
Economics 662

December 10-12, 2024 R. Davidson

Final Examination

Your completed exam should be sent to our TA Raphaël Langevin by 13.00 on
December 12 – <raphael.langevin@mail.mcgill.ca> Please submit two files per stu-
dent: one, which should be a PDF file, with your written answers, and another,
which may or may not be a simple text file, with your computer code. These files
must be all your own work. You may make use of whatever non-human resources
you wish, but you must not ask for or receive any help from any other person.

All students in this course have the right to submit in English or in French any
written work that is to be graded.

Tou(te)s les étudiant(e)s qui suivent ce cours on le droit de soumettre tout travail
écrit en français ou en anglais.

Academic Integrity statement [approved by Senate on 29 January 2003]:

McGill University values academic integrity. Therefore all students must understand
the meaning and consequences of cheating, plagiarism and other academic offences
under the Code of Student Conduct and Disciplinary Procedures.

L’université McGill attache une haute importance à l’honnêteté académique. Il
incombe par conséquent à tou(te)s les étudiant(e)s de comprendre ce que l’on entend
par tricherie, plagiat et autres infractions académiques, ainsi que les conséquences
que peuvent avoir de telles actions, selon le Code de conduite de l’étudiant(e) et
des procédures disciplinaires.

Answer all seven questions in this exam. Note that the different questions have
quite different values in terms of marks.

Faites tous les sept exercices de cet examen. Les différents exercices ont des valeurs
assez différentes.

1. A random variable Z follows the lognormal distribution if logZ is normally
distributed. Let logZ ∼ N(m,σ2). What is the cumulative distribution function
(CDF) of Z? What are the first four moments of Z? The variance of Z? [A useful
fact is that, if W ∼ N(0, 1), then E(exp σW ) = exp(σ2/2).]

2. Consider the following linear regression:

y = X1β1 +X2β2 + u,

where y is n × 1, X1 is n × k1, and X2 is n × k2. Let β̂1 and β̂2 be the OLS
parameter estimates from running this regression.

Now consider the following regressions, all to be estimated by OLS:
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(a) y = X2β2 + u;

(b) P1y = X2β2 + u;

(c) P1y = P1X2β2 + u;

(d) PXy = X1β1 +X2β2 + u;

(e) PXy = X2β2 + u;

(f) M1y = X2β2 + u;

(g) M1y = M1X2β2 + u;

(h) M1y = X1β1 +M1X2β2 + u;

(i) M1y = M1X1β1 +M1X2β2 + u;

(j) PXy = M1X2β2 + u.

Here P1 projects orthogonally on to the span of X1, and M1 = I−P1. For which of
the above regressions are the estimates of β2 the same as for the original regression?
Why? For which are the residuals the same? Why?

Prove that the Frisch-Waugh-Lovell theorem applies to the heteroskedasticity-
consistent covariance estimator (HCCME) for the linear regression model

y = X1β1 +X2β2 + u, E(uu⊤) = diag(σ2
1 , . . . , σ

2
n). (1)

where y is n×1, X1 is n×k1, and X2 is n×k2. More specifically, what you are asked
to prove is that the HCCME for the OLS estimates β̂2, calculated from the results
of regression (1), is the same as the HCCME calculated from the FWL regression

M1y = M1X2β2 +M1u

3. Some of the results from running the linear regression

y = β0ι+ β1x1 + β2x2 + β3x3 + u (2)

are given below:

Ordinary Least Squares:

Variable Parameter estimate Standard error T statistic

constant 131.986603 33.702976 3.916171

x1 9.497008 0.302840 31.359806

x2 0.050977 0.262696 0.194052

x3 0.456077 0.217973 2.092356

Number of observations = 100 Number of estimated parameters = 4
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Obtain an equal-tailed confidence interval for the coefficient β1 at confidence
level 95%, using the standard normal distribution.

For a bootstrap confidence interval, the following bootstrap DGP was used:

y∗ = β̂0ι+ β̂1x1 + β̂2x2 + β̂3x3 + u∗,

the β̂i, i = 0, 1, 2, 3 being the OLS estimates from running the regression (2). The
bootstrap disturbances u∗ were obtained by resampling the residuals û from (2).
The bootstrap statistics were computed as

τ∗b = (β∗
1 − β̂1)/se

∗
1, b = 1, . . . , 199,

where β∗
1 and se∗1 are respectively the OLS estimate and standard error of β1 from

regressing y∗ on the regressors in (2). Explain why and how the (empirical) disti-
bution of the τ∗b can be used to construct a bootstrap confidence interval for β1.

The τ∗b were sorted from smallest to greatest. The first 12 order statistics were

−2.868238,−2.548953,−2.213190,−2.066852,−2.037952,−1.993715,

−1.933711,−1.854560,−1.847543,−1.721334,−1.652404,−1.645914,

and the last 12 were

1.571601, 1.607258, 1.665539, 1.693339, 1.763482, 1.780297,

1.827205, 1.852331, 1.930293, 2.123498, 2.218978, 2.593901.

Determine the upper and lower limits of the equal-tailed bootstrap confidence in-
terval at confidence level 95%.

Determine the shortest, not necessarily equal-tailed, bootstrap confidence interval
at 95% confidence. Explain how you went about this.

4. The model with AR(1) disturbances can be written as follows:

yt = Xtβ + ρyt−1 − ρXt−1β + ut, (3)

where we may assume that the disturbances are white noise. This nonlinear regres-
sion is a special case of the linear regression

yt = Xtβ + ρyt−1 +Xt−1γ + ut, (4)

subject to the nonlinear restrictions given by γ + ρβ = 0. These restrictions are
known as the common-factor restrictions, since they say that the vectors β and γ
are proportional, with a common factor −ρ of proportionality.

The file
https://russell-davidson.research.mcgill.ca/data/e662dec24.2.dat

https://russell-davidson.research.mcgill.ca/data/e662dec24.2.dat
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contains 80 observations on variables y, x1, x2, and x3. With X = [ι x1 x2 x3]
and β = [α

.... β1
.... β2

.... β3], estimate the unrestricted model (4) by OLS, and obtain

estimates β̂ and ρ̂ of the parameters β and ρ. (Warning: the lagged constant is
just the constant; take care to avoid collinear regressors.)

Construct the Gauss-Newton regression (GNR) corresponding to the restricted

model (3), and evaluate its regressand and regressors at β̂ and ρ̂. Obtain an asymp-
totic F statistic to test the common-factor restrictions, and state the degrees of free-
dom of its asymptotic distribution, giving your reasoning for the answer. Express
the result of the test as an asymptotic P value.

Perform a bootstrap test of the same null hypothesis, namely that the common-
factor restrictions hold. Give the explicit form of the bootstrap DGP, and explain
why it satisfies Golden Rule 1.

If possible, estimate the restricted model (3) by nonlinear least squares, and use the
result to get another version of the F statistic for the null hypothesis. How might
you modify the bootstrap DGP in an attempt to satisfy Golden Rule 2?

5. If data are clustered in a linear regression model, the regression can be repre-
sented as

y ≡


y1

y2
...
yG

 = Xβ + u ≡


X1

X2
...

XG

β +


u1

u2
...

uG

,
where the data are divided into G clusters, indexed by g. The g th cluster has
ng observations. It is shown in the textbook that the covariance matrix of the OLS

estimator β̂ is

(X⊤X)−1X⊤ΩX(X⊤X)−1

= (X⊤X)−1

(
G∑

g=1

Xg
⊤ΩgXg

)
(X⊤X)−1, (5)

where Ωg is the ng × ng covariance matrix of the disturbances ug in cluster g.

Consider the very special case mentioned in the textbook, where ng = m for all
g = 1, . . . , G, and Xg has only one column, with every element equal to xg. If
we denote by ι the m-vector with every element equal to one, then we may write
Xg = xgι. The parameter vector β now has only one component, which we write

as β, and its OLS estimator as β̂.

The disturbances are characterised by an error-components model:

ugi = vg + εgi, vg ∼ IID(0, σ2
v), εgi ∼ IID(0, σ2

ε),

for i = 1, . . . ,m, g = 1, . . . , G. Here vg is a random variable that affects every
observation in cluster g and no observation in any other cluster, while εgi is an
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idiosyncratic shock that affects only the single observation gi. This model implies
that

Var(ugi) = σ2
v + σ2

ε and cov(ugi, ugj) = σ2
v ,

so that

ρ ≡ cov(ugi, ugj)

Var(ugi)
=

σ2
v

σ2
v + σ2

ε

for all g and i ̸= j.

Thus all the intra-cluster correlations are the same and equal to ρ. Show that
Ωg = σ2

vιι
⊤+ σ2

εI, where I is the m×m identity matrix.

If the clustering is ignored, the variance of β̂ would be wrongly thought to be equal
to σ2(X⊤X)−1, which, for the special case considered here, is

(σ2
v + σ2

ε)
[ G∑
g=1

Xg
⊤Xg

]−1

. (6)

The true variance is given by the formula (5). Show that this formula gives for our
special case a variance equal to

(σ2
ε +mσ2

v)
[
m

G∑
g=1

x2
g

]−1

, (7)

so that the ratio of the true variance (7) to the incorrect variance (6) is, as stated
in the textbook, 1 + (m− 1)ρ.

6. The one-period return on a financial asset can be modelled as a normal ran-
dom variable W, with expectation zero and variance σ2, plus a “jump” variable J ,
independent of W . The variable J is equal to Q(γ + δX), where X and Q are
mutually independent, with X ∼ N(0, 1) and Q a Bernoulli (binary) variable, with

Q =

{
1 with probability p
0 with probability 1− p.

What are the expectation and variance of the return W +J? Linearise these in the
two limits in which p → 1 and p → 0.

7. The file at
https://russell-davidson.research.mcgill.ca/data/e662dec24.dat

contains 60 observations on three variables, y, x1, and x2.

Perform a simulation experiment to investigate the properties of the following test
with a null of homoskedasticity against an alternative of heteroskedasticity.

The DGP under the null is

yt = α+ xt1β1 + xt2β2 + σut, (8)

https://russell-davidson.research.mcgill.ca/data/e662dec24.dat
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where α = −30, β1 = 4, β2 = −3, σ = 100, and the ut are independent standard
normal disturbances. It is clear that this DGP satisfies the null. For each of
N replications, generate the dependent variable y and run regression (8). Save the
vector of residuals û, and run the testing regression

û2
t = bδ +Ztγ + residual, t = 1, . . . , 60,

(which is equation (9.23) in the textbook), with Zt the following row matrix:

Zt = [xt1 xt2 x2
t1 x2

t2 xt1xt2], (9)

essentially the matrix of squares and cross-products of the regressors in (8). The
test statistic is n times the centred R2 from (9) (n = 60). At the same time, repeat
the calculation of the test statistic under a different DGP:

yt = α+ xt1β1 + xt2β2 + σxt2ut, (10)

where there is now heteroskedasticity.

For the null DGP only, perform a bootstrap test, using a bootstrap DGP with
disturbances resampled from the residuals ût.

Display your results graphically. For the asymptotic tests, graph the empirical dis-
tribution functions (EDFs) of the N realisations of the test statistics under the null
and the alternative, and, in the same graph, plot the CDF of the χ2(5) distribution
(chi-squared with 5 degrees of freedom), which is the nominal asymptotic distribu-
tion of the statistic under the null. For the bootstrap test, make a separate graph,
in which you plot the EDF of the bootstrap P value.

(You should choose N and B, the number of bootstrap repetitions, according to
the computing power you have available.)

The nominal distribution of the statistic under the alternative DGP (10) is non-
central χ2 with 5 degrees of freedom and some noncentrality parameter (NCP) Λ.
Estimate Λ by computing the mean of the statistics realised under the alternative.


