
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Strict exogeneity, see Exogeneity

Structural equation, 285

Studentized bootstrap confidence
interval, 264–265

Student’s t distribution, see t distribution

Submatrix, 38

Subspace of Euclidean space, 59–61

Subspace spanned by, 60, 93

Sum of squared residuals (SSR), 44–45,
50, 67, 135

restricted (RSSR), 163

unrestricted (USSR), 163

Symmetric matrix, 32

Symmetric simulated P value, 242–243

Systems of equations, see Simultaneous
equations model

t distribution, 157, 161–162

noncentral, 184–186

t statistic, 161–162

and Wald statistic, 179, 193–194

asymptotic, 199–200

and confidence interval, 204–206

and cotangent, 193

and IV estimation, 287

t test, 161–162

asymptotic, 176–177, 287

relation with F test, 165

Taking out what is known, 22–23

Taylor expansion, 228

first-order, 228

pth-order, 228

second-order, 228, 236

Taylor’s Theorem, 227–228

multivariate, 228

Temperature and humidity, 208–209

Test statistic, 144–145

inverting, 199–202

Testing for serial correlation, 323–328

bootstrap tests, 326–327

by linearized regression, 323–343

Durbin-Watson statistic, 325

heteroskedasticity-robust test, 327–328

Monte Carlo tests, 326

regression-based tests, 341–342

Testing multiple hypotheses, 180–182

Tests

asymmetric two-tailed, 262, 326

asymptotic, 167–168, 176–179, 250–252

chi-squared, 178–179, 206

Chow, 166–167, 193

definition, 146–148

equal-tail, 147

exact, 147–148, 159, 182–186

for heteroskedasticity, 315–317

large-sample, 167–168

of linear restrictions, 162–165, 193

of nested hypotheses, 344

one-tailed, 146, 204

of overidentifying restrictions, 293–296,
300

power of, 182–186

for serial correlation, 323–328, 341–343

of several restrictions, 162–165

significance level, 146–148

simulation-based, 240–252

of single restriction, 160–162

two-tailed, 146

Time trend, 83

Time-series data, 79–80, 102

Time-translation invariance, 318

Total sum of squares (TSS), 67, 135

Trace

of a product of matrices, 91, 140

of a projection matrix, 91, 96

of a square matrix, 90–91

Transformation

linear, 71–73

nonsingular, 71

singular, 94

Transpose of a matrix, 32, 50

reversal rule, 50

Treatment dummy, 223, 225–226

Trend, 83

linear, 83

quadratic, 83

Triangle inequality, 93

Triangular matrix, 32
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TSS, see Total sum of squares

Two-tailed simulated P value, 242–243

Two-stage least squares (2SLS)

and instrumental variables, 282–284

linear, 282

Two-tailed test, 146

asymmetric, 262, 326

bootstrap, 262–263, 326

P value, 149–151, 194, 262

symmetric, 326

Type I error, 146

Type II error, 149

Unbalanced design, 91

Unbalanced panel, 339

Unbiased estimating equation, 100–101,
104

Unbiased estimator, 99–100

Uncentered R2, 135, 141

Underidentification, 276

Underrejection

by a test, 179

Underspecification, 129, 132–134

Uniform distribution, 20

Unimodal distribution, 171

Unit basis vector, 88, 95

Units of measurement, 72–73

Unrestricted estimates, 164–165

Unrestricted model, 131–132

Unrestricted sum of squared residuals
(USSR), 163

Variables

centered, 73, 82, 95

dependent, 9

deseasonalized, 81–82

detrended, 83

dummy, 76, 79–82, 88–89, 96

errors in, 271–272

explanatory, 9

independent, 9

lagged, 102–104

seasonal dummy, 80–82, 95

seasonally adjusted, 81–82

Variance, 17

conditional, 49

of forecast error, 121–123, 141

of a function of parameter estimates,
120–123, 140, 226–229, 236

of OLS residuals, 127–128, 140

of prediction error, 121–123

of a sum, 140

Variance matrix, see Covariance matrix

Variance of disturbances (σ2), 128–129

and 2SLS, 283

confidence interval, 235

test of, 194, 268–269

Variance-covariance matrix, see
Covariance matrix

Vector of contrasts, 296

Vector of fitted values, 65–67, 95–96

Vector of residuals, 66–67

Vectors, 32

of 0s, 43

of 1s, 34, 71–72

addition of, 55–56

angle between, 57–59, 93

basis, 59

column, 32

length of, 53

normalized, 93

orthogonal, 59

parallel, 56–57

perpendicular, 59

row, 32

unit basis, 88

Vigintiles of a distribution, 201

Virtual reality, 1–3

Wald statistic, 178–179, 193–194, 206

and F statistic, 179, 193–194

and t statistic, 179, 193–194

and confidence regions, 206–207

and HCCME, 293

and IV estimation, 287

Wald test, 178–179

cluster-robust, 236

Weak convergence, 106–107
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Weighted least squares (WLS), 310

feasible, 312

White noise, 117

Wide-sense stationarity, 318

Wild bootstrap, 256–257

for IV estimation, 300

Wild cluster bootstrap, 301

Within-groups estimator, 335

WLS, see Weighted least squares

z statistic, 145–146

z test, 145–146

Z-estimator, 46

Zero function, 43–44

elementary, 43–44

Zero matrix, 69

Zero vector, 43
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