Economics 765

May 28, 2024

R. Davidson

Assignment 3

You are asked to do exercises 3.2, 3.7, and 4.5 of Volume 2 of Shreve. The essence of these exercises is reproduced below for convenience.

3.2 Let W(t), $t \ge 0$, be a Brownian motion, and let $\mathcal{F}(t)$, $t \ge 0$, be a filtration for this Brownian motion. Show that $W^2(t) - t$ is a martingale.

3.7 Theorem 3.6.2 provides the so-called *Laplace transform* of the density of the first passage time for Brownian motion (the moment-generating function). Let W be a Brownian motion. Fix m > 0 and $\mu \in \mathbb{R}$. For $0 \le t < \infty$, define

$$X(t) = \mu t + W(t),$$

$$\tau_m = \min\{t \ge 0; X(t) = m\}.$$

As usual, we set $\tau_m = \infty$ if X(t) never reaches the level *m*. Let σ be a positive number and set

$$Z(t) = \exp\left\{\sigma X(t) - \left(\sigma \mu + \frac{1}{2}\sigma^2\right)t\right\}.$$

- (i) Show that $Z(t), t \ge 0$, is a martingale.
- (ii) Use (i) to conclude that

$$\mathbf{E}\left[\exp\left\{\sigma X(t\wedge\tau_m) - \left(\sigma\mu + \frac{1}{2}\sigma^2\right)(t\wedge\tau_m)\right\}\right] = 1, \quad t \ge 0.$$

(iii) Now suppose $\mu \ge 0$. Show that, for $\sigma > 0$,

$$\mathbf{E}\left[\exp\left\{\sigma m - \left(\sigma \mu + \frac{1}{2}\sigma^2\right)\tau_m\right\}\mathbf{I}(\tau_m < \infty)\right] = 1.$$

Use this fact to show that $P\{\tau_m < \infty\} = 1$ and to obtain the Laplace transform

$$\operatorname{Ee}^{-\alpha \tau_m} = \operatorname{e}^{m\mu - m\sqrt{2\alpha + \mu^2}}$$
 for all $\alpha > 0$.

(iv) Show that, if $\mu > 0$, then $E\tau_m < \infty$. Obtain a formula for $E\tau_m$. (Hint: Differentiate the formula in (ii) with respect to α .)

(v) Now suppose $\mu < 0$. Show that, for $\sigma > -2\mu$,

$$\mathbf{E}\left[\exp\left\{\sigma m - \left(\sigma \mu + \frac{1}{2}\sigma^2\right)\tau_m\right\}\mathbf{I}(\tau_m < \infty)\right] = 1.$$

Use this fact to show that $P\{\tau_m < \infty\} = e^{-2m|\mu|}$ (watch out! there is a misprint here in Shreve, who writes $e^{-2x|\mu|}$), which is strictly less than 1, and to obtain the Laplace transform

$$\operatorname{Ee}^{-\alpha \tau_m} = \operatorname{e}^{m\mu - m\sqrt{2\alpha + \mu^2}}$$
 for all $\alpha > 0$.

4.5 Let S(t) be a positive stochastic process that satisfies the generalised geometric Brownian motion differential equation

$$dS(t) = \alpha(t)S(t) dt + \sigma(t)S(t) dW(t),$$

where $\alpha(t)$ and $\sigma(t)$ are processes adapted to the filtration $\mathcal{F}(t)$, $t \ge 0$, associated with the Brownian motion W(t), $t \ge 0$.

- (i) Make use of the above differential equation and the Itô-Doeblin formula in order to compute $d \log S(t)$. Simplify so that you have a formula for $d \log S(t)$ that does not involve S(t).
- (ii) Integrate the formula you obtained in (i), and then exponentiate the answer to obtain the solution

$$S(t) = S(0) \exp\left\{\int_0^t \sigma(s) \,\mathrm{d}W(s) + \int_0^t \left(\alpha(s) - \frac{1}{2}\sigma^2(s)\right) \,\mathrm{d}s\right\}.$$