
An Almost-Sure Functional Central Limit Theorem

1. Introduction

If {zt} is a sequence of IID random variables with E(zt) = 0 and E(z2
t ) = 1, then the

central limit theorem tells us that the sequence with typical element

Zn ≡ n−1/2
n∑

t=1

zt (1)

is asymptotically normal. Specifically, the sequence {Zn} tends in distribution to the
standard normal distribution:

Zn −→
D

N(0, 1).

We may define a stochastic process on the [0, 1] interval by means of the sequence {zt} as
follows:

Wn(t) = n−1/2

bntc∑
t=1

zt, t ∈ [0, 1]. (2)

Then the functional central limit theorem tells us that, as n →∞,

Wn(t) −→
D

W (t),

where W (t) is a standard Wiener process, or Brownian motion, on [0, 1].

A difficulty with this construction is that the limit is only in distribution, and not in
probability, still less almost sure. To see this, suppose that Zn → Z in probability, where
Z is some random variable. Then we show that Z and the summands zt are independent.
Note that, for the given t,

Ztn ≡ n−1/2
t+n∑

s=t+1

zs

also tends to N(0,1) in distribution as n → ∞. Under the assumption that Zn → Z in
probability, it follows also that Ztn → Z in probability. Consider the joint characteristic
function of zt and Z. It is, for arbitrary real arguments s and r,

E exp(isZ + irzt) = lim
n→∞

Eexp(isZtn + irzt)

= lim
n→∞

Eexp(isZtn)E exp(irzt) (Ztn is independent of zt)

= E exp(isZ)E exp(irzt).

The factorisation of the joint characteristic function demonstrates the independence of Z
and zt, for any t. Intuitively, the weight of zt in the partial sums Zn gets smaller as n →∞,
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and in the limit we have independence. A straightforward extension of this proof shows
that Zn is independent of Z for any n.

Now Z ∼ N(0, 1), and so −Z ∼ N(0, 1) as well. By independence, therefore, the joint
distribution of Zn and Z is the same as that of Zn and −Z. Consequently,

Pr(|Zn − Z| > ε) = Pr(|Zn + Z| > ε)

for all n and all ε > 0. But this means that Zn → −Z in probability, which is incompatible
with Zn → Z unless Z = 0. But that too is contradicted by the fact that Z ∼ N(0, 1), and
so we conclude that the probability limit Z cannot exist.

2. A Different Construction

Despite the above result, it is possible to construct a sequence {Zn} of variables, where
each Zn has the same distribution as the partial sum (1) with IID summands, and Zn → Z
almost surely, with Z ∼ N(0, 1). The key is to fill in the terms of the partial sum from the
middle, rather than continually appending new, independent, terms at the end.

We begin with the simplest case, in which the summands zt are NID(0,1) themselves. As we
will see, the construction provides as a by-product a means for simulating a Wiener process
in continuous time directly. The starting point is to generate the realisation of W (1), of
which the marginal distribution is just N(0,1). At step i of the construction, we have a
sequence zti, t = 0, 1, . . . , 2i, of NID(0,1) variables that define the stochastic process W i(t)
through the formula (2) with n = 2i. The process W i(t) is such that, for all j < i,

W j(2−jk) = W i(2−jk) for k = 0, 1, . . . 2j .

This means that the values of the processes W i at the dyadic points 2−jk, k = 0, 1, . . . , 2j ,
are the same for all i with i ≥ j.

We can simplify notation by omitting obvious powers of 2. Thus, instead of W i(2−ik),
we may write simply W i(k) for k = 0, 1, . . . , 2i. To go from step i to step i + 1, we must
establish the values of W i+1 at the points 2−(i+1)(2k+1), k = 0, 1, . . . , 2i−1. These are the
points midway between the points at which values are permanently established at step i,
and, with them, constitute the set of points at which values are permanently established at
step i+1. For the construction to be correct, it must be the case that W i(k) ∼ N(0, 2−ik).
In addition, we require that the increments W i(k + 1)−W i(k) ∼ N(0, 2−i), and that they
are independent across k. Suppose that we have achieved these requirements at step i; we
show how to maintain them at step i+1. Note that these requirements are enough for our
claim that the distribution of

Z2i ≡ 2−i/2
2i−1∑

k=0

2i/2
(
W i(k + 1)−W i(k)

)

is that of a sum of 2i NID(0,1) variables, divided by 2i/2.
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What then is the distribution of W i+1(2k + 1) conditional on the W i(k), k = 0, 1, . . . , 2i?
Since W i(0) = 0 by construction, the conditioning is equivalent to conditioning on the
increments W i(k + 1) − W i(k), k = 0, 1, . . . , 2i − 1. The conditional distribution is es-
tablished if we can find that of the increment W i+1(2k + 1) − W i+1(2k), which is just
W i+1(2k + 1)−W i(k), since the value at 2−ik is permanently established at step i. Since
we want both this increment and the next one, namely W i(k + 1)−W i+1(2k + 1), to be
independent of all other summands at step i + 1, we see that it is enough to condition on
W i(k + 1)−W i(k), which is independent of all the other step i increments.

Let
X1 = 2i/2

(
W i+1(2k + 1)−W i(k)

)
and

X2 = 2i/2
(
W i(k + 1)−W i+1(2k + 1)

)
.

Then we require that X1 and X2 should be independent, each with marginal distribution
N(0, 1/2), and such that X1 + X2 = 2i/2

(
W i(k + 1) − W i(k)

)
, of which the marginal

distribution is N(0,1). The joint distribution of X1 and X ≡ X1 + X2 is normal, with
covariance matrix [

2−1 2−1

2−1 1

]
.

The correlation is therefore 1/
√

2. It follows that the expectation of X1 conditional on X

is X/2, and the conditional variance is 1/4. Thus we may set X1 = 1−
2
(X + U), where

U ∼ N(0, 1), independent of any random number used up to step i. We can check that,
with this definition, Var(X1) = 1/2, as required. In addition X2 = X −X1 = (X − U)/2
has a variance of 1/2. Further, the covariance of X1 and X2 is

cov(X1, X2) = 1−
4
E

(
(X + U)(X − U)

)
= 1−

4
(1− 1) = 0,

so that X1 and X2 are independent. In terms of the W i, we have, for k = 0, 1, . . . , 2i − 1,

W i+1(2k + 1) = 1−
2

(
W i(k) + W i(k + 1)

)
+ 2−(i+2)/2Ui+1,k,

where we have indexed the innovation U so as to make it clear when it is used in the whole
procedure.

We may denote by Fi the sigma-algebra generated by all the innovations used up to
and including step i. Then F0 is generated by U0,0 ∼ N(0, 1), and the process W i is
Fi--measurable.

For any number t ∈ [0, 1] with a finite dyadic expansion

t =
n∑

j=1

bj2−j , bj = 0 or 1,

for some finite n, it is clear that the sequence {W i(t)} converges to Wn(t) as i →∞, since
W i(t) = Wn(t) for all i ≥ n. It remains to find the best argument to show that {W i(t)}
converges almost surely for all real t ∈ [0, 1].
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3. Non-Gaussian Innovations

If the zt in (1) are not Gaussian, then the distribution of Zn depends in general on n.
Our goal is still to construct a sequence {Zn} such that, for each n, the distribution of Zn

is that of a sum of n IID random variables, each of expectation 0 and variance 1, drawn
from whatever non-Gaussian distribution we wish, subject only to the requirement that
these sums obey the central limit theorem, and so tend in distribution to N(0,1). However,
unlike (1), we wish our sequence to converge almost surely to some well-defined N(0,1)
variable.

The innovations Ui,k are now IID drawings from the uniform U(0,1) distribution. Let F be
the CDF of the desired distribution for the summands. Then let Fi be the distribution of
a sum of i IID variables each of which has distribution F . Clearly the Fi can be defined
recursively by convolutions:

F1(x) = F (x), Fi+1(x) =
∫

Fi(x− y) dF (y).

We also need the distribution of a sum of 2i IID summands conditional on the value of
this sum plus another such sum, independent of the first. We denote this conditional CDF
by F2i|2i+1 . To avoid undue complexity, we assume that all the distributions we consider,
the Fi and the F2i|2i+1 , are strictly increasing functions of their argument, and thus have
inverses, Gi and G2i|2i+1 , say.

We begin by generating W 0(1) as G1(U0,0). Thus W 0(1) follows the distribution with
CDF F . At step 1, we wish W 1(2) to have a different distribution from W 0(1), namely,
the F2 distribution, divided by

√
2. Thus we set W 1(2) = G2(U0,0)/

√
2. Next, we wish

to generate W 1(1), which should follow the F1 distribution, divided by
√

2. We therefore
draw a variable from the conditional distribution F1|2, with the value of the conditioning
variable given by

√
2W 1(2), and then have

W 1(1) = 2−1/2G1|2
(
U1,0 |

√
2W 1(2)

)
,

where U1,0 is a F1--measurable U(0,1) variable.

Here, note that, if U1 and U2 are independent U(0,1) variables, and if X and Y are
random variables such that FX is the marginal CDF of X and FY |X(Y |X) is the CDF
of Y conditional on X, then the couple

F−1
X (U1) and F−1

Y |X
(
U2 |F−1

X (U1)
)

follows the joint distribution of X and Y . (Proof in Appendix.)

Now consider step i. We begin by computing quantities V i(k), which have the distributions
of sums of IID variables from F1. Subsequently, we obtain all the W i(k) by dividing the
V i(k) by 2i/2. We begin by evaluating V i(2i) as G2i(U0,0). This means that V i(2i) is
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distributed like the sum of 2i IID variables from F1. Then we compute V i(2i−1), which is
the value at the midpoint of the interval. It is generated as

V i(2i−1) = G2i−1|2i

(
U1,0 |V i(2i)

)
,

so that it has the distribution of a sum of 2i−1 summands from F1, conditional on being
the first 2i−1 out of the 2i summands that add up to V i(2i). Then we interpolate at the
1/4 and 3/4 points. We have

V i(2i−2) = G2i−2|2i−1

(
U2,0 |V i(2i−1)

)

and
V i(3.2i−2) = V i(2i−1) + G2i−2|2i−1

(
U2,1 |V i(2i)− V i(2i−1)

)
.

For the last of these, we reason again in terms of increments. The conditioning value,
V i(2i)−V i(2i−1), is the sum of the last 2i−1 summands, and we add to the value V i(2i−1)
an increment that is half of these.

The approach above can now be generalised with no special difficulty. The main difference
relative to the Gaussian case is that, at each step i, everything must be reevaluated,
although new random numbers are used only for the newly interpolated points. The first
two steps are described in the preceding paragraph, where we obtain values of the process
at step i at the points 0, 1/4, 1/2, 3/4, and 1. For the endpoint, we use the random number
U0,0; for the midpoint U1,0, and for the quarter and three-quarter points U2,0 and U2,1.
There are 2k−1 points in the [0, 1] interval of the form (2j +1)/2k, and these points use the
2k−1 random numbers Uk,j , j = 0, 1, . . . , 2k−1 − 1, that belong to Fk. At step i ≥ k, these
random numbers are used to generate the quantities V i(2i−k(2j + 1)), which are therefore
all Fk--measurable. On division by 2i/2, we get the W i(2i−k(2j +1)), which are the values
of the step-i process at the points 2−k(2j + 1) of the [0, 1] interval.

At stage k of step i, we generate an increment, conditional on a larger increment that is
Fk−1--measurable. The appropriate formula is

V i(2i−k(2j + 1)) = V i(2i−k+1j) + G2i−k|2i−k+1

(
Uk,j |V i(2i−k+1(j + 1))− V i(2i−k+1j)

)
.

This formula gives us the values at step i of those V that are Fk--measurable but not
Fk−1--measurable. At this point, everything that is Fk−1--measurable for step i has
been generated, which means that the values V i(2i−k+1j) for all j = 0, 1, . . . , 2k−1 − 1
are available, that is, the values that define the step-i process at the dyadic points
j2−k+1. We may check that the increment V i(2i−k(2j + 1)) − V i(2i−k+1j) is the sum
of 2i−k(2j + 1)− 2i−k+1j, or 2i−k, summands, and that the conditioning increment,
V i(2i−k+1(j + 1)) − V i(2i−k+1j), is the sum of 2i−k+1 summands, as indicated by the
inverse CDF G2i−k|2i−k+1 .
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4. An Example

It is not usually possible to obtain analytic expressions for the CDFs Fi and F2i|2i+1 that
we need for a numerical implementation of the construction of the last section. However,
it can be done with little trouble if we choose for the base distribution F a chi-squared
distribution, suitably centred and standardised, since sums of chi-squared variables are
also chi-squared, with more degrees of freedom.

In practice, it is easiest just the generate sums of chi-squared variables, and centre and
standardise them at the end. Suppose that we use the distribution with one degree of
freedom for the base distribution. Then a sum of i such IID variables has the χ2 distribution
with i degrees of freedom. We also need the distribution of the sum of n IID χ2

1 variables
conditional on their being the first n out of a total of 2n variables for which we give the
value of the sum. The density of χ2

n is

fn(x) =
xn/2−1e−x/2

2n/2Γ(n/2)
,

where Γ(·) is the gamma function. If X and Y −X are two independent χ2
n variables, then

their joint density is

fn(x)fn(y − x) =
xn/2−1(y − x)n/2−1e−y/2

2n(Γ(n/2))2
. (3)

The density of X conditional on Y is the density of the distribution Fn|2n that we seek.
It is the joint density (3) divided by the marginal density of Y , which is the χ2

2n density.
We have

fn(x)fn(y − x)
f2n(y)

=
Γ(n)

(Γ(n/2))2
xn/2−1(y − x)n/2−1

yn−1

=
1

yB(n/2, n/2)

(
x

y

)n/2−1 (
1− x

y

)n/2−1

(4),

where B(·, ·) is the beta function, defined by the relation

B(x, y) =
Γ(x + y)
Γ(x)Γ(y)

.

The CDF associated with the conditional density (4) is

Fn|2n(x | y) =
1

yB(n/2, n/2)

∫ x

0

(
z

y

)n/2−1 (
1− z

y

)n/2−1

dz

=
1

B(n/2, n/2)

∫ x/y

0

wn/2−1(1− w)n/2−1dw

= Ix/y

(n

2
,
n

2

)
, (5)
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where Iz(a, b) is the incomplete beta function; see Abramowitz and Stegun (1965), sec-
tion 26.5.1, defined by the equation

Iz(a, b) =
1

B(a, b)

∫ z

0

ta−1(1− t)b−1dt, 0 ≤ x ≤ 1.

Now the CDF of Snedecor’s F distribution with n1 and n2 degrees of freedom is
1− Iz(n2/2, n1/2), where z = n2/(n2 + n1F ), F being the argument of the CDF. Thus,
if Fn,n denotes a random variable distributed as F with n and n degrees of freedom, we
have that

Pr(Fn,n ≤ f) = 1− I1/(1+f)

(n

2
,
n

2

)
and Pr(Fn,n > f) = I1/(1+f)

(n

2
,
n

2

)
.

If we set z = 1/(1 + f), so that f = 1/z − 1, then

Iz

(n

2
,
n

2

)
= Pr

(
Fn,n >

1
z
− 1

)
= Pr

( 1
1 + Fn,n

< z
)
. (6)

If X is a random variable of which the distribution is given by the CDF (5), then

Pr(X ≤ x) = Pr
(X

y
≤ x

y

)
= Ix/y

(n

2
,
n

2

)
,

and so
Pr

(X

y
≤ z

)
= Iz

(n

2
,
n

2

)
. (7)

Comparison of (6) and (7) shows that X/y and 1/(1 + Fn,n) have the same distribution,
and so X can be generated as y/(1 + Fn,n).

In the construction of the preceding section, we start from a random number drawn from
the U(0,1) distribution, and apply the inverse of the CDF (5) to it. Let Gn,n denote
the inverse of the CDF of the F distribution with n and n degrees of freedom. Thus,
if U ∼ U(0, 1), Gn,n(U) ∼ F (n, n), in obvious notation. From this it follows that X ≡
y/(1 + Gn,n(U)) follows the distribution with CDF (5). Thus the function G2i|2i+1 used
in the construction satisfies the relation

G2i|2i+1(U |V ) =
V

1 + Gn,n(U)
. (8)

Code for the Construction

The following Ects code can be used in order to perform the construction with chi-squared
variables. The code goes up to step 16, but the only impediment to going further is
computing time.

set n = 16 # Number of steps
setrng kiss
set rt2 = sqrt(2)

sample 1 2^(n-1)
gen U = random(0,1) # One-time generation of all random numbers
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mat fsp = rowcat(0,1) # These are used subsequently for
mat bsp = rowcat(1,0) # interpolation of new values
set linestyle = 1 # For the plot command

silent
noecho
set i = 0 # index of step
set dw = 0 # for increments
set w = 0 # for newly interpolated values

while i < n
set W = chicrit(U(1),2^i) # Begin with the endpoint
set j = 0 # index of sigma algebra
while j < i

sample 1 2^j
gen dW = W-lag(1,W) # create increments
sample 2^j+1 2^(j+1)
del dw
gen dw = lag(2^j,dW) # move increments down
set j = j+1
set l = i-j
gen dw = dw/(1+fishcrit(1-U,2^l,2^l)) # This is (8)
sample 1 2^(j-1) # Begin juggling to interpolate
mat dw = dw(2^(j-1)+1,2^j,1,1)
del w
gen w = lag(1,W)+dw
sample 1 2^j
mat w = kron(w,bsp)
mat W = kron(W,fsp)
gen W = W+w # This completes step j

end

set fac = rt2^(-(i+1)) # Scaling factor
gen W = fac*(W-time(0)) # Centring

sample 1 2^i+1
gen x = lag(1,W) # Move down so as to have W(0) = 0
set i = i+1

end

quit

The same procedure can be used for the simpler Gaussian construction of section 2, by
replacing the fishcrit function by normcrit, the inverse of the standard normal CDF.
The details are omitted.
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Almost Sure Convergence to a Brownian Bridge

5. The Brownian Bridge

Consider an IID sample ui, i = 1, . . . , n drawn from the U(0, 1) distribution. The empirical
distribution function, or EDF, of this sample, is

F̂ (x) =
1
n

n∑

i=1

I(xi ≤ x), x ∈ [0, 1]. (9)

As usual, I(·) is an indicator function of a Boolean argument. The standard asymptotic
result about EDFs is that, as n →∞, n1/2(F̂ (x)− x) tends in distribution to a Brownian
bridge, B(x), that is, a Gaussian stochastic process defined on [0, 1], with expectation zero,
and covariance structure given by

E
(
B(t)B(s)

)
= t(1− s), t ≤ s.

A Brownian bridge can be constructed from a standard Wiener process W (x), by the
relation

B(x) = W (x)− xW (1). (10)

If this is done, then observe that

E
(
B(x)W (1)

)
= E

(
W (x)W (1)

)− xE
(
W 2(1)

)

= x− x = 0,

since the covariance structure of a Wiener process is

E
(
W (t)W (s)

)
= t, t ≤ s.

This implies that the Brownian bridge is independent of W (1). Consequently, the Wiener
process can be constructed from a Brownian bridge B(x) and an independent standard
normal variable Z by the relation

W (x) = B(x) + xZ. (11)

Since we know how to generate a Wiener process, we can obviously generate a Brownian
bridge using (10). A possibly even simpler way is to start the generation of a Wiener process
with the deterministic value of zero for the first round, which gives us W (1). Conditional
on W (1) = 0, the distribution of the Wiener process W (x) is that of a Brownian bridge,
as can be seen directly from (11).
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If an IID sample yi, i = 1, . . . , n, is drawn from a continuous distribution function G, then
the set ui ≡ G(yi) is an IID sample drawn from the U(0, 1) distribution. The EDF of
the yi is

Ĝ(y) =
1
n

n∑

i=1

I(yi ≤ y)

=
1
n

n∑

i=1

I
(
G(yi) ≤ G(y)

)

=
1
n

n∑

i=1

I
(
ui ≤ G(y)

)
= F̂ (G(y)),

where F̂ is the EDF of the ui. It follows that

n1/2
(
Ĝ(y)−G(y)

)
= n1/2

(
F̂ (G(y))−G(y)

)

tends in distribution to B(G(y)).

6. The Construction

We wish to find a sequence of stochastic processes Bn(x) defined on [0, 1] such that
Bn(x) → B(x) almost surely for all x ∈ [0, 1], where B(x) is a Brownian bridge. We
also require that Bn(x) should have, for a set xn

i of points in [0, 1] that becomes dense in
[0, 1] as n → ∞, the distribution of the EDF of an IID sample of n draws from U(0, 1).
Such a sequence would be the analogue of the sequence of stochastic processes Wn(t) that
converges almost surely to a standard Wiener process W (t) where, for an asymptotically
dense set tni , Wn(t) has the distribution of the partial sum n−1/2

∑nt
i=1 xi, where the xi

constitute an IID sample drawn from N(0, 1), or, more generally, from a distribution with
continuous CDF, expectation zero, and unit variance.

We can see from the definition (9) of an EDF that n1/2(F̂ (x) − x) has, for each x, the
structure of something to which a central limit theorem can be applied. We are not
interested, however, in the partial sums of this process. Rather, we wish to focus on the
sum of all n terms as a function of x. For this reason, the construction is somewhat
different from that used for an almost sure functional central limit theorem.

It is convenient to perform the construction, just as for the almost sure central limit
theorem, so that the sample size n takes on only values that are integer powers of 2. In
addition, the points at which the sequence Bn(x) is defined are dyadic points of the form
k2−i, k = 1, . . . , 2i − 1, where n = 2i. For k = 0 and k = 2i, that is for x = 0 and x = 1,
the values Bn(0) = 0 and Bn(1) = 0 are fixed deterministically.

Consider then an IID sample uj , j = 1, . . . , n, of n = 2i drawings from U(0, 1). The EDF
of this sample is such that

F̂ (k2−i) = 2−i
2i∑

j=1

I(uj ≤ k2−i), k = 1, . . . , 2i − 1.
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The summands here are Bernoulli variables, with probability k2−i of being equal to 1.
The distribution of the F̂ (k2−i) can therefore be worked out from the properties of the
multinomial distribution. In particular, we have that

Pr
( 2i∑

j=1

I(uj ≤ k2−i) = m
)

=
(

2i

m

)
(k2−i)m(1− k2−i)2

i−m

= 2−i2i (2i)!
m!(2i −m)!

km(2i − k)2
i−m. (12)

The joint distribution of the values F̂ (k2−i) can however be characterised more simply as
follows. The arguments k2−i, i = 1, . . . , 2i− 1, define a partition of [0, 1] into 2i segments.
If we specify how many of the 2i draws fall into each of these segments, then the values of
the EDF at the arguments k2i are determined. Indeed, let nk denote the number of draws
in the segment [(k − 1)2−i, k2−i], k = 1, . . . , 2i. Then

F̂ (k2−i) = 2−i
k∑

l=1

nl. (13)

Since we must have
∑2i

k=1 nk = 2i, the set of the nk forms a partition of the integer 2i.

Suppose now that the partition is constructed by drawing the uj and dropping them,
still labelled by the index j, into one of the segments. For notational ease, consider first
the problem of dropping m labelled draws into n equally probable slots. The number of
different, equally probable, ways of doing this is nm. If the resulting (unlabelled) partition
is j1, . . . , jn, with

∑n
i=1 ji = m, then this partition could be obtained in m!/(j1! . . . jn!)

different ways. Thus the probability of obtaining the partition j1, . . . , jn is

Pr(j1, . . . , jn) = n−m m!
j1! . . . jn!

.

If we apply this to our problem, where m = n = 2i, we see that

Pr(n1, . . . , n2i) = 2−i2i (2i)!
n1! . . . n2i !

. (14)

This result gives the distribution of the values (13).

To alleviate notational complexity, we denote the process given by 2i draws by Bi(x)
rather than B2i

(x). The construction of a realisation of the process Bi(x) proceeds in
i steps. At the first step, the random number u1

1 is drawn from U(0, 1). (It is understood
henceforth that a random number is a drawing from U(0, 1), independent of all other
random numbers.) This random number is used to determine the quantities ni(0, 1/2) and
ni(1/2, 1), which are the number of draws in the segments [0, 1/2] and [1/2, 1] respectively.

– 11 –



(There is no need to worry whether intervals are open or closed.) Quite generally, we
denote by ni(a, b) the number of draws out of a total of 2i that lie in [a, b].

The marginal distribution of ni(0, 1/2) determines the joint distribution of ni(0, 1/2) and
ni(1/2, 1) because the sum of the two random variables is 2i. Since each I(uj ≤ 0.5) is a
Bernoulli variable with probability 0.5, it follows that

Pr
(
ni(0, 1−

2
) = n) = 2−2i (2i)!

n! (2i − n)!
. (15)

We refer to the discrete distribution of the sum S of m IID Bernoulli variables each with
probability 0.5 as the M(m) distribution, with probabilities

pm
n ≡ Pr(S = n) = 2−m m!

n! (m− n)!
. (16)

Thus the probability (15) is p2i

n . The realisation ni(0, 1/2) is obtained from the random
number u1

1 by the relation

ni(0,1/2)∑

j=0

p2i

j ≤ u1
1 <

ni(0,1/2)+1∑

j=0

p2i

j .

Intuitively, ni(0, 1/2) is the u1
1--quantile of the M(2i) distribution.

When stage k is reached, we require that the quantities ni((l− 1)2−k, l2−k), l = 1, . . . , 2k,
should all be determined. Therefore, the new determinations at stage k are only of the
ni((l − 1)2−k, l2−k) for l even, since, if l is odd, that is, if l = 2m − 1 for a positive
integer m, then (l − 1)2−k = (m− 1)2−k+1, so that, in accordance with our requirement,
ni((m− 1)2−k+1,m2−k+1) has already been determined. But

ni((m− 1)2−k+1, m2−k+1) = ni((l − 1)2−k, (l + 1)2−k)
= ni((l − 1)2−k, l2−k) + ni(l2−k, (l + 1)2−k), (17)

and so only one of the two terms in (17) needs to be realised for the first time at stage k.

Denote the sigma-algebra generated by those variables that are realised at or before stage k
by Fk. Then the variables realised at stage k are realised conditionally on Fk−1. From (17),
we see that what is needed is to partition ni((l − 1)2−k, (l + 1)2−k) into two segments,
with equal probability for a draw in either segment. Thus we use the random numbers
uk

l , l = 1, 3, . . . , 2k − 1 in order to generate the ni((l− 1)2−k, l2−k) as the uk
l --quantiles of

the M(ni((l − 1)2−k, (l + 1)2−k)) distribution. We now claim that the probability of the
stage k partition {ni((l − 1)2−k, l2−k)}, l = 1, . . . , 2k is

Pr
(
{ni((l − 1)2−k, l2−k)l=2k

l=1 }
)

=
2−k2i

(2i)!
∏2k

l=1 ni((l − 1)2−k, l2−k)!
(18)
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The proof is by induction. At stage 1, the only realisation is of ni(0, 1/2), and, from (12)
with k = 2i−1, we see that

Pr
(
(ni(0, 1/2),ni(1/2, 1)) = (n1, n2)

)
= Pr

(
ni(0, 1/2) = n1

)

= 2−i2i (2i)!
n1! n2!

(2i−1)2
i

=
2−2i

(2i)!
n1! n2!

, (19)

where, of course, n1 + n2 = 2i. It is clear that (19) is just (18) for k = 1.

Now suppose that (18) holds with k replaced by k − 1. The new random numbers
at stage k are independent of Fk−1, and so the distribution of ni((l − 1)2−k, l2−k),
l = 1, 3, 5, . . . , 2k − 1, conditional on Fk−1, is M(ni((l − 1)2−k, (l + 1)2−k)). Thus, con-
ditional on Fk−1, the probabilities of the realisations ni((l − 1)2−k, l2−k) for odd l are,
from (16),

2−ni((l−1)2−k,(l+1)2−k) ni((l − 1)2−k, (l + 1)2−k)!
ni((l − 1)2−k, l2−k)! ni(l2−k, (l + 1)2−k)!

. (20)

Since the random numbers uk
l are mutually independent, these probabilities are of mu-

tually independent events, and so the probability of the set {ni((l − 1)2−k, l2−k)}, for
l = 1, 2, . . . , 2k, conditional on Fk−1, is their product.

The product of the powers of 2 that are the first factors in (20) is 2 raised to the power

−
∑

l=1,3,...,2k−1

ni((l − 1)2−k, (l + 1)2−k) = −ni(0, 1) = −2i,

the product of the denominators in (20) is

∏

l=1,3,...,2k−1

ni((l − 1)2−k, l2−k)! ni(l2−k, (l + 1)2−k)! =
2k∏

l=1

ni((l − 1)2−k, l2−k)!,

and the product of the numerators in (20) is

∏

l=1,3,...,2k−1

ni((l − 1)2−k, (l + 1)2−k)! =
2k−1∏
m=1

ni((m− 1)2−k+1,m2−k+1)!.

Thus the product of the probabilities (20) is

2−2i ∏2k−1

m=1 ni((m− 1)2−k+1, m2−k+1)!
∏2k

l=1 ni((l − 1)2−k, l2−k)!
. (21)

The unconditional probability of the stage k − 1 realisations is, by (18) and the induction
hypothesis,

2−(k−1)2i

(2i)!
∏2k−1

m=1 ni((m− 1)2−k+1,m2−k+1)!
. (22)
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Thus the unconditional probability of the stage k realisations, which is the product of the
unconditional probability (22) and the conditional probability (21), is

2−k2i

(2i)!
∏2k

l=1 ni((l − 1)2−k, l2−k)!
,

which is just (18). The induction is therefore complete.

Setting k = i gives the probability of the final configuration ni
1, n

i
2, . . . , n

i
2i , where we note

that ni
l = ni((l − 1)2i, l2i). We find that

Pr(ni
1, . . . , n

i
2i) =

2−i2i

(2i)!
∏2i

l=1 ni
l!

,

which is exactly the distribution (14). Thus our stepwise construction leads to a realisation
from the desired distribution of the EDF of a set of 2i IID drawings from U(0, 1) evaluated
at the dyadic points k2−i. By construction, these EDFs, interpolated as we wish between
the dyadic points, converge almost surely to a limiting process.

7. The Limiting Distribution

The usual result for EDFs demonstrates that the limit of the sequence of stochastic pro-
cesses defined in the previous section as i → ∞ is a Brownian bridge. It is interesting to
show this fact explicitly making use of the properties of the multinomial distribution.

From (13), we have, for the EDF that is element i of the sequence,

F̂ i(k2−i) = 2−i
k∑

l=1

ni
l = 2−ini(0, k2−i).

The expression that converges to a limit as i → ∞ is 2i/2
(
F̂ i(x) − x), for x ∈ [0, 1]. For

element i, we limit attention to values of x equal to one of the dyadic points. For x = k2−i,
2i/2

(
F̂ i(x)− x) becomes 2−i/2(ni(0, k2−i)− k), which we denote as Bi

k.

The distribution of Bi
k is given by that of ni(0, k2−i). From (12),

Pr
(
ni(0, k2−i) = m

)
= Pr

(
Bi

k = 2−i/2(m− k)
)

=
2−i2i

(2i)! km (2i − k)2
i−m

m! (2i −m)!
.

In order to obtain the CDF of Bi
k, we calculate as follows:

Pr(Bi
k ≤ x) =

∑

2−i/2(m−k)≤x

2−i2i

(2i)! km(2i − k)2
i−n

m! (2i −m)!

= 2−i2i

(2i)!
bk+2i/2xc∑

m=0

km(2i − k)2
i−m

m! (2i −m)!
. (23)

Now let k2−i = r. It follows that r ∈ [0, 1]. The probability (23) is

(2i)!
b2ir+2i/2xc∑

m=0

rm(1− r)2
i−m

m! (2i −m)!
.
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In order to find the limit as i → ∞, let N = 2i and let N → ∞. The probability (23)
becomes in this new notation

Pr(Bi
k ≤ x) =

bNr+x
√

Nc∑
m=0

(
N

m

)
rn(1− r)N−m. (24)

We now make use of a result found in Abramowitz and Stegun (1965), equation 26.5.24,
which tells us that

n∑
s=a

(
n

s

)
ps(1− p)n−s = Ip(a, n− a + 1), p ∈ [0, 1], (25)

where Ix(a, b) is the incomplete beta function, defined by

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt, (26)

with B(a, b) the (complete) beta function, defined as

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

=
∫ 1

0

ta−1(1− t)b−1dt,

where Γ(a) is the gamma function. The result (25) can be shown without much trouble
by repeated integration by parts of the definition (26) of the incomplete beta function.

Using (25) in (24) gives us that

Pr(Bi
k ≤ x) = 1−

∑

m=dNr+x
√

Ne

(
N

m

)
rm(1− r)N−n

= 1− Ir(Nr + x
√

N, N(1− r)− x
√

N + 1)

= I1−r(N(1− r)− x
√

N + 1, Nr + x
√

N), (27)

since Ix(a, b) = 1− I1−x(b, a). If this is to correspond to a Brownian bridge, then the limit
distribution of Bi

k should be N(0, r(1 − r)), and so we wish to show that (27) tends to
Φ(x/

√
r(1− r)) as N →∞, where Φ(·) is the standard normal CDF.

An asymptotic expansion is given for the incomplete beta function in Abramowitz and
Stegun (1965), equation 26.5.19, as follows:

Ix(a, b) ∼ Φ(y)− φ(y)
(

a1 +
a2(y − a1)

1 + a2
+

a3(1 + y2/2)
1 + a2

+ . . .

)
, where (28)

y2 = 2
(
(a + b− 1) log

a + b− 1
a + b− 2

+ (a− 1) log
a− 1

(a + b− 1)x
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+(b− 1) log
b− 1

(a + b− 1)(1− x)

)
,

a1 =
2
3
(b− a)

(
(a + b− 2)(a− 1))(b− 1)

)−1/2
,

a2 =
1
12

(
1

a− 1
+

1
b− 1

− 13
a + b− 1

)
, and

a3 = − 8
15

(
a1

(
a2 +

3
a + b− 2

))
.

The variable y is taken negative if x < (a−1)/(a+b−2). Here φ(·) is the standard normal
density. For the expansion of (27), we have a + b = N + 1, and so the argument y is given
by

y2 = 2
(
−N log

(
1− 1

N

)
+

(
N(1− r)− x

√
N

)
log

N(1− r)− x
√

N

N(1− r)

+
(
Nr + x

√
N − 1

)
log

Nr + x
√

N − 1
Nr

)

Taylor expansion of the logarithms gives, with error of order N−1/2,

y2 = 2

[
1− (

N(1− r)− x
√

N
) (

x√
N(1− r)

+
x2

2N(1− r)2

)

+ (Nr + x
√

N − 1)

(
x
√

N − 1
Nr

− (x
√

N − 1)2

2n2r2

)]

= 2
[
1− x

√
N +

x2

1− r
− x2

2(1− r)
+ x

√
N − 1 +

(x
√

N − 1)2

Nr
− (x

√
N − 1)2

2N2r2

]

=
x2

1− r
+

x2

r
=

x2

r(1− r)
.

Further, since a = O(N) and b = O(N), we see that a1 = O(N−1/2), a2 = O(N−1), and
a3 = O(N−3/2). Thus only the first term in (28) contributes to the limit when N → ∞.
The limit of this term is just Φ(y) where y2 = x2/(r(1 − r)). The condition for the sign
of y to be negative is

1− r <
N(1− r)− x

√
N

N − 1
= 1− r +

1− r

N − 1
− x

√
N

N − 1
,

that is, x < N−1/2(1− r). As N →∞, this condition is just x < 0, and so, for all real x,
positive or negative, the limit of (27) is Φ(x/

√
r(1− r)), as we wished to show.
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Appendix

Construction of bivariate variables from random numbers

Let the marginal CDF of X be FX , and the CDF of Y conditional on X be FY |X . The
joint CDF is given as follows:

FX,Y (x, y) = Pr
(
(X ≤ x) ∩ (Y ≤ y)

)

= E
(
I(X ≤ x)I(Y ≤ y)

)

= E
(
E

(
I(X ≤ x)I(Y ≤ y) |X))

= E
(
I(X ≤ x)E

(
I(Y ≤ y) |X))

= E
(
I(X ≤ x)FY |X(y |X)

)

=
∫ x

−∞
FY |X(y | z) dFX(z). (29)

Now let U1 and U2 be two independent U(0,1) variables. We wish to show that
X ≡ F−1

X (U1) and Y ≡ F−1
Y |X(U2 |F−1

X (U1)) constitute a joint drawing from the distri-
bution with CDF (29).

We have

Pr
(
(X ≤ x) ∩ (Y ≤ y)

)
= Pr

(
(U1 ≤ FX(x)) ∩ (U2 ≤ FY |X(y |F−1

X (U1))
)

= E
(
I(U1 ≤ FX(x))E

(
I(U2 ≤ FY |X(y |F−1

X (U1) |U1

))
. (30)

Now
E

(
I(U2 ≤ FY |X(y |F−1

X (U1)) |U1

)
= FY |X(y |F−1

X (U1))

by the independence of U1 and U2. Thus the unconditional expectation (30) becomes

E
(
I(U1 ≤ FX(x))FY |X(y |F−1

X (U1)
)

=
∫ FX(x)

0

FY |X(y |F−1
X (u1)) du1, (31)

since U1 ∼ U(0, 1). Now change variables by the formula u1 = FX(z), from which we see
that du1 = dFX(z). The right-hand side of (31) becomes

∫ x

−∞
FY |X(y | z) dFX(z),

which is identical to (29). This completes the proof.

It is clear that the proof can be extended to show how drawings from a multivariate joint
distribution can be constructed from a set of independent random numbers on the basis
of a set of conditional distributions.
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