Backpropagation

The treatment here is taken mainly from

Efron, B. and T. Hastie (2016). Computer Age Statistical Inference, Cambridge University Press, pp 355-357.

Consider a deep artificial neural network, also known as a multilayer perceptron. The number of layers is K, and layers are indexed by k = 1, 2, ..., K. Thus the input layer corresponds to k = 1, and the output layer to k = K. Instances have p features, $x_1, ..., x_p$, and, for each instance that is fed to the network, the input layer gets p nodes containing the features, $x_j, j = 1, ..., p$.

Hidden layers are indexed by k = 2, ..., K - 1. The hidden layer k contains p_k units (or nodes, or neurons). Units ℓ in layer k receive inputs a_j^{k-1} , $j = 1, ..., p_{k-1}$ from the units in the layer underneath. For k = 2, the inputs are $a_j^1 = x_j$. The inputs are then subjected to an affine transformation, which, for hidden layer k, can be written in vector-matrix notation as follows:

$$\boldsymbol{z}^k = \boldsymbol{W}^{k-1} \boldsymbol{a}^{k-1},$$

where \mathbf{z}^k is a p_k -vector, \mathbf{W}^{k-1} is a $p_k \times p_{k-1}$ matrix of weights and biases, and \mathbf{a}^{k-1} is a p_{k-1} vector of inputs. If layer k is not dense, or fully connected, then some elements of \mathbf{W}^{k-1} are equal to zero.

The vector \mathbf{z}^k is now transformed by a nonlinear activation function g^k which acts elementwise on the vector \mathbf{z}^k in order to generate the p_k -vector \mathbf{a}^k of activations that are input into layer k + 1. We may write $\mathbf{a}^k = g^k(\mathbf{z}^k)$ is slightly unconventional notation.

When we get to the output layer, the inputs from layer K-1 are handled in a way that depends on what the task is. For instance, if the network is a classifier of M classes, the number of nodes in this layer would be $p_K = M$. Input would first be subjected to an affine transformation as usual, with matrix \mathbf{W}^{K-1} . Activation might then generate an M-vector of probabilities using the softmax function. This would look like

$$a_m^K = \frac{\exp(z_m^K)}{\sum_{j=1}^M \exp(z_j^K)},$$

where the z_j^K are the components of the vector \boldsymbol{z}^K . For a regression task, the activation might well be just the identity function.

Next comes the computation of the contribution to the loss function from this instance. Denote this by $L(\boldsymbol{a}^{K})$. The above describes a forward pass. The entire set of matrices \boldsymbol{W}^{k} is present throughout in memory, and node ℓ in layer k saves its inputs z_{ℓ}^{k} and its activation a_{ℓ}^{k} , $\ell = 1, \ldots, p_{k}$.

Backpropagation is now used in order to compute the partial derivatives of the contribution $L(\mathbf{a}^k)$ from this instance with respect to all the elements of all the matrices \mathbf{W}^k , $k = 1, \ldots, K$. 1. For unit ℓ in the output layer, $\ell = 1, \ldots, p_k$, compute a (partial) derivative:

$$\delta_\ell^K = \frac{\partial L}{\partial z_\ell^K} = \frac{\partial L}{\partial a_\ell^K} \; \dot{g}^K(z_\ell^K),$$

where the dot denotes differentiation of a scalar function with respect to its scalar argument.

2. For layers k = K - 1, ..., 2, and for node ℓ in layer $k, \ell = 1, ..., p_k$, compute

$$\delta_{\ell}^{k} = \left(\sum_{j=1}^{p_{k+1}} w_{j\ell}^{k} \delta_{j}^{k+1}\right) \dot{g}^{k}(z_{\ell}^{k}),$$

where $w_{j\ell}^k$ is an element of the $p_{k+1} \times p_k$ matrix \boldsymbol{W}^k .

3. The partial derivatives for the elements of \boldsymbol{W}^k are then

$$\frac{\partial L}{\partial w_{j\ell}^k} = a_j^k \delta_\ell^{k+1}.$$

For stochastic gradient descent, the partial derivatives calculated as above are averaged over all the instances in a mini-batch, and this is used as the gradient in the updating of all the matrices W^k before the next epoch, that is, pass through the data.