
Backpropagation

The treatment here is taken mainly from

Efron, B. and T. Hastie (2016). Computer Age Statistical Inference, Cambridge University
Press, pp 355-357.

Consider a deep artificial neural network, also known as a multilayer perceptron. The
number of layers is K, and layers are indexed by k = 1, 2, . . . ,K. Thus the input layer
corresponds to k = 1, and the output layer to k = K. Instances have p features, x1, . . . , xp,
and, for each instance that is fed to the network, the input layer gets p nodes containing
the features, xj , j = 1, . . . , p.

Hidden layers are indexed by k = 2, . . . ,K − 1. The hidden layer k contains pk units (or
nodes, or neurons). Units ℓ in layer k receive inputs ak−1

j , j = 1, . . . , pk−1 from the units

in the layer underneath. For k = 2, the inputs are a1j = xj . The inputs are then subjected
to an affine transformation, which, for hidden layer k, can be written in vector-matrix
notation as follows:

zk = W k−1ak−1,

where zk is a pk-vector, W
k−1 is a pk × pk−1 matrix of weights and biases, and ak−1 is

a pk−1 vector of inputs. If layer k is not dense, or fully connected, then some elements of
W k−1 are equal to zero.

The vector zk is now transformed by a nonlinear activation function gk which acts element-
wise on the vector zk in order to generate the pk-vector ak of activations that are input
into layer k + 1. We may write ak = gk(zk) is slightly unconventional notation.

When we get to the output layer, the inputs from layer K − 1 are handled in a way that
depends on what the task is. For instance, if the network is a classifier of M classes, the
number of nodes in this layer would be pK = M . Input would first be subjected to an
affine transformation as usual, with matrix WK−1. Activation might then generate an
M -vector of probabilities using the softmax function. This would look like

aKm =
exp(zKm)∑M
j=1 exp(z

K
j )

,

where the zKj are the components of the vector zK . For a regression task, the activation
might well be just the identity function.

Next comes the computation of the contribution to the loss function from this instance.
Denote this by L(aK). The above describes a forward pass. The entire set of matrices W k

is present throughout in memory, and node ℓ in layer k saves its inputs zkℓ and its activation
akℓ , ℓ = 1, . . . , pk.

Backpropagation is now used in order to compute the partial derivatives of the con-
tribution L(ak) from this instance with respect to all the elements of all the matrices
W k, k = 1, . . . ,K.

1



1. For unit ℓ in the output layer, ℓ = 1, . . . , pk, compute a (partial) derivative:

δKℓ =
∂L

∂zKℓ
=

∂L

∂aKℓ
ġK(zKℓ ),

where the dot denotes differentiation of a scalar function with respect to its scalar
argument.

2. For layers k = K − 1, . . . , 2, and for node ℓ in layer k, ℓ = 1, . . . , pk, compute

δkℓ =
(pk+1∑

j=1

wk
jℓδ

k+1
j

)
ġk(zkℓ ),

where wk
jℓ is an element of the pk+1 × pk matrix W k.

3. The partial derivatives for the elements of W k are then

∂L

∂wk
jℓ

= akj δ
k+1
ℓ .

For stochastic gradient descent, the partial derivatives calculated as above are averaged
over all the instances in a mini-batch, and this is used as the gradient in the updating of
all the matrices W k before the next epoch, that is, pass through the data.

2


