Backpropagation
The treatment here is taken mainly from

Efron, B. and T. Hastie (2016). Computer Age Statistical Inference, Cambridge University
Press, pp 355-357.

Consider a deep artificial neural network, also known as a multilayer perceptron. The
number of layers is K, and layers are indexed by £k = 1,2,..., K. Thus the input layer
corresponds to k = 1, and the output layer to £ = K. Instances have p features, z1, ..., zp,
and, for each instance that is fed to the network, the input layer gets p nodes containing
the features, z;, 7 =1,...,p.

Hidden layers are indexed by k = 2,..., K — 1. The hidden layer k£ contains pj units (or

nodes, or neurons). Units ¢ in layer k receive inputs a? 1 j=1,...,pp_1 from the units

in the layer underneath. For k = 2, the inputs are a} = xj. The inputs are then subjected

to an affine transformation, which, for hidden layer k, can be written in vector-matrix
notation as follows:
2F = Whlgh—1

k 1

where 2" is a pp-vector, W*~1 is a p, x pr_1 matrix of weights and biases, and a*~! is
a pg—1 vector of inputs. If layer k is not dense, or fully connected, then some elements of
WE=1 are equal to zero.

The vector z* is now transformed by a nonlinear activation function ¢* which acts element-
wise on the vector z* in order to generate the pj-vector a* of activations that are input
into layer k + 1. We may write a* = g*(z*) is slightly unconventional notation.

When we get to the output layer, the inputs from layer K — 1 are handled in a way that
depends on what the task is. For instance, if the network is a classifier of M classes, the
number of nodes in this layer would be px = M. Input would first be subjected to an
affine transformation as usual, with matrix WX~! Activation might then generate an
M-vector of probabilities using the softmax function. This would look like

oK = eXP(ang)

m

M b
Zj:l eXP(ZJK)

where the Z]K are the components of the vector z¥. For a regression task, the activation
might well be just the identity function.

Next comes the computation of the contribution to the loss function from this instance.

Denote this by L(a®). The above describes a forward pass. The entire set of matrices W*

is present throughout in memory, and node ¢ in layer k saves its inputs 2} and its activation
k

ag, L =1,...,pk.

Backpropagation is now used in order to compute the partial derivatives of the con-
tribution L(a”) from this instance with respect to all the elements of all the matrices
Wk k=1,...,K.



1. For unit ¢ in the output layer, £ = 1,..., pi, compute a (partial) derivative:

_ — K
L — azg{ 8@5{ g (Zé )7

where the dot denotes differentiation of a scalar function with respect to its scalar
argument.

2. For layers k = K — 1,...,2, and for node ¢ in layer k, £ = 1,..., px, compute

Pr+1

ot = (3 what )b
j=1

ko - k
where w, is an element of the pyi1 X py matrix W,

3. The partial derivatives for the elements of W* are then

OL
8w§“g

_ kgk+1
—ajéﬁ )

For stochastic gradient descent, the partial derivatives calculated as above are averaged
over all the instances in a mini-batch, and this is used as the gradient in the updating of
all the matrices W* before the next epoch, that is, pass through the data.



