
A Construction of Brownian Motion as an Almost-Sure Limit

1. Introduction

If {zt} is a sequence of IID random variables with E(zt) = 0 and E(z2t ) = 1, then the
central limit theorem tells us that the sequence with typical element

Zn ≡ n−1/2
n∑

t=1

zt (1)

is asymptotically normal. Specifically, the sequence {Zn} tends in distribution to the
standard normal distribution:

Zn −→
D

N(0, 1).

We may define a stochastic process on the [0, 1] interval by means of the sequence {zt} as
follows:

Wn(t) = n−1/2

⌊nt⌋∑
t=1

zt, t ∈ [0, 1]. (2)

Then the functional central limit theorem tells us that, as n → ∞,

Wn(t) −→
D

W (t),

where W (t) is a standard Wiener process, or Brownian motion, on [0, 1].

A difficulty with this construction is that the limit is only in distribution, and not in
probability, still less almost sure. To see this, suppose that Zn → Z in probability, where
Z is some random variable. Then we show that Z and the summands zt are independent.
Note that, for the given t,

Ztn ≡ n−1/2
t+n∑

s=t+1

zs

also tends to N(0,1) in distribution as n → ∞. Under the assumption that Zn → Z in
probability, it follows also that Ztn → Z in probability. Consider the joint characteristic
function of zt and Z. It is, for arbitrary real arguments s and r,

E exp(isZ + irzt) = lim
n→∞

Eexp(isZtn + irzt)

= lim
n→∞

Eexp(isZtn)E exp(irzt) (Ztn is independent of zt)

= E exp(isZ)E exp(irzt).

The factorisation of the joint characteristic function demonstrates the independence of Z
and zt, for any t. Intuitively, the weight of zt in the partial sums Zn gets smaller as n → ∞,
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and in the limit we have independence. A straightforward extension of this proof shows
that Zn is independent of Z for any n.

Now Z ∼ N(0, 1), and so −Z ∼ N(0, 1) as well. By independence, therefore, the joint
distribution of Zn and Z is the same as that of Zn and −Z. Consequently,

Pr(|Zn − Z| > ε) = Pr(|Zn + Z| > ε)

for all n and all ε > 0. But this means that Zn → −Z in probability, which is incompatible
with Zn → Z unless Z = 0. But that too is contradicted by the fact that Z ∼ N(0, 1), and
so we conclude that the probability limit Z cannot exist.

2. A Different Construction

Despite the above result, it is possible to construct a sequence {Zn} of variables, where
each Zn has the same distribution as the partial sum (1) with IID summands, and Zn → Z
almost surely, with Z ∼ N(0, 1). The key is to fill in the terms of the partial sum from the
middle, rather than continually appending new, independent, terms at the end.

We begin with the simplest case, in which the summands zt are NID(0,1) themselves. As we
will see, the construction provides as a by-product a means for simulating a Wiener process
in continuous time directly. The starting point is to generate the realisation of W (1), of
which the marginal distribution is just N(0,1). At step i of the construction, we have a
sequence zti, t = 0, 1, . . . , 2i, of NID(0,1) variables that define the stochastic process W i(t)
through the formula (2) with n = 2i. The process W i(t) is such that, for all j < i,

W j(2−jk) = W i(2−jk) for k = 0, 1, . . . 2j .

This means that the values of the processes W i at the dyadic points 2−jk, k = 0, 1, . . . , 2j ,
are the same for all i with i ≥ j.

We can simplify notation by omitting obvious powers of 2. Thus, instead of W i(2−ik),
we may write simply W i(k) for k = 0, 1, . . . , 2i. To go from step i to step i + 1, we must
establish the values of W i+1 at the points 2−(i+1)(2k+1), k = 0, 1, . . . , 2i−1. These are the
points midway between the points at which values are permanently established at step i,
and, with them, constitute the set of points at which values are permanently established at
step i+1. For the construction to be correct, it must be the case that W i(k) ∼ N(0, 2−ik).
In addition, we require that the increments W i(k+1)−W i(k) ∼ N(0, 2−i), and that they
are independent across k. Suppose that we have achieved these requirements at step i; we
show how to maintain them at step i+1. Note that these requirements are enough for our
claim that the distribution of

Z2i ≡ 2−i/2
2i−1∑
k=0

2i/2
(
W i(k + 1)−W i(k)

)
is that of a sum of 2i NID(0,1) variables, divided by 2i/2.
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What then is the distribution of W i+1(2k + 1) conditional on the W i(k), k = 0, 1, . . . , 2i?
Since W i(0) = 0 by construction, the conditioning is equivalent to conditioning on the
increments W i(k + 1) − W i(k), k = 0, 1, . . . , 2i − 1. The conditional distribution is es-
tablished if we can find that of the increment W i+1(2k + 1) − W i+1(2k), which is just
W i+1(2k+1)−W i(k), since the value at 2−ik is permanently established at step i. Since
we want both this increment and the next one, namely W i(k + 1)−W i+1(2k + 1), to be
independent of all other summands at step i+ 1, we see that it is enough to condition on
W i(k + 1)−W i(k), which is independent of all the other step i increments.

Let
X1 = 2i/2

(
W i+1(2k + 1)−W i(k)

)
and

X2 = 2i/2
(
W i(k + 1)−W i+1(2k + 1)

)
.

Then we require that X1 and X2 should be independent, each with marginal distribution
N(0, 1/2), and such that X1 + X2 = 2i/2

(
W i(k + 1) − W i(k)

)
, of which the marginal

distribution is N(0,1). The joint distribution of X1 and X ≡ X1 + X2 is normal, with
covariance matrix [

2−1 2−1

2−1 1

]
.

The correlation is therefore 1/
√
2. It follows that the expectation of X1 conditional on X

is X/2, and the conditional variance is 1/4. Thus we may set X1 = 1−
2
(X + U), where

U ∼ N(0, 1), independent of any random number used up to step i. We can check that,
with this definition, Var(X1) = 1/2, as required. In addition X2 = X −X1 = (X − U)/2
has a variance of 1/2. Further, the covariance of X1 and X2 is

cov(X1, X2) =
1−
4
E
(
(X + U)(X − U)

)
= 1−

4
(1− 1) = 0,

so that X1 and X2 are independent. In terms of the W i, we have, for k = 0, 1, . . . , 2i − 1,

W i+1(2k + 1) = 1−
2

(
W i(k) +W i(k + 1)

)
+ 2−(i+2)/2Ui+1,k,

where we have indexed the innovation U so as to make it clear when it is used in the whole
procedure.

We may denote by Fi the sigma-algebra generated by all the innovations used up to
and including step i. Then F0 is generated by U0,0 ∼ N(0, 1), and the process W i is
Fi--measurable.

For any number t ∈ [0, 1] with a finite dyadic expansion

t =
n∑

j=1

bj2
−j , bj = 0 or 1,

for some finite n, it is clear that the sequence {W i(t)} converges to Wn(t) as i → ∞, since
W i(t) = Wn(t) for all i ≥ n. It remains to find the best argument to show that {W i(t)}
converges almost surely for all real t ∈ [0, 1].
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