Forwards and Futures

A forward contract on some asset with time-varying price S(t), ¢t € [0, T], and
strike (delivery) price K is a contract to buy one unit of the asset at time 7'
for price K. The return to the holder of the contract is then S(7') — K, which
may be positive or negative.

A hedging portfolio for the forward contract contains one unit of the asset and
a debt on the money market that, if repaid at time T, is worth exactly K. At
time T, this portfolio is worth precisely S(T) — K, and so it does correctly
hedge the forward contract. The sum borrowed on the money market that
leads to a debt of K at time T when the interest rate is r is e "7 K, and so the
cost of the hedging portfolio at time 0 is S(0) — e "7 K. To avoid arbitrage,
this must also be the cost of the forward contract.

At an intermediate time ¢, the value of the hedging portfolio is S(t) —
e "T=OUK. If we want to define a function f of two arguments z and t
such that f(S(t),t) is the value of the hedging portfolio at time ¢ when the
asset price is S(t), then it follows at once that f(z,t) =z —e "TVK.

Suppose that at time 0, an investor wants to find a forward contract that
costs nothing now, while obliging him /her to fulfill the terms of the contract
by buying a unit of the asset for price K. Such a contract postpones all gains
or losses until time 7. The appropriate contract must have a forward price
of K such that the cost S(0) —e "7 K = 0, which implies that K = e¢"75(0).
At an intermediate time t, the forward price would be recalculated to give a
value of e"(T=*) S(t). We define

For(t,T) = e"T=95(¢). (1)
The value of the hedging portfolio at time ¢ is
S(t)y—e "I K = ¢7n(T=1) [For(t,T)— K| = e n(T=H [For(t,T') —For(0,T)].

If the secondary market for forward contracts is liquid, then this is what the
contract with strike K should be worth at time t.
The above assumes a constant interest rate r. For more generality, assume

a time-varying discount process D(t). Then, if there exists a risk-neutral
measure, the value of the forward contract at time ¢, V'(¢), satisfies

DV (t) = E(D(T)(S(T) - K) | F(t)) = E(D(T)S(T) | F(t)) — KE(D(T) | F(t))

= D(t)S(t) — KE(D(T) | F(t)). (2)

This doesn’t seem very helpful, since we don’t know just what the risk-neutral
measure is. However, we get enough information from the bond market in
order to evaluate the expression we obtained above.

Consider a zero-coupon bond that will pay one unit of whatever measurement
unit we use for the values of assets at time 7. Let B(¢,T) denote the value
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of this bond at time ¢. Then we can evaluate B(t,T) using the risk-neutral
measure to get B
D(t)B(t,T) = E(D(T).1 | F(t)) (3)

With this, (2) becomes
D)V (t)=D#)S(t) — KD()B(t,T), or V(t)=S(t)— KB(t,T).

As before, the value of K that sets V(t) equal to zero is the forward price at
time t, and so we get
S(t)

For(t,T) = BU.T) (4)

Check: if D(t) = e™", it is deterministic, and (3) gives B(t,T) = e"le™"T =
e 7T 50 that For(t,T) = e"T=1)S(t), as before, in (1). Shreve provides
another argument, which does not rely on the risk-neutral measure, to show
that there is an arbitrage if (4) doesn’t hold.

The futures price of an asset at time ¢ that matures at time T is defined as
Fut(t,T) = E(S(T) | F(t)).

By construction, Fut(¢,T') is a ]B—martingale (usual argument by iterated con-
ditioning), that satisfies Fut(T,T) = S(T') and also Fut(0,T) = E(S(T)). If,
but only if, the interest rate is a constant r, the forward and futures price are

equal. Indeed,
Fut(¢t,T) = eT'TE(e_T'TS(T) | F(t) =eTe S(t) = "= 8 (1),

which, by (1), is For(t,T") with a constant interest rate. With a time-
varying interest rate, there exists the forward-futures spread. At time 0,
it is For(0,T) — Fut(0,T). From (3), we see that B(0,T) = E(D(T)), and so
by (4) For(0,T) = S(0)/E(D(T)), while Fut(0,T) = E(S(T)). The spread is
therefore

For(0,T) — Fut(0,T) = 15(%2)) —B(S(T))
1 ~ ~ ~
= = E(D(T)S(T)) — E(D(T)) - E(S(T
E(D(T))[ (D(T)S(T)) —E(D(T)) - E(S(T))]
1
= BT cov(S(T),D(T))

A holder of a futures contract agrees to receive a cash flow equal to the
change in the futures price. If C(t) is the accumulated value of this cash flow
at time ¢, we see that dC(t) = dFut(¢,7). The cash flow is paid into the
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margin account, where it earns or pays interest at the risk-free rate. Let X (¢)
be the value at time ¢ in the margin account. Then

dX(t) =dC(t) + R(¢) X (¢)dt.
Consider the differential of the discounted value. It is
d(D(t)X(t)) = D(t)dX(t) + X (¢)dD(¢),
since dD(t) dX () = 0, because dD(t) = —R(t)D(t) dt has no quadratic vari-
ation. Thus
d(D()X(t)) = D(t)dX(t) — R(t)D(t)X (t)dt = D(t)dC(t).

On integrating, and noting that X (0) = 0 and that dC(t) = dFut(¢,T), we
see that .

DX (t) = /0 D(u) d Fut(u, T). (5)

Now Fut(t,T) is a P-martingale, and so also is D(t)X (t), since the integral
of an adapted integrand with respect to a martingale is also a martingale
(Exercise 4.1 in Shreve). If we think of the margin account as a portfolio,
this result is the usual one that the discounted portfolio value is a risk-neutral
martingale. This particular result says that, at time s < ¢, the risk-neutral
expectation of the change in the value in the margin account in the interval
[s,t] is zero. This is why it is costless to abandon the futures contract at any
intermediate time, retaining whatever value may be in the margin account.

But if the futures contract is held until maturity, the value in the margin
account is determined by setting t = T in (5). We find that

T
D(T)X(T) = /0 D(u)dFut(u, T).

In the case of a constant interest rate, the above expression can be made a
little more explicit. Observe that

dFut(u, T) = dFor(t, T) = e"Td(e™"'S(t))
and D(u) = e~ ™. Thus

D(T)X(T) :eTT/O e " d(e”"S(u)).

We also have -
DNST) = 50) = [ alers(w),

and so the discounted value of what the investor effectively has to pay for one
unit of the asset at time T is

T
D(T)(S(T) — X(T)) = S(0) — /O [erT=) —1] d(e™""S(u)).



