October 8, 2024

R. Davidson

Assignment 2

1. An exercise about oblique projections. Let X and W be two $n \times k$ matrices, with n > k, and such that $W^{\top}X$ is non-singular. These two matrices define the oblique projection matrix

$$\boldsymbol{P} = \boldsymbol{X} (\boldsymbol{W}^{\top} \boldsymbol{X})^{-1} \boldsymbol{W}^{\top}.$$

The matrix \boldsymbol{P} is clearly idempotent, but not symmetric in general.

Characterise the image of the $n \times n$ matrix P. What is the dimension of this image? Characterise the nullspace of P – that is, what is the subspace the elements of which are mapped to zero by the action of P? What is the dimension of this subspace?

Provide a necessary and sufficient condition on the matrix W for the action of P to be equivalent to that of the orthogonal projection matrix P_X .

2. The class of estimators considered by the Gauss-Markov Theorem can be written as $\hat{\beta} = Ay$, with AX = I. Show that this class of estimators is in fact identical to the class of estimators of the form

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{W}^\top \boldsymbol{X})^{-1} \boldsymbol{W}^\top \boldsymbol{y},$$

where W is a matrix of exogenous variables such that $W^{\top}X$ is nonsingular.

3. Generate a figure like Figure 3.15 for yourself. Begin by drawing 100 observations of a regressor x_t from the N(0, 1) distribution. Then compute and save the h_t for a regression of any regressand on a constant and x_t . Plot the points (x_t, h_t) , and you should obtain a graph similar to the one in Figure 3.15.

Now add one more observation, x_{101} . Start with $x_{101} = \bar{x}$, the average value of the x_t , and then increase x_{101} progressively until $x_{101} = \bar{x} + 20$. For each value of x_{101} , compute the leverage measure h_{101} . How does h_{101} change as x_{101} gets larger? Why is this in accord with the result that $h_t = 1$ if the regressors include the dummy variable e_t ?